<u>C343</u>e N-48 ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна. 2.689/2

E7 6480

EXPERIMENTAL DATA ON (H.I., xn)-REACTIONS

W. Neubert

E7 - 6480

EXPERIMENTAL DATA ON (H.I., xn)-REACTIONS

Submitted to "Nuclear Data Tables"

1. Energetic Relations

In this paper a compilation of measured excitation function data for heavy ion induced compound nucleus reactions is presented. A projectile with the kinetic energy E_{lab} interacts with a target nucleus and forms an excited compound nucleus of excitation energy E_{exc} , which decays by emission of particles and gamma quanta. Here, only reactions with emission of neutrons are dealt with. The excitation functions of such reactions show sharp maxima, the positions of which depend on the number x of emitted neutrons. The large body of experimental (HI, xn) reaction data, presented in the succeeding tables, offers the possibility to look for a simple and reliable way for optimizing the experimental conditions of such type of reactions. Only the tabulated values of mass excess and neutron separation energy are used to formulate an empirical relation for the peak position of the excitation functions.

As it is suggested by Alexander and Simonoff (20), the relation

$$(\langle E \rangle_{x} - \sum_{i=1}^{x} Bin) / x \sim 5.0....6.5 MeV$$
 /1/

is valid, regardless of the number of the evaporated neutrons and the projectile mass, which has been proved correct for a number of reactions leading to the product nuclei ^{149,150,151} $_{Dy}$. In this notation B_{in} is the neutron separation energy of the compound nucleus or the intermediate nuclei formed in the neutron evaporation cascade. $\langle E \rangle_x$ designates the mean value of the compound nucleus excitation energy, which corresponds to the centre of gravity of the measured excitation function. In case of a symmetric shape of the excitation function this quantity coincides with the peak position E_{exc} , which will further be used by us as a fairly good approximation in order to simplify the analysis of the experimental data. The excitation energy consists of the mass excess difference of the ingoing target and projectile nuclei and the outgoing compound nucleus, added to the kinetic energy (in the centre-of-mass system) brought in by the projectile.

$$E_{exc} = E_{lab} - \frac{A_T}{A_c} + (M - A)_T + (M - A)_I - (M - A)_c, \quad /2/$$

where (hl-A) denote the mass excesses of target (T), ion (1) and compound nucleus (c). In analogy to the expression /1/ we define a quantity

$$\overline{\epsilon} = (E_{exc} - \sum_{i=1}^{x} B_{in}) / x , \qquad /3/$$

representing the average energy value, which is carried away by each step of the evaporation cascade in form of gamma radiation and kinetic energy of the emitted neutron.

2. Compilation of Experimental Data

Data characterizing the excitation functions of (HI, xn) reactions, available in the literature were arranged in tables 1-12 in order to get statistical material for the characteristic quantity $\overline{\epsilon}$ and its dependence of the mass number. The compilation covers HI reactions with B, C, N, O, F, Ne, P and Ar as incoming particles.

In the first column of the tables the compound nucleus reaction is specified, ordered with increasing mass numbers of reaction products.

The second column contains the energy position E_{lab} of the peak of the excitation function, measured in the laboratory system. Reactions with the heaviest ions show very broad excitation functions, causing uncertainly determined peak positions, e.g. \pm 6MeV in case of Ar.

The calculation of the excitation energy values E_{exc} , cited in the third column, is based on the tables of experimentally determined mass excess values⁽²³⁾. In the rare cases, where for the compound nucleus no experimental value was available, the $(M-A)_c$ value was taken from Seegers' mass formula ⁽¹¹⁾ and corresponding target and projectile values (based also on ¹⁶O -mass scale) from the tables of Everling et al. ⁽⁹⁾. In some few cases values from Zeldes' table ⁽³⁶⁾ were used.

In the fourth column $B = \sum_{i=1}^{n} B_{ii}$ denotes the neutron separation energies summed over

the whole evaporation cascade. The B_{in} values were taken from ⁽¹¹⁾. The fifth column contains the quantity ϵ , derived from equation /3/.

The peak cross section σ is given in the sixth column in units of 10^{-27} cm². For smaller values the exponent is given in parentheses, e.g. $6(-4) = 6.10^{-4}$ mb. A stroke is given if the cross section has not been quantitatively determined or was only given as a branching ratio or the σ / σ_{total} ratio.

The remarks in column seven imply LSI-low spin isomers, HSI-high spin isomers, i.e. states which form independent isomeric pairs without or with very weak gamma branching. S and Z indicate that the mass excess values were taken from Seegers' table (11)or Zeldes' table (36), respectively. Values marked by an asterisk * were included into the least square fit. The $\vec{\epsilon}$ value is shifted to higher energies, if the peak of the exci-

tation function is less than 10 MeV above the Coulomb barrier, which takes place mainly for (HI, 3n) reactions and, in case of heavy nuclei, even for (HI, 4n) reactions. Such data were excluded from the fit.

The references cited in the last column consider the literature till March 1972.

3. Conclusions

In figure 1 the $\bar{\epsilon}$ values are plotted vs. the mass number A of the product nucleus. At first sight quite large deviations from the data of Alexander and Simonoff are noticeable. Major sources of the fluctuations may be inaccurately known initial energies and day-today variations of the different accelerators used by the investigators. The evaluation of the energy loss in the target material may cause further fluctuations, if different energyrange relations were used. Emerging from these fluctuations $\bar{\epsilon}$ decreases with increasing mass number. Such trend is to be expected, because the kinetic energy of the emitted neutrons as well as the residual excitation energy of the system dissipated by photon emission decrease with increasing mass number, as follows from model predictions. Assuming a linear dependence, a least square fit leads for the interval $110 \le A \le 260$ to the relation

$$\overline{\epsilon}_{fit} = (8.8 - \frac{2.3}{100} A) MeV.$$

/4/

In order to check its validity the standard deviations S of the experimental points in fig. 1 from $\overline{\epsilon_{fff}}$ were calculated for mass number intervals of each $\Delta A=10$. The result drawn in fig. 2 shows no striking deviations. The distribution function for the whole mass region $110 \leq A \leq 260$ (fig. 3) fulfills the requirements of a normal distribution and may be described by a Gaussian distribution with a standard deviation of S = 0.7 MeV. Equation /4/ may, therefore, be used as a first approximation for the estimation of $\overline{\epsilon}$. The equations /2/ and /3/ are useful to find out the optimum projectile energy E_{1ab} which gives maximum yield of a desired reaction product. In fig. 1 groups of experimental points show considerable deviations and were, therefore, excluded from the fit. One of these groups are the nuclei 149,150, 151 Dy, produced by irradiation of enriched $\mathcal{G}d^{j}$ targets with argon ions (18) . The corresponding values may possibly be influenced by the uncertainly known incident energy of the heavy ions, because the internal beam of the cyclotron was used. This is supported by the fact, that other data for these reactions (49) give much lower $\overline{\epsilon}$ values.

A large dispersion of the *e* values is also observed for the group of the heaviest nuclei, where the cross-sections are extremely small, causing large statistical errors.

For the low-spin ground states of the nuclei Tb, Ho small ϵ values were obtained, which lie outside the expected deviations. In each of these nuclei a high-spin isomeric state exists, which decays by α -emission without gamma branching to the ground state, leading to a "screening" of the low-spin state. With increasing bombarding energy higher angular momenta are transferred to the product nucleus, and preferably the high-spin level is populated, whereas the direct population of the low-spin state is found at lower beam energy. The quantity ϵ derived from the excitation function of the high-spin state coincides with the bulk of the other data. In the ordinary cases of strong gamma branching no screening takes place, and the excitation of the low-spin state is mainly affected by that of the high-spin state. Usually, the shifts of the excitation function functions owing to different spin values are, therefore, not very significant and are smaller than the shifts, caused by one additionally evaporated neutron.

151,152,154

The author would like to thank academician G.N. Flerov for his interest to the problem, Dr. K.H. Kaun, Dr. F. Stary and A.S. Ilinov for stimulating discussions, helpful comments and a critical reading of the manuscript.

References

- (1) A.S.Baraboschkin et al. Zh.Eksperim. i Teor. Fiz., 32, 1294 (1957).
- (2) T.Sikkeland, S.C.Thompson, A.Ghiorso. Phys.Rev., 112, 453 (1958).
- (3) L.I.Guseva et al. Zh. Eksperim. i Teor. Fiz., 37, 973 (1959).
- (4) A.S. Karamyan et al. Zh. Eksperim. i Teor. Fiz., 36, 621 (1959).
- (5) A.S.Karamyan, A.A.Pleve. Zh. Eksperim. i Teor. Fiz., 37, 654 (1959).
- (6) A.S.Karamyan, L.I.Rusinov, V.A.Fomicev. Zh. Eksperim. i Teor. Fiz., 36, 1374(1959).
- (7) V.V.Volkov et al. Zh. Eksperim. i Teor. Fiz., 37, 1207 (1959).
- (8) V.V.Volkov et al. Zh. Eksperim. i Teor. Fiz., 36, 762 (1959).
- (9) F.Everling, L.A.Konig, J.H.E.Mattauch and A.H.Wapstra. Nucl. Phys., 18, 529 (1960).
- (10) A.S.Karamyan, A.A.Pleve. Zh.Eksperim. i Teor. Fiz., 40, 1541 (1961).
- (11) P.A.Seeger. Nucl. Phys., 25, 1 (1961).
- (12) T.D.Thomas, G.E.Gordon, R.M.Latimer, G.T.Seaborg. Phys.Rev., 126, 1805 (1962).
- (13) J.M.Alexander and G.N.Simonoff. Phys.Rev., 130, 2383 (1963).
- (14) T.J.Klingen and G.R.Choppin. Phys.Rev., 130, 1990 (1963).
- (15) R.D.Macfarlane. Phys.Rev., 131, 2176 (1963).
- (16) R.D.Macfarlane, R.Griffionen. Phys.Rev., 130, 1491 (1963).
- (17) R.M.Griffionen, R.D.Macfarlane. Phys.Rev., B133, 1373 (1964).
- (18) H.Kumpf, V.A.Karnaukhov, Zh. Eksperim. i Teor. Fiz., 46, 1545 (1964).
- (19) R.D.Macfarlane. Phys.Rev., Bl36, 941 (1964).
- (20) J.M.Alexander, G.N.Simonoff. Phys.Rev., 133, B93 (1964).
- (21) H.F.Brinckmann, C.Heiser, K.F.Alexander, W.Neubert, H.Rotter. Nucl. Phys., 81, 233 (1965).

- (22) R.D.Macfarlane. Phys.Rev., B137, 1448 (1965).
- (23) J.H.E.Mattauch, W.Thiele, A.H.Wapstra. Nucl. Phys., 67, 1 (1965).
- (24) H.Rotter, A.G.Demin, L.P.Pashenko, H.F.Brinckmann. Yad. Fiz., 4, 246 (1966).
- (25) E.D.Donets, V.A.Shegolev, V.A.Ermakov. Yad. Energ., 20, 223 (1966), E.D.Donets, JINR, 2919, Dubna, 1966.
- (26) M.Kaplan. Phys.Rev., 143, 894 (1966).
- (27) V.I.Mikheev, S.M.Polikanov. Proceedings Int. Conf. Heavy Ion Physics, Dubna 1966, part 2.
- (28) A.A.Siivola. Nucl. Phys., 84, 385 (1966).
- (29) K.Valli, E.K.Hyde, W.Treytl. UCRL-17272 (1966) and J.Inorg. Nucl. Chem., 29, 2503 (1967).
- (30) K.F.Alexander, W.Neubert, H.Rotter. JINR P7-3185, Dubna, 1967.
- (31) D.D.Bogdanov, S.Daroczy, V.A.Karnaukhov, L.A.Petrov, G.M.Ter-Akopyan. JINR E6-3142, Dubna, 1967.
- (32) A.Siivola. Nucl.Phys., A101, 129 (1967).
- (33) W.Treytl, K.Valli. Nucl. Phys., A97, 405 (1967).
- (34) W.Treytl, E.K.Hyde, K.Valli. UCRL-17405 (1967).
- (35) K. Valli, M.J.Nurmia, E.K.Hyde. Phys.Rev., 159, 1013 (1967) and K.Valli, W.Treytl, E.K.Hyde. Phys.Rev., 161, 1284 (1967).
- (36) N.Zeldes, A.Grill, A.Simievic. Mat.Fiz.Skr.Dan.Vid.Selsk., 3, no. 5 (1967).
- (37) W.Neubert, K.F.Alexander. JINR Preprint P7-3657, Dubna, 1968.
- (38) T.Sikkeland, A.Ghiorso, M.J.Nurmia. Phys.Rev., 172, 1232 (1968).
- (39) A.Siivola. Nucl. Phys., Al09, 231 (1968).
- (40) D.F.Togerson, R.A.Gough, R.D.Macfarlane. Phys.Rev., 174, 1494 (1968).
- (41) K.Valli, W.Treytl, E.K.Hyde. UCRL-17322 and Phys.Rev., 176, 1377 (1968).
- (42) K.F.Alexander, W.Neubert, H.Rotter et al. Nucl. Phys., A133, 77 (1969).
- (43) M.Barbier. Induced Radioactivity. North-Holland Publishing Co., 1969, chapter VI.
- (44) Ch.Droste, W.Neubert, T.Morek et al. Comm. JINR P6-4539, Dubna, 1969 and Comm. JINR P6-4592, Dubna, 1969.
- (45) R.A.Gough and R.D.Macfarlane. Proceedings Int.Conf.Nucl.Reactions. Induced by Heavy Ions, Heidelberg, 1969.
- (46) C.Heiser, K.F.Alexander, H.F.Brinckmann, N.Nenov, W.Neubert, H.Rotter. Nucl. Phys., A96, 327 (1967).
- (47) T.Morek, W.Neubert et al. Comm. JINR P6-4868, Dubna, 1969.
- (48) T.Morek, W.Neubert, Ch.Droste et al. Comm. JINR P6-4553, Dubna, 1969.
- (49) J.B.Natowitz, J.M.Alexander. Phys.Rev., 188, 1734 (1969).
- (50) W.Neubert, K.F.Alexander et al. Nucl. Phys., A131, 225 (1969).
- (51) V.A.Shegolev. JINR 7-4596, Dubna, 1969.
- (52) J.Borgreen, K.Valli, E.K. Hyde. Phys. Rev., C2, 1841 (1970).
- (53) Ch.Droste et al. Nucl.Phys., A152, 579 (1970) and Comm. JINR P6-4597, Dubna, 1969.

- (54) G.N.Flerov, Yu.Ts.Oganesyan, Yu.V.Lobanov et al. Preprint JINR P7-5174, Dubna, 1970 and Nucl. Phys., A160, 181 (1971).
- (55) R.J.Silva et al. Phys.Rev., C2, 1948 (1970).
- (56) T.Sikkeland, R.J.Silva, A.Ghiorso, M.J.Nurmia. Phys.Rev., Cl, 1564 (1970).
- (57) D.F.Togerson, R.D.Macfarlane. Nucl. Phys., A149 (1970), 641.
- (58) D.F.Togerson, R.D.Macfarlane. Phys.Rev., C2, 2309 (1970).
- (59) K.Valli, E.K.Hyde, J.Borgreen. Phys.Rev., C1, 2115 (1970).
- (60) Y.Le Beyec, M.Lefort, A.Vigny. Phys.Rev., C3, 1268 (1971).
- (61) H.Delagrange et al. Phys.Lett., 37B, 355 (1971).
- (62) K.Eskola et al. Phys.Rev., C4, 632 (1971).
- (63) W.Neubert. Nucl.Instr. and Meth., 93, 473 (1971).
- (64) Yu.Ts.Oganesyan, Yu.E.Penionshkevic, A.O.Schamsutdinov, Nguen Tak An. Comm. JINR P7-5912, Dubna, 1971.
- (65) G.Ya. Sun-Tsin-Yan, V.A.Druin, A.S. Trofimov. Preprint JINR P7-5920, Dubna, 1971, Yad.Fiz., 14, 1297 (1971).
- (66) K.S.Toth, R.L.Hahn. Phys.Rev., C3, 854 (1971).
- (67) R.Broda et al. Acta Physica Polonica, B3, 263 (1972).

Received by Publishing Department on May 31, 1972.

Fig. 1. Plot of the experimentally determined values $ec{\epsilon}$ vs. mass number of the product nucleus. The dashed line represents the fit-equation /4/; the hatched band covers the standard deviation. Open circles (o) are not included in the least-square fit.

Fig. 2. Standard deviations of the experimental values $\overline{\epsilon}$ from the values $\overline{\epsilon}_{fft}$ obtained from equation /4/ averaged over mass number intervals $\Delta A = 10$.

Fig. 3. Distribution function for the differences between the experimental values $\overline{\epsilon}_{exp}$ and the values $\overline{\epsilon}_{fit}$ obtained from equation /4/. The lower part shows the respective distribution around the mean value for reactions leading to 149,150, 151 Dy (20).

Z = 5 BORON INDUCED REACTIONS

REACTION 1	lap ^{(MeV}) E _{exc} (Mel	V) B _n MeV)	Ē(MeV) б (mb)	REM	ARKS F	EFEF	RENCES	;
$139_{La}(10_{B},7n)^{142}_{Sm}$		92.4	55.8	5.2	- 524		(26)	66	Ka 4	-
¹⁴⁰ Nd(¹¹ B,8n) ¹⁴⁹ Tb	100	91.4	63.6	3.5	12.4	lsi	(13)	63	Al 1	
¹⁴⁴ Nd(¹⁰ B, 5n) ¹⁴⁹ Tb	60	54.6	40.1	3.2	41.4	ISI	(13)	63	Al 1	
142 Nd(¹¹ B,4n) ¹⁴⁹ Tb	53	45.4	33.3	3.0	51.6	lsi	(13)	63	Al 1	
¹⁴⁴ Nd(¹¹ B, 5n) ¹⁴⁹ Tb	7 8	68.5	48.8	3.3	28	lsi	(13)	63	Al 1	1
¹⁴⁶ Nd(¹⁰ B, 7n) ¹⁴⁹ Tb	82	78.0	55.3	3.4	19.6	LSI	(13)	63	Al 1	
181 _{Ta} (11 _{B,4n})188 _{Pt}	60	53.0	31.7	5.3	400	æ	(61)	71	De 1	
$197_{Au}(10_{B,7n})^{200}_{Po}$	90	83.8	57.2	3.8	_	¥	(51)	69	Sh 1	
197 _{Au} (¹⁰ B,6n) ²⁰¹ Po	82	76.2	49.1	4.5	-	×	(51)	69	Sh 1	
197 _{Au} (10 _{B,5n}) ²⁰² Po	67	61.9	39,8	4.4	. - :	H	(51)	69	Sh 1	
197 _{Au} (11 _{B,5n}) ²⁰³ Po	71	62.0	40.3	4.4	-	¥	(47)	69	Mo 2	
209 _{Bi} (¹⁰ B,7n) ²¹² Ra	92	72.1	49.3	3.3	-	H	(51)	69	Sh 1	•
$208_{\rm Pb}(11_{\rm B,7n})^{212}_{\rm Fr}$	91	63.5	46.6	2.5	— ·	Ħ	(40)	68	To 1	
208 _{Pb} (11 _{B,6n})213 _{Fr}	80	53.0	38.2	2.5		¥	(40)	68	TO 1	
$208_{\rm Pb}(11_{\rm B,6n})^{213}_{\rm Fr}$	82	55.0	38.2	2.8	-	X	(17)	64	Gr 1	
209 _{Bi} (¹⁰ B, 6n) ²¹³ Ra	81	61.6	42.0	3.3	-	H	(51)	69	Sh 1	1.
$209_{Bi}(10_{B,5n})^{214}_{Ra}$	67	48.4	33.5	3.0	-	X	(51)	69	Sh 1	
$208_{\rm Pb}(11_{\rm B,5n})^{214}_{\rm Fr}$	68	41.6	32.1	1.9	~	¥	(40)	68	To 1	
209 _{Bi} (11 _{B,6n}) ²¹⁴ Ra	81	57.8	40.5	2.9	-	X	(57)	70	То 2	
$209_{Bi}(11_{B,5n})^{215}_{Ra}$	70	46.8	34.0	2.6		Ħ	(57)	70	TO 2	
249 Cf $(^{11}B, 4n)^{256}$ 103	63	41.6	25.9	3.9	- ,	SH	(62)	71	Es 1	1.1.1

REACTION	E _{lab} (MeV)	E _{exc} (MeV)	B _n (MeV)	€(MeV)	6 (mb)H	REMAI	RKS REI	FERE	NCE	ES
51 _v (¹³ C, 3n) ⁶¹ Cu	54	59	27.6	10.0	300		(4)	59	Ke	 1 1
$5^{1}v(^{12}C,^{2n})^{61}Cu$	42	49.8	19.8	15.0	<10		(10)	61	Ka	1
71 _{Ga} (¹² C,4n) ⁷⁹ Rb	62.5	62.7	41.2	5.4	-		(67)	72	Br	: 1
102 _{Pd} (¹² C, 3n) ¹¹¹ T	e 64	51.2	33.0	6.1	-	ж	(31)	67	Во	» 1
$113_{In}(12_{C,4n})^{121}_{C}$	s 73	60.6	39.7	5.2	- 2	ζ¥.	(30)	67	A1	. 1
¹¹⁵ In(¹² 0,3n) ¹²⁴ 0	s 59	49	29.2	6.6		X	(44)	69	Dr	1
$121_{\rm Sb}(12_{\rm 0,4n})^{129}_{\rm L}$	a 72	62.2	37.5	6.2	75	¥	(42)	69	Al	. 1
$122_{Sn}(12_{0,4n})^{130}_{Bi}$	a 60.5	54.5	34.4	5.0	_	¥	(63)	71	Ne	. 1
¹³⁰ Te(¹² C,10n) ¹³²	De 150	134.3	83.5	5.1	69	Ħ	(64)	71	Og	1
¹³⁰ Te(¹² C,9n) ¹³³ C	e 140	124.5	74.9	5.5	100	¥	(64)	.71	0g	: 1
¹³⁰ Te(¹³ C, 10n) ¹³³ (Ce 142	131	79.9	5.1	70	¥	(64)	71	Og	1
¹²⁸ Te(¹² C,6n) ¹³⁴ Ce	e 94	85	51.8	5.5	358		(14)	63	КI	1
¹³⁰ Te(¹² C,8n) ¹³⁴ Ce	ə 117	104.5	64.5	5.0	596		(14)	63	ĸı	.1
¹²⁸ Te(¹² C,5n) ¹³⁵ Ce	77.5	70	43.7	5.4	240	¥	(14)	63	K1	1
130 _{Te} (¹² C,7n) ¹³⁵ Ce	96	85.9	56.4	4.2	390	¥	(14)	63	ĸı	1
¹³⁰ Te(¹² C,7n) ¹³⁵ Ce	9 105	93	56.4	5.2	210	¥	(64)	71	0g	1
130 _{Te} (13 _{C,8n})135 _{Ce}	109	101	61.4	5.0	140	¥	(64)	71	0g	1
$130_{\text{Te}}(12_{0,5n})^{137}_{0e}$	75	65.7	38.7	5.4	532		(64)	71	Og	1
$120_{\text{Te}}(120,3n)^{137}$ Ce	54	48.4	26.0	7.5	68		(14)	63	Kl	1
¹³⁰ Te(¹² 0,5n) ¹³⁷ Ce	77.5	68,4	38.7	5.9	275	¥	(14)	63	Kl	1
130 Te(13 C, 6n) 137 Ce	82	76.0	43.7	5.4	249	¥	(64)	71	0g	1
150Te(¹² C,4n) ¹⁵⁰ Ce	55	48	29.2	4.7	48	¥	(21)	65	Br	1
¹³⁰ Te(¹² C,3n) ¹³⁹ Ce	51	44	21.9	7.3	55		(64)	71	0g	1
130 _{Te} $(^{13}$ C,4n $)^{139}$ Ce	56	53	26.9	6.5	237	¥	(64)	71	0g	1
¹³⁷ Ba(¹² C,7n) ¹⁴² Sm	112	92.2	55.8	5.2	550	₩.	(43)	69	Ba	1
¹³⁶ Ba(¹² C,6n) ¹⁴² S	m 103.7	85.8	49.7	6.0	589	¥ ·	(26)	66	Ka	4
¹⁴⁴ Nd(¹² C,7n) ¹⁴⁹ D	y 119	97.0	60.9	5.2	5 5.1 -	X	(20)	64	Al	2

and the second							1.1.1.1.1.1.1.1	1.1.1	
REACTION	E _{lab} (MeV)	E _{exc} (MeV)	B _n (MeV) € (MeV) ((mb)	REMARKS R	EFERE	NCE	S
¹⁴¹ Pr(¹² C,4n) ¹⁴⁹ Tb	65	45.1	33.3	3.0	35	LSI (13)) 63	Al	1
142 _{Nd} (¹² C, 5n) ¹⁴⁹ Dy	94.3	75.6	44.8	6.2	446	ж (20)) 64	A1	2
142 _{Nd} (12 _{C,4n})150 _{Dy}	78.8	59.8	34.6	6.3	934	x (20)) 64	A 1	2
144 _{Nd} (¹² C, 6n) ¹⁵⁰ Dy	106.1	85.2	50.7	5.7	830	¥ (20)	64	A1	2
142 _{Nd} (120, 3n)151 _{Dy}	67.2	45.4	26.7	6.2	445	x (20)) 64	Å1	2
144 _{Nd} (120,5n) ¹⁵¹ Dy	90.0	68.6	42.8	5.1	590	¥ (20)	64	41	2
181 _{Ta} (12 _{C,4n})189 _{Au}	72.5	53.0	33.0	5.0	290	x (46)	69	He	1
197Au 120,7n) 202At	108	83.1	58.4	3.5	40	¥ (12)	62	Th	1
197Au(120,6n)203At	92	67.6	48.9	3.1	200	II (12)	62	Th	1
197Au(120,5n)204At	78	54.5	41.0	2.7	100	x (12)	62	Th	1
197Au(120.4n)205At	70	47.0	31.9	3.8	90	x (12)	62	Th	1
197 Au (120.4n) 205 At	72.5	49.4	31.9	4.4	· . – .	= (47)	69	Xo	2
197 Au(120, 3n) 206 At	64.0	41.4	24.4	5.6	-	(47)	69	Xo	2
203 _{T1(} 12 _{C,8n)} 207 _{Rn}	112	82	62.0	2.5	-	¥ (17)	64	Gr	1
205 _{T1} (120,5n) ²¹² Fr	87	54.0	34.5	3.9		H (17)	64	Gr	1
206 _{Pb} (12 _{C,6n}) ²¹² Ra	96	56.9	43.4	2.1	_	(35)	67	Va	2
206 _{Pb} (12 _{C,5n})213 _{Ra}	84	50.0	36.1	2.8	° • -	≈ (35)	67	Va	2
209 _{B1} (12 _{C.7n}) ²¹⁴ Ac	107	68.3	51.3	2.4	-	¥ (33)	67	Tr	1
209 _{B1} (¹² C.7n) ²¹⁴ Ac	110	71	51.3	2.8	8	± (45)	69	Ge	1
206 _{Pb} (120,4n) 214 _{Rs}	72	39.0	27.6	2.9	- <u>-</u> -	¥ (35)	67	٧a	2
209 _{B1(} 120,6n) 215	98	59.8	42.7	2.8	-	¥ (34)	67	Tr,	2
209 _{B1(} 12,6n) 215	99	61.5	42.7	3.1	40) 🕱 (45)	69	Ge	1
209 _{B1} (¹² C, 6n) ²¹⁵ Ac	96	62.4	42.7	3.3	· · · -	≡ (57)	70	To	2
209 _{B1(} 120,5n) ²¹⁶ Ac	89	51.5	35.8	3.1	92	2 m (45)	69	G●	1
209 Bi(120,5n) 216	83	49.5	35.8	2.7	· 	HSI ∎(57)	70	T•	2
209 _{B1(} 12,4n) 217	80	42.0	27.8	3.5	86	5 <u>*</u> (45)	69	Ge	1
209 _{B1(} 12,4n) 217	77	40.5	27.8	3.2	° 	¥ (24)	65	Ro	1
209 _{B1} 12, 3n) 218	67	30.8	21.3	3.1	· -	(24)	65	Re	1

6 CARBON INDUCED REACTIONS

 \mathbf{Z}

|4

$\mathbf{Z} = \mathbf{e}$	5. 1	CARBON	INDUCED	REACTIONS

REACTION	E _{lab} (MeV)	E _{exc} (MeV)	B _n (MeV)	€ (MeV)	ଟ(mb)RE	MARKS	REFI	GREN	CES	3
209 _{B1} (¹² C, 3n) ²¹⁸ Ac	72	35	21.3	4.6	110		(45)	69	Go	1
232 _{Th} (12 _{C,4n}) ²⁴⁰ Cm	67	40.7	25.6	3.8	7.5(-2)		(3)	59	Gu	1
232 _{Th} (13 C, 5n) ²⁴⁰ Cm	74	48.8	30.9	3.6	1.8(-1)	·· -	(3)	59	Gu	1
235 ₀ (¹² 0,5n) ²⁴² Cf	79	49.9	33.4	3.3	-	. — •== ((55)	70	81	. 7
234 _U (¹² C,4n) ²⁴² Cf	73,	43.6	27.6	4.0	-		(55)	70	81	. 7
238 _U (¹² C,8n) ²⁴² Cf	106	77.2	52.5	3.1	· <u>-</u> ,	· •	(51)	69	Sh	. 1
238 _U (¹² C,7n) ²⁴³ Cf	97	68.5	46.0	3.2	-		(51)	69	Sh	1
238 _U (¹² C,6n) ²⁴⁴ Of	84	56.2	38.3	3.0	_	= ((51)	69	Sh	. 1
238 _U (¹² C,6n) ²⁴⁴ Cf	76	49.2	38.3	1.8	6.0(-3)		(2)	58	81	1
238 _U (¹³ C,6n) ²⁴⁵ Cf	78	50.8	37.3	2.3	-		(43)	69	Ba	1
²³⁸ U(¹² 0,5n) ²⁴⁵ Cf	74	46.7	32.2	2.9	1.0(-1)	. ((51)	69	Sh	. 1
238 _U (¹² C, 4n) ²⁴⁶ Cf	62.5	36.3	24.9	2.9	3. (-2)		(2)	58	S1	1
2380(120,4n)246Cf	67	40.9	24.9	4.0	6. (-2)	e e The The	(8)	59	Vo	2
238 _U (13 _{0,5n}) ²⁴⁶ Cf	78	51.5	30.0	4.3	1,2(-1)	11 A	(8)	59	٧•	2
241 _{Pu} (13 _{C,4n}) ²⁵⁰ Fm	67	40.0	25.3	3.7	5.0(-3)	- 1. – 1. – 1. 1. – ⊒	(7)	59	Vo	1
242 _{Pu} (12 _{C,4n})250 _{Fm}	65	37	25.3	2.9	1 (- 2)		(2)	58	Si	1
244 _{Cm} (¹² 0,5n) ²⁵¹ 102	2 83	50.1	34.9	3.0	9 (- 5)	= = ((38)	68	S1	5
244 _{Cm} (¹² 0,4n) ²⁵² 102	2 73.3	40.9	27.0	3.5	2.5(-4)		(38)	68	81	5
244 _{Cm} (¹³ C, 5n) ²⁵² 102	2 82	49.9	32.6	3.5	1.6(-4)	Z = ((38)	68	51	5
246 _{Cm} (¹² C, 5n) ²⁵³ 102	2 83	50.4	33.2	3.4	2.4(-4)	Z = ((38)	68	81	5
244 _{Cm} (¹³ C,4n) ²⁵³ 102	2 73	41.2	26.3	3•7	3(- 4)	Z # ((38).	68	81	5
246 _{Cm} (¹² C,4n) ²⁵⁴ 102	2 72	40	25.7	3.6	1.0(-3)	Z = ((38)	68	81	5
246 _{Cm} (¹³ C, 5n) ²⁵⁴ 1 (02 78.5	46.5	31.0	3.1	5.6(-4)	ΖΞ((38)	68	81	5
246 _{Cm} (¹³ C,4n) ²⁵⁵ 102	2 70	38.4	25.0	3.3	6.2(-4)	Z = ((38)	68	81	5
248 Cm(120,5n)255102	2 77.8	45.8	31.6	2.8	5.8(-4)	Z 🗮 ((38)	68	si.	5
248 Cm (120,4n) 256 102	2 71.2	39.4	24.4	3.7	1.0(+3)	Z = ((38)	68	8 <u>1</u>	5
248 _{Cm} (¹³ C, 5n) ²⁵⁶ 102	2 74.8	42.7	29.4	2.7	6.6(-4)	2 = ((38)	68	81	5
²⁴⁸ Cm(¹³ C, 4n) ²⁵⁷ 102	2 70.5	38.7 15	23.8	3.7	1.1(-3)	Z 🗮 (38)	68	81	5

					· · · · · · · · · · · · · · · · · · ·						
REACTION	Ela	_b (MeV)	E _{exc} (MeV)	B _n (MeV)	€(MeV)	S (mb) REMA	RKS REF	EREN	CES	
5 ¹ v(¹⁵ N,5n) ³¹	Zn	94	 89	53.0	7.2	60		(4)	59	Ka	1
$51_{V}(^{14}N, 3n)^{62}$	Zn	45	52	29.5	7.5	15		(4)	59	Ka	1
¹ 33 _{Cs} (¹⁴ N,5n) ¹⁴²	Sm	92	77	41.2	7.2	770	Ħ	(26)	66	Ka	4
$141_{Pr}(14_{N,6n})^{149}$	Dy	107	85 . 1	51.9	5.7	28o	¥	(20)	64	Al	2
$141_{Pr}(15_{N},7n)^{149}$	Dy	125	100.8	6 0. 9	5.7	24 3	artus Anta H	(20)	64	Al	2
$141_{Pr}(14_{N,5n})^{150}$	Dy	88	70.2	41.7	5.7	o50	H	(20)	64	Al	2
$141_{\rm Fr}(15_{\rm N,sn})$ 150	Dy	113	85.5	50.7	5.8	660	¥	(20)	64	Al	2
$^{141}_{Pr}(^{14}_{N,4n})^{151}$	Dy	75	54.0	33.8	5.0	325	X	(20)	64	Al	2
$142_{Nd}(14_{N,4n})15$	2 _{H0}	82	57.5	35.1	5.6	-	s,HSI	💥 (66)	71	То	4
142 _{Nd} (14 _{N,4n)} 15	2 _{Ho}	74	50.2	35.1	3.8	-	S,ISI	(66)	71	То	4
142 _{Nd} (¹⁴ N, 3n) 15	3 _{Ho}	69	45.7	25.0	6.9	- 9	, HSI	¥ (66)	71	T.	4
144 _{Nd} (¹⁴ N,4n) ¹⁵	⁴ Ho	73	51.9	33.6	4.6	'	LSI	(66)	71	Te	4
144 _{Nd} (¹⁴ N,4n) ¹⁵	4 _{Ho}	81	59•4	33.6	6.4	· -	HSI	₩ (66)	71	то	4
¹⁷⁹ Hf(¹⁴ N,6n) ¹⁸	7 _{Au}	95	74.6	50.5	4.1	140	×	ı (46)	69	He	1
¹⁹⁷ Au(¹⁴ N,8n) ²⁰	3 _{Rn}	123	95•4	66.5	3.6	-	×	i (35)	67	Va	2
197 _{Au} (¹⁴ N,7n) ²⁰	⁴ Rn	105	78 • 5	56.9	3.1	· -	¥	' (35)	67	Va	2
¹⁹⁶ Pt(¹⁴ N,6n) ²⁰	⁴ At	88	62.8	47•9	2.5	150	X	· (12)	62	Th	1
195 _{Pt} (¹⁴ N,4n) ²⁰	5 _{At}	72	50.2	31.9	4.6	50	×	(12)	62	Th	1
¹⁹⁶ Pt(¹⁴ N, 5n) ²⁰	5 _{At}	80	55.2	38.8	5.3	100	×	(12)	62	Th	1
¹⁹⁸ Pt(¹⁴ N,7n) ²⁰	5_{At}	97	71.7	52.2	2.8	60	H	(12)	62	Th	1
$197_{Au}(14_{N.6n})^{20}$	5 _{Rn}	104	77.5	48.8	4.8	230) ж	(4)	59	Ka	1

Z = 7 NITROGEN INDUCED REACTIONS

REACTION	E _{lab} (MeV)	E _{exc} (MeV)	B _n (MeV)	€(MeV)	6(mb)	REMARKS	REFERENCES
¹⁹⁷ Au(¹⁴ N, 6n) ²⁰⁵ R	n 111	84.1	48.8	5.9 3	50	(1)	57 Ba 1
197 _{Au} (14 _{N,5n}) ²⁰⁶ R	n 97	80.4	39.5	8.2 8	50	(1)	57 Ba 1
198 Pt(¹⁴ N,6n) ²⁰⁶ A	t 87	62.2	44.6	2.9 2	30	¥ (12)	62 Th 1
197 _{Au} (¹⁴ N, 5n) ²⁰⁶ R	n 92.5	67.0	39.5	5.5 2	70 .	н (4)	59 Ka 1
¹⁹⁶ Pt(¹⁴ N,4n) ²⁰⁶ A	t 68	45.8	31.3	3.6	60	≖ (43)	69 Ba 1
197 _{Au} (¹⁴ N,4n) 207	Rn. 87	71.0	31.8	9.8 2	00	(1)	57 Ba 1
197 _{Au} (¹⁴ N,4n) ²⁰⁷ H	un 74	49.5	31.8	4.4	- .	¥ (35)	67 V a 2
197 _{Au} (14 _{N,4n}) ²⁰⁷ F	in 7 9	55.0	31.8	5.8 1	25	★ (4)	59 Ka 1
¹⁹⁸ Pt(¹⁴ N,5n) ²⁰⁷	t 78	53.7	41.0	3.6 1	00	¥ (12)	62 Th 1
198 _{Pt} (14,4n) ²⁰⁸	t 73	48.9	31.9	5.1	50	¥ (12)	62 Th 1
238 _U (¹⁴ N,6n) ²⁴⁶ E	is 91	59.6	38.7	3.7 0.	8(-3)	s (43)	69 Ba 1
²⁴⁸ Cm(¹⁵ N,5n) ²⁵⁸ 1	03 87	46.7	31.1	3.1	-	¥ S (62)	71 Es 1
248 _{Cm} (¹⁵ N,4n) ²⁵⁹	103 81	41.0	24.0	4.2		# S (62)	71 Es 1

Z = 7 NITROGEN INDUCED REACTIONS

REACTION	E _{lab} (MeV)	E _{exc} (MeV)	B _n (MeV)	≹ (MeV)	6(m b)]	REMARKS REI	FERENCES
51 _V (¹⁶ 0,3n) ⁶⁴ Ga	70	63	32.6	10.1	70	(5)	59 Ka 2
51 _V (160,2n)65 _{Ga}	59	53	20.3	16.3	50	(5)	59 Ka 2
80 _{Se} (16 _{0,3n})93 _{Mo}	68	63	27.6	12.0	250	(6)	59 Ka 3
109 Ag(180, 5n) 122 CB	92	76	49.1	5.4	- <u>-</u> -	≝.(44)	69 Dr 1
109 Ag(180,4n) 123 Ca	73	60	37.9	5.5	ः • – भूतिहो	≡ (44)	69 Dr 1
115 _{In} (180,5n) ¹²⁸ La	92	74	48.4	5.1		≝ ,(63)	71 Ne 1
124 _{Sn} (16 _{0,6n}) ¹³⁴ 0	96	80	51.8	4.7	333	🚊 (14)	63 🖸 1
124 _{8n} (180,8n) 134 _{Ce}	126	105.5	64.5	5.1		(64)	71 Og 1
124 _{8n} (16 _{0,5n})135 _{Ce}	79	65	43.7	4.3	190	≝ (14)	63 EL 1
$124_{8n}(18_{0.6n}) 136_{0.6n}$. 95	78.5	46.4	5.3	- 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997	(64)	71 Og 1
$139_{T,e}(16_{0,6n})^{149}$	100	68.6	48.8	3.4	14	LSI (13)	63 11 1
$140_{Ce}(16_{0.7n})^{149}$ Dy	134	102.3	60.9	5.9	250	≝ (20)	64 Al 2
¹⁴⁰ Ce(¹⁶ 0.6n) ¹⁵⁰ Dy	120	87.2	50.7	6.1	69 0	≝ (20)	64 Al 2
¹⁴⁰ Ce(¹⁶ 0,6n) ¹⁵⁰ Dy	119	86.5	50.7	6.0	450	<u>∎</u> '(16)	63 Ma 2
¹⁴⁰ Ce(¹⁶ 0.5n) ¹⁵¹ Dy	103	71.4	42.8	5.7	620	x (20)	64 A1 2
140 _{Ce} (18 _{0.7n}) 151 _D	y 129	100.4	58.3	6.0	410	= (20)	64 11 2
140 _{Ce} (16 _{0,5n})151 _{Dy}	102	71	42.8	5.7	550	a (16)	63 Ma 2
141 _{Pr(} 160,6n) 151 _{Ho}	121	84	52.6	5.2	-	HST (16)	63 Ma 2
141 _{Pr} (160,6n) 151 _{Ho}	103	70	52.6	2.9	- 8	ISI (16)	63 Ma 2
142 _{Nd} (160,6n) 152 _{Er}	125	85	54.4	5.1	-	8 🗮 (15)	63 Ma 1
140 _{Ce} (16 _{0,4n})152 _{Dy}	83	53	33.0	5.0	200	🔳 (16)	63 Ma 2
141 _{Pr} (160,5n) 152 _{Ho}	107	72	44.4	5.5	- 8	, HBI (16)	-63 Ma 2
141 _{Pr} (160,5n)152 _{Ho}	93	60	44.4	3.1	- 8	ISI (16)	63 Ma 2
142Nd(160.6n)152	120	82	51.5	5.1		8 m(16)	63 Ma 2
142 _{Nd} (¹⁶ 0,6n) ¹⁵² Er	125	85	54.4	5.1	_	8 ≡(15)	63 Ma 1
142Nd(160,5n) 153Er	108	71	45.9	5.0	, . -	S =(15)	63 Ma 1
142Nd(160,4n) 154Er	89	55	35.5	4.9	_	S =(15)	63 Ma 1
¹⁴⁴ 8m(¹⁶ 0,6n) ¹⁵⁴ Yt	130	87	57.9	4.8	9	S ≡(19)	64 Ma 3
144 _{Bm} (160.5n) ¹⁵⁵ m	119	77	48.8	5.6	42	S = (19)	64 Ma 3
168 Tb (160,7n) 177 PI	5 14 1	94 11	66.6	3.9	-	S #(28)	66 81 3

. • . .

REACTION	E _{lab} (MeV) E _e	xc ^(MeV)	B _n (MeV)	6 (MeV)	o(mb)H	REMARKS	REFER	ence	S
172 Yb (¹⁶ 0,8n) ¹⁸⁰ F	t 144	104	71.2	4.1	H	E (2	3) 66	Si	3
172 Tb(160, 6n) 182 P	rt 118	77	52.5	4.1		M (2	8) 66	81	3
175 Ju(160, 82) 183	u 146	109	71.1	4.7	-	# (3	9) 68	S1	6
175Iu(160,6n) 185	lu 117	82	52.4	4.9		≡ (3	9) 68	51	6
197Au(160,8n)205	Ir 145	102	66.3	4.5	_	≡ (1	7) 64	Gr	1
205 _{T1} (¹⁶ 0,7n) ²¹⁴	lc 118	66.4	51.3	2.2	•• –	# (3	4) 667	Tr	2
203 _{T1(} 160,5n)214	lo 95	45.5	37.7	1.6	17. L	S = (3	4) 67	Tr	2
203 _{T1(} 160,4n)215	lc 85	37.2	29.1	2.0	-	S = (3	4) 67	Tr	2
205 _{T1} (¹⁶ 0,6n) ²¹⁵	lo 112	61.0	42.7	3.1	-	= (3	4) 67	'Tr	2
206 _{Fb} (¹⁶ 0,7n) ²¹⁵ T	128 128	73.1	53.6	2.8	2 · · •	S = (4	1) 68	Va.	3
206 _{Fb} (¹⁶ 0,6n) ²¹⁶ T	112 h	58.3	44.9	2,2	- - -	8 = (4	1) 68	} ∀a .	3
206 Pb(160,51)217	Nh 102	49.0	37.6	2.3		8 🔳 (4	1) 68	3 .Va	3
208 Pb(160,3n)221	<u>.</u> h 84	31.4	21.4	3.3	: -	= (5	7) 70) Te	2
208 Pb(160,31)221	1h 87	38.0	21.4	5.5	-	(5	i9) 70) Va	4
209 _{Bi} (¹⁶ 0,3n) ²²² I	Pa 89	35.2	22.4	4.3		(5	52) 70) Ве	2
238 ₀ (¹⁸ 0,8n) ²⁴⁸ F	120	74.2	50.7	2.9	1.3(-4)) 8 🔳 (2	25) 66	5 De	1
2380(160,6n) ²⁴⁸ 7	102.5	68.0	39.0	4.9	3.5(-4)) 🖕 (2	25) 66	5 De	1
2380(160,5n)249F	ı 93	53.5	32.7	4.2	2.7(-4)) 🔳 (2	25) 60	5 De	1
2380(180,6n)250FT	101 I	56.2	37.0	3.2	1.9(-3)) 8 🔳 (2	25) 660	5 De	1
238 _U (¹⁶ 0,4 <u>n</u>) ²⁵⁰	Fn 88	44.0	25•3	4.7 1	.0(-3)		(7) 5	9 Vo	1
238 _U (¹⁸ 0,5n) ²⁵¹	Pm 93	49.2	31.1	3.6 4	.0(-3)	8 = (2	25) 6	5 De	1
239 _{Pu} (¹⁸ 0,5n) ²⁵	2 ₁₀₂ 96	48.9	32.7	3.2 1	.6(-5)	8 🔳 (2	27) 6	6 Mi	1
²³⁹ Pu(¹⁸ 0,4n) ²⁵	3 ₁₀₂ 90	41.9	26.4	3.9.5	.1(-5)	8 🔳 (27) 6	6 Mi	. 1
242 _{Pu} (¹⁶ 0,5n) ²⁵	3 ₁₀₂ 96	50.6	33.2	3.5 4	•4(-5)	S = (27) 6	6 Mi	. 1
²⁴² Pu(¹⁶ 0,4n) ²⁵⁴	⁴ 102 89	43.6	25.7	4.5 3	.4(-5)	8 = (27) 6	6 Mi	. 1
²⁴² Pu(¹⁸ 0,5n) ²⁵	⁵ 102 98	50.6	31.6	3.8 6	•0(-5)	8 (4	43) 6	9 Be	1 1
²⁴² Pu(¹⁸ 0,4n) ²⁵	6 ₁₀₂ 88	41.7	24.4	4.3 2	.3(-5)	8 = (27) 6	6 Mi	1
²⁴³ Am(¹⁸ 0,5n) ²⁵	⁶ 103 95	47•5	32.7	3.0 6	.0(-5)	8 = (25) 6	6 De) 1

		<u> </u>		Arran C	
REACTION	E _{lab} (MeV)	E _{exc} (MeV)	B _n (MeV)	€(MeV) ơ(mb)	REMARKS REFERENCES
138 _{Ba} (¹⁹ F,8n) ¹⁴⁹ Tb	125	90.5	63.6	3.4 10	(13)63 AL 1
139 _{La} (19 _F ,9 _n) ¹⁴⁹ Dy	165	129.0	76.4	5.9 144	≝ (20)64 Al 2
139 _{La} (19 _{F,8n}) ¹⁵⁰ Dy	149	114.5	66.2	6.0 450	# (20)64 A1 2
139 _{La} (19 _{F,7n}) ¹⁵¹ Dy	132	99.8	58.3	5.9 350	# (20) 64 A1 2
¹⁴¹ Pr(¹⁹ F,8n) ¹⁵² Er	158.5	117	71.1	5.7. 55	🗰 (19) 64 Ma 3
¹⁴¹ Pr(¹⁹ F,7n) ¹⁵³ Er	145	105	62.6	6.1 83	≡ (19) 64 Ma 3
142 _{Nd} (19F,8n) 153 _{Tm}	160	115	73.5	5.2 10	≖ (19) 64 Ma 3
142Nd(19F,7n) 154Tm	149	105	64.7	5.'8 45	m (19) 64 Ma 3
¹⁴⁴ Sz(¹⁹ F,7n) ¹⁵⁶ Lu	151	103	68.6	4.8 -	= (22) 65 Ma 4
¹⁶⁹ Tm(¹⁹ F, 10n) ¹⁷⁸ P	t 170	129	90.3	3.9 -	S= (28) 66 81 3
¹⁸⁵ Re(¹⁹ F, 10n) ¹⁹⁴ P	0 167	125	90.6	3.4 -	= (32) 67 81 4
¹⁸⁵ Re(¹⁹ F,9n) ¹⁹⁵ Po	152	112	81.5	3.4 -	■ (32) 67 S1 4
185 _{Re(} 19 _{F,8n}) ¹⁹⁶ Po	135	97	71.1	3.2 -	E (32) 67 51 4
185 Re(19F, 7n) 197 Po	123	84	62.3	3.1 -	■ (32) 67 S1 4
¹⁸⁷ Re(¹⁹ F,8n) ¹⁹⁸ Po	135	98	68.3	3.7 -	a (32) 67 51 4
187 _{Re} (19F,7n) 199 _{Po}	122	86	59.8	3•7	■ (32) 67 S1 4
197 _{Au} (19 _{F,10n})206 _R	a 172	124.2	81.6	4.3 -	= (35) 67 Va 2
197 _{Au} (19 _{F,3n}) ²¹³ Ra	96	51.6	22.6	9.6 -	(35) 67 Va 2
208 _{Pb} (¹⁹ F, 3n) ²²⁴ Pa	102	43.3	21.4	7.3 -	(52) 70 Bo 2
²³⁸ U(¹⁹ F,7n) ²⁵⁰ Nv	121	70.2	45•9	3.5 1.9(-4)	8 mm(25) 66 Do 1
238 _U (¹⁹ F,5n) ²⁵² Mv	105	55.5	32.2	4.6 5(-4)	8 (25) 66 Do 1

Z = 9 FLOURINE INDUCED REACTIONS

REACTION	5 _{lab} (MeV)	E _{exc} (MeV)	B _n (MeV)) ≧ (MeV)	6(mb)	REMAR	ks rei	FERENCES
¹²² Sn(²⁰ Ne,5n) ¹³⁷ N	a 107	81	46.9	6.8	-	¥	(53)	70 Dr 2
119 _{Sn(22Ne,4n)} 137 _N	a 90	62.7	37.1	6.4			(53)	70 Dr 2
¹²⁶ Te(²² Ne, 5n) ¹⁴³ S	m 113	78.2	41.2	7.4		u T	(50)	69 Ne 1
130 _{Te} (²⁰ Ne,7n) ¹⁴³ S	∎ 130	95	55.3	5.7	_	-	(50)	69 No 1
136 _{Ba} (20 _{Ne,7n})149	Dy 147	102.5	60.9	6.0	230	-	(20)	64 41 2
137 _{Ba} (20 _{Ne,8n})149	Dy 160	116.9	67.7	6.4	160		(20)	64 A1 2
138 _{Ba} (20 _{Ne,9n})149	Dy 168	129,4	76.5	5.9	150		(20)	6/ 11 2
136 _{Ba} (20 _{Ne,6n})150 _I	Dyr 131	88.0	50.7	6.2	610		(20)	CH 41 2
137 _{Ba} (20 _{Ne,7n})150 _I	्रेज 146	102.0	57.5	6.3	440		(20)	Ch 41 0
138 _{Ba} (20 _{Ne,8n})150 _I	Dy 154	115.5	66.2	6.2	460		(20)	64 AL C
137Ba(22Ne.9n) 150	ovr 176	131.0	72.7	6 5	280		(20)	64 AL 2
136 _{Ba} (20 _{Ne,5n})151	v 115	73.0	42.8	6.0	280		(20)	64 AL 2
137 _{Ba} (20 _{Ne,6n})151 _D	v 129	88.2	40 6	6.2	3/10		(20)	64 1 2
138 _{Ba} (20 _{Ne,7n})151 _r	v .−	100.1	58 2	6.0	J40	. .	(20)	64 A1 2
137 _{Ba} (22 _{Ne,8n})151	bry 163	117 0	50.5	6.5	400	· · · ·	(20)	64 11 2
138 _{Ba} (22 _{Ne,9n})151 _D	v 184	128 7	72 4	0.7 C 0	260	ĸ	(20)	64 ▲1 2
140 _{Ce} (20 _{Ne,8n})152 _{E1}	r 174	120.7	73+1	6.2	220	Ĕ	(20)	64 Al 2
140 _{0e} (20 _{Ne,7n})153 _{E1}	- 177 n 158	108	71•1 60 6	0.2	40	8 #	(19)	64 Ma 3
141 _{Pr} (20 _{Ne 8n})153m		100 446 F	02.0	6.5	50	8 m	(19)	64 Ma 3
$141_{\rm Pm}(20_{\rm Ne}, G_{\rm m}) 154_{\rm m}$		110.5	73.5	ַלָּיָּל 	10	¥	(19)	64 Ma 3
$H_{2_{12}}(20_{12} - 2_{12}) = 154_{12}$	I 156	105	- 64.7	5.8	38	· #	(19)	64 Ma 3
42, 20, - 155m) 176 	119.5	75.8	5.5	1.5	Sæ	(19)	64 Ma 3
44a (20) 157.	o 160	105.7	66.7	5.6	9	S 🖬	(19)	64 Ma 3
Sm(-Ne,7n) '' Hf	164	105	70.5	4.8	1.8	SH	(22)	65 Ma 4
Sm(~Ne,6n) 'O'Hf	150	92	59.0	5.7	1.8	8 🗙	(22)	65 Ma 4
⁵⁹ Tm(² Ne,8n) ¹⁰ Au	160 I	110	73.5	4.6		×	(39)	68 S1 6
²⁷ Tm(² Ne,6n) ¹⁸³ Au	134	86	54.3	5.3	-	K	(39)	68 S1 6
⁰⁷ Re(²⁰ Ne,9n) ¹⁹⁶ At	176	118	83.1	3.9	-	H	(33)	67 Tr 1
⁰⁷ Re(²⁰ Ne,8n) ¹⁹⁷ At	163	106	72.5	4.2		×	(33)	67 Tr 1
· · · · · · · · · · · · · · · · · · ·		1						

REACTION	E _{lab} (MeV)	E _{exc} (MeV)	B _n (MeV)	Ē (MeV) 6(mb)	REMARKS REFERENCES
¹⁸⁵ Re(²⁰ Ne,7n) ¹⁹⁸ At		94	63.5	4.4 -	¥ (33) 67 Tr 1
185 _{Re} (20 _{Ne,6n})199 _{A1}	t 135	81	53.3	4.6 -	# (33) 67 Tr 1
185 _{Re(20Ne,5n)} 200	t 120	67	44.6	4.5 -	# (33)67 Tr 1
185 _{Re(20Ne,4n)} 201 _A	t 103	54.9	34.8	5.0 -	# (33)67 Tr 1
185 _{Re(22Ne,5n)} 202	t 120	69.1	42.8	5.3 -	₩ (47)69 Mo 2
197 _{Au} (20 _{Ne,8n})209 _A	s 152	90.3	65.3	3.1 -	# (34) 67 Tr 2
235 _U (²² Ne,5n) ²⁵² 102	2 118	52.0	32.6	3.9 1.6(-2)	8 = (54) 70 Fl 1
238 _U (²² Ne,6n) ²⁵⁴ 102	2 126	60.2	37.6	3.8 6(-5)	8 m (25) 66 Do 1
238U(22Ne,5n)25510	2 118	53.0	31.6	4.3 2.2(-4)	8 m (25) 66 Do 1
238 _U (²² Ne,4n) ²⁵⁶ 10	2 111	46.5	24.4	5.5 4.5(-5)	S = (25) 66 Do 1
243 Am(22 Ne, 4n) 261 10	05 117	46.0	25.7	5.0 5.(-3)	S = (54) 70 Fl 1
243 Am(22 Ne, 5n) 260 10	5 121	50.0	33.2	3.3 4.(-3)	S m (54) 70 F1 1

Z = 10 NEON INDUCED REACTIONS

			TOR THIN	CFD KF	CTIONS	
REACTION E	Lab ^(MeV)	E _{exc} (MeV)	B _n (MeV)	Ē(MeV)	6(mb)R	EMARKS REFERENCES
¹⁸⁹ 0s(³¹ P,5n) ²¹⁵ Pa	175	62.6	40.2	4.5	3.5(-3)8 ∎(65) 71 8u 1
¹⁸⁹ 0s(³¹ P,4n) ²¹⁶ Pa	162	51.6	32.4	4.8	1.0(-3	(65) 71 Su 1
이 이 왜 같은 것을 했는					्यतः संपत्नी वर्ति विद्युधिः वि विद्युधः सः सः	
	•					
	a data a			1		
				÷		
la segura de la caractería de la caractería. A compositor de la caractería de la caracter A compositor de la caractería	Z = 18	ARGON	INDUCED	REACTI	ONS	
					-	<u>an an a</u>
REACTION E ₁	ab ^{(MeV) E}	exc(MeV)	B _n (MeV)	Ē(MeV)	ð(mb)RI	EMARKS REFERENCES
¹¹⁶ Cd(⁴⁰ Ar,7n) ¹⁴⁹ Dy	212 <u>+</u> 10	105	60.9	6.3	33	(49) 69 Na 1
¹¹⁶ Cd(⁴⁰ Ar,7n) ¹⁴⁹ Dy	225	115	60.9	7.7	<u> </u>	(18) 64 Ku 1
114Cd(40Ar, 5n) 149Dy	206	98	44.8	10.6	_	(18) 64 Ku 1
¹¹⁴ Cd(⁴⁰ Ar, 5n) ¹⁴⁹ Dy	173	73.5	44.8	5.7	29.5	(49) 69 Na 1
116 _{Cd} (⁴⁰ Ar, 6n) ¹⁵⁰ Dy	209	102	50.7	8.6	-	(18) 64 Ku 1
116 _{Cd} (⁴⁰ Ar, 6n) ¹⁵⁰ Dy	187	86.8	50.7	6.0	154	(49) 69 Na 1
¹¹⁴ Cd(⁴⁰ Ar,4n) ¹⁵⁰ Dy	165	67.6	34.6	8.3	143	(49) 69 Na 1
114 _{Cd} (40 _{Ar,4n}) 150 _{Dy}	172	73	34.6	9.6	• •	(18) 64 Ku 1
¹¹⁴ Cd(⁴⁰ Ar, 3n) ¹⁵¹ Dy	158	62.4	26.6	11.9	20,4	(49) 69 Na 1
¹⁶⁴ Dy(⁴⁰ Ar,9n) ¹⁹⁵ Po	245 <u>+</u> 10	115.2	82.4	3.6	2	#(56) 70 Si 8
¹⁶⁴ Dy(⁴⁰ Ar,8n) ¹⁹⁶ Po	225 <u>+</u> 10	98.5	71.1	3.4	8	≝(56) 70 S1 8
¹⁶⁴ Dy(⁴⁰ Ar, 7n) ¹⁹⁷ Po	215 <u>+</u> 6	79.5	62.3	2.5	35	≝ (56) 70 Si 8
¹⁶⁴ Dy(⁴⁰ Ar, 6n) ¹⁹⁸ Po	196 <u>+</u> 4	75.0	52.3	3.8	45	≡(56) 70 Si 8
¹⁶⁴ Dy(⁴⁰ Ar, 5n) ¹⁹⁹ Po	182 <u>+</u> 4	63.7	43.8	4.0	55	≝(56) 70 S1 8
⁶⁴ Dy(⁴⁰ Ar,4n) ²⁰⁰ Po	173 <u>+</u> 5	57.0	34.1	5.7	20	(56) 70 Si 8
⁶⁴ Dy(⁴⁰ Ar,4n) ²⁰⁰ Po	180 <u>+</u> 4	62.2	34.1	7.0	20	(60)71 Be 1