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l. Introduction

The mvest1gat10n of characterlstlc X -rays exc1ted by
the interaction of heavy ions with matter shows that even .
the K -shells of the- colliding. partners become ionized
with high probability. The. order of magmtude of the cross -
section valueés o as well as its. dependence on the ion

- energy, on the atomic numbers of the projectile (Z7)and

of the target (Z,) raise the question about the mechanlsm.
of the K-shell: ionization. For. ions with the smallest
atomic numbers Z,,such asprotonsand a-particles, the :
experlmentally determined . values of the “total cross

© section ok are in good agreement w1th that for d1rect',.

Coulomb ionization. /1~ 6/ In the cases of incident energies -
fulfilling the adiabatic condition for inner shells and for
ion- target combinations;:for which the relation L1 L
is 1nva11d the dependence of the Cross. sections . ok and .
o[ on the ‘experimental parameters is' described in
a quahtatlve _way Dby the molecular orbital (MO) mo-
del ~/2,7-12/By using this model, in ref. /13/the cross

‘sections of K -shell ionization were calculated for the .~

symmetric systems C+C*, N+N*, '0+07 and;Ne+Ne¥; in
these .cases one or more L -vacanc1es are brought in
by’ the incident ions. Unfortunately, no quantltatlve calcu- !

lations of the Cross sections, which are :to be expected- . -

from the MO model, are so far carried out for asymmetric

systems or symmetr1c systems with Z >10. In_these

cases direct experimental tests are currently 1mposs1ble ’
“Some recent papers ‘indicate that multiple collisions

“of ions in a target materlal lead to an asymmetric charge’-

distribution, whlch contains also ' very high charge.
states 71415/ Such high charge states may mainly result
from outer shell ionization, but K -shell vacanciesarenot .-

.
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‘to be excluded The concepts adva.nced SO far- on the
,i_formatlon of charge distributions by ‘the. ‘interaction . of
- ions. in solids, give no statements on the mechanlsm of an -
,1nd1v1dua1 collision. The K -shell vacancies, necessary
- for the production of KX -rays, may, therefore ‘originate
‘from “electron promotlons as well as from any kind of

direct process.... -
" The 1nvest1gatlons of K ex01tatlon Cross sectlons,

which are described in- this paper, .may contrlbute to -
clarify the mechanism of inner shell 1on1zatlonmthe case

of high energ1es and heavy colhdmg 1ons

2. Experlmental Method

At the U-300 heavy ion cyclotron 1nvest1gatlons .of the

~emission of KX -radiation arising from the bombardment

of different solid targets by 136Xe ?* ions were carried .
out: The ion energy was 150 MeV., Currents of about
- 2x10 1%-ions per second were used. The pr1n01pa1 experl-
mental ‘arrangement was described earlier /16/By means’

.- of a somewhat better focusing system, a focus of 6 mm

diameter was ‘achieved at the targetlocation. The targets
consisted. of thlck metalhc foils covered’ by a frame ‘of
pure aluminium with- an opening of 15 x 15 mm 2 The
parameters of the targets used are listed 1n table 1. The
‘targets were “exposed -at an angle of 45° ~with ‘respect

to” the beam direction, but the X - rays were measured - -

perpendlcularly to the beam direction. A gr1d of 0.1 mm
tungsten - wires, placed in front of the target, served to

" normalize the measured spectra to the equal quant1t1es

ot incident ions.
For the detectlon of the ‘KX -rays, a SI(LI) detector
with a cooled FET pream p11f1er 0of 470 eV energy" resolu-.

- tion at 26 keV X-ray energy was used. Figure 1 shows

the LX- and .y-ray spectra of = 24:Am,which was used
for ‘the energy calibration. The" measurements were
performed’ with-a 1024- channel analyser. Figure 2- shows :

the X -ray spectrum obtalned by bombardment of a Nb L

target
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Therefore the LX- radlatlon of the target mater1als could

not systematlcally be 1nvest1gated As a result of the N
ionization of the inner shells of the tungsten nucleides, "
the character1st1c KX -ray lines of tungsten were obtalned

together with the *KX:radiation of Xe and the target
materials - (fig. - .2). By means  of the mtens1ty of the

tungsten X-rays, the normallzatlon of the X -ray spectra co

to equal charges was carried out R

In order to obtain the absolute c¢ross sectxon values
the charge was measured without target foil. The number
of KX-rays of the tungsten grid was compared w1th the

‘charge of the ions passing through the grid to the Faraday‘_

cup. In this wayany falsificationof the charge measurement

P

e

..and target respectlve

Table l

":.'The types of targets used. The symbols de51gnate the;;

“following: 7, and Z ., the ‘atomic numbers of projectile -
12y ~d, the effective target thickness."

‘in: a - 45° geometry; = R -the -range, \7he}'e 150 MeVs

’

Xe.w 1ons are losmg an: energy of 30'MeV

| ?‘r.gf-”?zz’ o, e

No X - -rays of energles below lO keV could be detected
due to .an electrlcally inactive layer inside the detector. -

TR ‘*:;1.32:,?4‘34~41f"**‘°-95'

wo 42 129 263 0977

ca 48 1.12 ”‘e]j9.1;f‘4 1,04

Cmm a9 a0 284 105
~sa 50 .0 1.8 1.3 1.0T

‘@ 64 . 0,88  10.8 - 1.28

Tob 65 . 0.83. 5.4 . 1.30
Ceype 70 . 07T . 8.2 1.33°
‘s .73 -0.74 . 212 f\15ag§3:i~

eIee T o.lof:g§[18f4f_.Tiffrésp;gj

Pt 78 0.69 - 15.7 . 1.5
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. due to changes in. the charge of the Xe 1ons 1ns1de the“

target was av01ded

It s ‘well known that 1ns1de the target mater1als ‘the .
cross’ section- of the KX -ray excltatxon -changes very: -
rapidly with the actual ion energy. In ref. :/17/ it was.
assumed that the - K, ‘-radiation of ‘Cl ions of 120° MeV B
was emitted only in a thin target layer of about 100,1g/cm -
,Other ‘authors /13/ suggest an energy dependence of the -

KX - '-radiation cross section to be proportional'to E(r)°. 5
Together with theé rapid decrease of the ion energy in
solid materials, this causes X - -ray emission only in the
utmost layers of solid targets For the evaluation of the:
" cross sections we could notuse the formula of Merzbacher

and_Lewis 11/ » because it was 1mp0551b1e to vary the ion -

energy using the cyclotron whereas the use of alumlmum;
foils for decreasing the ion energy would give rise to very
high uncertainties. Because for - Xe ionsno experimental-
ly confirmed expression for the energy dependence of
0. was known, we assumed that KX-radiationis produced
‘only within a range R,in which the Xe ions’ are losing
) "an .energy of 30 MeV. Further we assume the KX- -ray.
cross section to be constant within this range. The values
of R evaluated using the - tables of Northcliff and
Sch1111ng /19/ are listed in table 1.

The follow1ng corrections’ of the measured KX ray."

1ntens1t1es are to be made:

1. Self-absorption of the X° -rays within the " range R~
2. Excitation of Xe KX-radiation by the tungsten gr1d
Its portion was determined from a measurement without
target, which was also normalized to the intensity of the
characteristic KX -ray transitions of the tungsten grid.

3. In the case of the Gd, Tb’ and Yb targets, Coulomb-!‘

excited y -ray trans1t10ns were obtained, whose inner
conversion contributes to the target KX -ray intensity.

. Its portion was calculated from the 1ntens1ty of the respec- '

tive y -ray lines and the known conversion coefficients.

The rate of KX -radiation -measured by our target- .

detector arrangement is given by the follow1ng relation:

n= o [E(Te™ a, S

TN -

) Coulomb-excited

--where E(r) is an ion energy dependent on the penetration
depth along a stretched path-inside the target;o[E(r)]is
the cross section as a.function of the ion energy. The
value of & =o (E) averaged over the range R - "of the
Xe jons and dependent only on the incident energy. E is
-obtained from eq. (1) by- makmg use ‘of some correction
factors . .,,
- mNpe A . ' Lo
g = ,. - - ’ 2
n(l - e—,l"'R)' € -M.D - : ( ) .

tot

where - N pc is the measured and corrected number of -
KX -rays: .In calculatmg the cross section .o g (Xe), the
Xe K rad1atlon excited by the tungsten grid was sub-
tracted. In calculating the cross sections oy (target)
for 'Gd , Tb and Yb targets, the inner conversion of the
7y -ray transitions was taken . into
account; p is the target absorption coefflment for the
K -radiation in c¢m /g, R is the range hsted in table 1;

n“is the  number of target atoms per -g ; €, Iisthe
total eff1c1ency of the Si(Li). detector ‘D is the number

~ of characteristic KX -rays of the tungsten grid actlng as

a normalization factor; M is a calibration factorobtalned_
from the absolute charge measurement for Xe * ions;

A is a correctlon factor for screenlng X —rays by the )
tungsten gr1d : :

¥

3. Experimental:Res'ults

‘In table 2 the evaluated cross section values a’Kaand
o'xg for Xe andtheinvestigatedtargetsare summarlzed
Figures- 3 and 4 show .the dependence of these cross

" sections on the atomic number Z, of thetarget materials
for a’ constant incident ion energy of 150 MeV. Figures 3
and_ 4 present additional cross. section values, which we
have measured by means-of a Ge(Li) detector and- ‘which

“were - referred to elsewhere /27, These values have
°subsequent1y been corrected: for self-absorptlon of KX‘
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Fig. 3. Absolute cross sections ok, (Xe)and ax (target)
as. a . function -of the atomic- ‘number. : Z o of fhe target
material. . The values-.denoted- by the 'symbols- -and
-detector, the
values denoted by @ and 0 weh ve obtamed by a Ge(Li -
detector and referred elsewhere /20

‘ rays within the’ range R.In the calculations of the errors'v

AaKglven in table 2 and figs. 3 and 4, only the errors
in the peak areas N_.and D, the. absorptlon coefficients
it and the ranges R have been taken into. account. These

-values are uncertaln from target to target and effect the
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relative positions of several points in figs. 3 and 4. The
neglected errors of the detector efficiency e,
the factors M and ‘A influence to an equal extent all
the points of figs. 3 and 4, i.e., only the absolute cross
section values. The account of the systematical errors

Aétor , AA and AM increases the relative errors AaK/aK

- by 20%."

2

and’

4. Discussion , . - ..

 The experimental facts described in section 3 may be
“explained qualitatively in terms of the MO model /9.11/.
In principle, this-model is applicable to our experiment,
because the adiabatic condition v<<u is fulfilled for
every target and the quantum numbers n=1,2 “and 3. For
instance, for the M-shell of 4 Rh the condition v/u~0.3
is. valid. This ratio decreases with-increasing Z of the
target and- decreasing quantum numbers n. The time

- required for penetration of the K'-and L -shells of the

collision partners™is of the.order of 10 "8 s, whereas

- for "solid targets the time between two.collisions amounts

to about 10~17s. Vacancies in the M, L - and K-shells
of Xe have life-times.of 10-14, 10-15 and 10-16s, res-
pectively /2I(They are, therefore, able to survive several
collisions and to give rise to the emission of characteris-
tic X -rays after the particles have been separated. For
an incident energy of 150 Me}’ the mean charge state of
Xe ions is about q=28 (refs. 2223/ ) It may, therefore,
be assumed that after some collisions with the outer-
most target layer a large number of Xe ions contain
vacancies. in the 3d -shell: Figure 5a and 5b show the
correlation schemes for the system asBh+ 54Xe and
64 6d+ 54 Xe, respectively. As can be seen from these
figures for. a -target with Z,< 54, according. to the MO
model, vacancies may get across the 3d5. -term.to
the quasiatom with Z = 99 and therefrom into the 2p -shell
of the Xe ion. Filling these vacancies,by‘ouf’er‘;el'ectr_ons
causes LX -rays of Xe. If, however,: during the lifetime
of the 2p vacancy a further collision takes place, the

vacancy may be transferred into the '1s -shell. of the .

Rh  atom. Multiple collisions lead to the excita&tion of
KX -radiation of -Bh. If: the atomic number - 'Z, nearly

agrees with that of Xe, i.e.,; boththetarget.and projectile; .

haye.almost;.equal‘; K- binding energies, the ‘1s -electrons . .-
of Xe may also be promoted into the higher,states with"
high probability resultingin a large cross:section o x(Xe) .
(fig. .3). This .mechanism explains qualitatively - that for
Z 5<54 the  lighter  collision ‘partner bec’omes,:preferably' '
K .ionized. : s R

13°



F1g 5 MO- correlatlon schemes for the asymmetrlc .colh-
sion systems 45Rh + 54 Xe(a) and 64Gd+ 54 Xe(b)

102 = - — '
. . ; R 6.
R . : 566 ° SI6 sgn - 6hg 54 > _---_...._-l.p .
h C | \\ \\ o RPN
103 o 3
3 of E
2  wE 3
o
w .
;o o 2p RN T
L 2s . : : ) -
S —_1s
- prd .
105 £ . sRh g Xe - 3
s —— " % - }
i Z=99
IDS 3

In ﬁg 5b the correlatlon -scheme -is drawn for the.
system Gd + Xe,whlch is, in. pr1nc1ple also valid for all -
‘other -targets. (T) with-Z, >54 ‘In spite of- the increasing
electron’ bmdmg energles w1th mcreasmg Zg,the alter-
" nating shell sequence Ky K xe~ Lr—Lx T"Mx is pre= -
served up to the system Bl + Xe. Accordmg to the already - -
descrlbed mechamsm vacancies of the 3d 'shell of Xe 1ons_:';‘
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may be transferred durmg further colhsmns mto the

“9p -shell of Xe and therefrom into the 2p -shell of Gd.
A strong I, ionization. of both parmers is to be expected

.In order to explam the orlgm of KX - radlatlon of Xe , '

' . the followmg processes ‘might be. dlscussed

a) collisions.of Xe ions with L 1on1zed Gd atoms, and’ .
, b) ‘collisions of L ionized. X‘e ions with™ Xe. atoms, T
1mp1anted into the target 1att1ce ;

5
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" Similar arguments are. used in paper 24/ to explam
the KX —rad1atlon of Ne ions, or1g1nat1ngfrombombard-
“ment of an Ar gas target For both: types of collisions,
only a very low rate determined by the ratio of the particle

densities "is to be expected Neglecting the backward 4

dlffusmn of - the 1ons,_ in. the- collisions of Xe with
Xe an accumulatlon effect” should -be’ observed. At the
.end of ‘a 30 min. 1rrad1at10n the ion -current leads to-
one. Xe + Xe colhsmn compared with-10 5 of 'Gd + Xe
collisions. Exper1mentallyv, no change in the intensity
ratio between the target and Xenon radiation has been
found with an-accuracy of a few percent for an irradia-
tion period of 1.5 hours. For- Z ¢ > 54 -the origin of the
target KX rad1at10n could be exp1a1ned as-being due to
recoils of L ionized target atoms. During the formation
of quasimolecules with other target atoms, K -shell
-'vacan01es may be produced in the symmetrlc colliding’
system.’ In this way the formation of target KX -rays.
may ‘in. ' principle. be  understood also for targets with
Z. > 54. In the framework of the MO model Meyerhof 725/
has tried to explain the production of K vacancies also
for .asymmetric systems. On. the basis of the charge

_transfer theory of Demkov 726/, he provides-an explana- .

tion of K ionization of the h1gher Z partner by sugges-
. ting that, after 2po-2pm electron promotion by rotational

. coupling at small 1nternuclear distances (fig. 5b), a further

. . charge transfer can take place between. the 1sc and
2po terms by radial coupling. For the probability w(x)

of ‘vacancy transfer from the 2po orbital (lower Z)-

to the 1soorbital (h1gher Z ) Meyerhof gives the relation
| »w(x) l/(l+e 2lx l),. » 3)
where | o | | .

x = nl =1 )/[am 1] 1/2 - "('4)‘

, Express1on 3) is valid 1f the rad1a1 couplmg acts only

in “the exit channel. In formula (4) I; and: I, denote

the K binding energies for the- projectile"and target,

16

respectively,- vvl".;is,."the ‘projectlle; ‘veloc‘lty,’ : the

- .electron mass-.and "1 . a mean value of ‘the - K b1ndmg
" energies -in- the followmg form:. ‘/z~(I‘/ﬂ +1 % )/2. The
probab1hty 'w is" related to the cross .section§ o g (H)
and o (L) for ionization of the K -shells.in the h1gher- o

and lower- Z partner by the expressmn 25
o (H) Ty (D) ', (L)) ey

F1gure 6 shows the probab111t1es w, - as they can be
-evaluated from our experimental results (table 2). For

x>0, where Z,>7Z,, j.e, the Xe ions are the higher-Z

partners the’ experlmental values approx1mate the theore--
tical expression (3) satlsfactorlly In these cases the radial

"couplmg can account for the ionization of the 'Xe K —shell
~in the framework of the MO model. However for x< 0,
-where Z;<Zy,i.e., the target atoms are ‘the - h1gher- z

partners, Meyerhof’s -suggestions can not expla1n our.
exper1mental results Since the. measured values -are

located above the theoretlcal curve of formula 3), we

assume .that the recoil . of - target atoms contr1butes

-strongly to -the cross sections “og(H) . "In the case of
-z 1>Zg this recdil may only magnify the values - aK(L)
and may, therefore explain the fact that the experlmen-

tally found values of w are somewhat smaller than the

., theoretical ones

‘For the minumum . d1stance between the colhdmg
partlcles the relatlon o ‘ e
“Rogin = -t Ce (8)

lab M2

ls valid. Provided that. the energy E lab“‘df the X{e ions
is constant, R ;;; increases with increasing Z,. ‘This

. effect leads to 'a decrease 111 the follow1ng 1on1zat10n -

cross sections:
~a) o (Xe) - for L 1onxzat10n of the Xe 1ons fiI_1"

A/‘colhsmns with target atoms

7
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b)) (target) for 'K ionization of recoiled target
atoms. 1n c0111s10ns with target atoms.
hls leads to a decrease in o (target) w1th increasing
Z, (flgs 3 and 4)

_ ,Summary

In the bombardment of several targets with 150 MeV

‘Xe ions the absolute’ cross sections o ¢(Xeland o (target)
“have been ‘measured. The dlscuss1on of the experimental °
~.results shows that for -Z,<54 the MO model is capable
~-of explaining :the cross section ratios o K(H) /o, g(H) +a (L)) -
Cin a- quantltatlve way. “Moreover,’ from. this " model the
" cross’ section QirK of the- pro;ecttle may be-expected to
- .show a maximum in:the case.of a ‘symmetric collision

system ZI- Z,. For: Xe ions’ the’ height and position of

- this max1mum may . be 1nterpolated from the measured

cross section curves K( e)and %k (Xe).« For Z2>54, .

‘the KX -radiation of - Xe “and the target: materlals are
~no.-longer - understood on'the'basis of multiple’ ‘collisions

of ' Xe -ions with" ‘target atoms ‘An" explanatlon ‘of the -
Xe ~‘radiation: w1th the’ help of the collisions of Xe ions -
w1th 1mp1anted Xe atoms seems 1mprobable For a pos- o

* sible explanation.of the target. radiation, use was made .
“of: target recoil collisions. The " Z: dependence of o (Xe) .-
and oy - (target) for Z 0> 54 - gives a hint at the formatlon »

of quasxmolecules in th1s case too.
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