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1. Introduction 

The discoveryl) of isomeric levels of transuranium 

nuclides, undergoing relatively fast spontaneous fission 

decay, presents a puzzle in several respects, 

In terms of the usual semiempirical concepts of 

spontaneous fission one would expect the isomeric levels in 

240 • 242 • 244Am, with half lives in the millisecond region 2 • 3 ), 

to lie at least 2,7 MeV above their respective ground states
4 >. 

But, on the basis· of what is generally known about nuc l ear 

isomerism, it is not readily understood how such high lying 

states can be relatively stable towards Y-emission, Spin 

values higher than twenty would be required, and this i s in

compatible with the reaction data5 >, In a recent theoretical 

investigation Malov et al. 6 ) show that a detailed consideration 

of the approximate selection rules and hindrance factors, 

associated with conservation of the spin projection K and 

with independent motion of unpaired particles, can explain 

the possible 

242Am95 . th 
147 w~ 

existence of a long lived excited state in 

the excitation energy 1.0-1,2 MeV and Kw = 1 2-. 

It is also clear from this study that the conditions for 

stability against on line Y - emission of a state of this type will 

vanish, if its excitation energy lies just a few hundred keV 

above this upper limit, 

Thus, the spontaneously fissioning isomeric states 

must have unusual properties, either with respect to their 

fissionability or with respect to their y-emission stability -

or both, 
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Clearly, a determination of the excitation energy 

(and of the spin) of the isomeric level is desirable. For 

this purpose a measurement of y-rays or conversion electron 

transitions to the ground state would be valuable; but most 

difficult, however, in view of the low partial cross section 

for the population of the isomer (a(d 1 2n; 12 ~eV d) ~ lo- 29cm 2) 

and the high background from fission product ac t ivities. 

possibility of measuring an a-decay branch was considered 

by Leachman et a1. 7 >, who found, however, a limit of less 

The 

than one a-particle from 242mAm per hundred spontaneous 

fissions . Short of adequate direct methods it seems necessary 

to resor t to a more indirect determination. Here, a measure-

ment of the threshold for the reaction 

"' 241 240m Q(gr.st.) "'7.5 MeV 
Pu(p 1 2n) Am; "' 

t 112 <isomer) "' 0.6 ms 
(1) 

seems particularly suited, since the expected threshold lies 

high enough to t he Coul omb barrier in plutonium to make 

measurements near threshold possible. 

The present paper describes experiments in whi ch the 

excitat i on function for the above reaction is measured. The 

c r oss section is found to rise very steeply above 10.6 MeV, 

and a deta i led comparison with the Jackson evaporation modelS) 

for the (p,2n ) reaction, using the appropriate nuclear 

temperature, defines th~ reaction threshold to be 10.7%0.1 MeV. 

A comparison with analogcus excitation functions 19 ) for the 

population of excited states in 168Yb where the thresholds 

are known gives the same result. 
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The threshold for the ground state reaction (1) is 

7,55%0,2 MeV, i.e, the energy difference is 3.15*0,25 MeV, 

It seems difficult to avoid the conclusion that this is also 

the excitation energy of the isomeric level, 

If so, the stability towards y-emission must be due 

to a new effect, and it seems not unreasonable to imagine 

that the isomer possesses a different equilibrium deformation 

separated from the ground state by an appreciable energy 
10) barrier as previously discussed by Flerov , It is interest-

ing to note in this connection that according to recent 

· · · b St t · k 11 ) · ndeed theoret1cal cons1derat1ons y ru 1ns y , one may 1 

expect the existence of pronounced secondary minima in the 

nuclear surface of some nuclides, particularly among the 

heaviest elements, 

2. Experimental Procedure 

2.1. General Remarks 

The measurements have been carried'out at the tandem 

Van de Graaff laboratory of the Niels Bohr Institute in 

collaboration with the Laboratory of Nuclear Reactions, 

J.I,·!i,R, Dubna, 

Three series of experiments were performed, The 

first consisted in a comparison of the reactions 

242Pu(d,2n)242mAm; tl/2 = 14 ms 

240Pu(d,2n)240mAm; tl/2 = 0,9 ms 

with 12 MeV deuterons in order to confirm the existence of 

the isomer in 240mAm and measure its half life accurately, 
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In the second series, the excitation function and threshold 

for the main reaction 

241Pu(p, 2n)240mAm 

was measured with proton energies 9.6-13.6 MeV. The third 

series was devoted to measurements of background effects. 

(4) 

241 . 240 241 The Pu sample conta1ns 3\ Pu and 16\ Am. Therefore 

the yield of the 

240Pu(p,n)240mAm (S) 

and the 

241Am(p,d or p,pn)240mAm (6) 

reactions were measured, using highly enriched targets of 

240p d 241Am u an • 

Fig.l shows the irradiation chamber schematically. 

The t arget is activated with proton pulses of 1.9 ms duration 

and detectors of ordinary glass plate12 •13 ) are used to 

record delayed fission fragments in the 3.2 ms periods between 

t he beam pulses. The beam is pulsed by electrostatic 

deflection14 >. Synchronisation between the motion of the 

wheel and the beam is achieved with a photocell arrangement 

a nd slits in the wheel, fig.l. Electromagnetically separated 

plutonium isotopes were obtained from A.E.R.E., Harwell. 

2.2 . Target Preparation 

All targets were prepared by the molecular plating 

met hods15 •16 >. The plating solutions were made up of iso-

propanol containing plutonium as the nitrate dissolved in a 

mi nimum amount of dilute nitric acid. Plating voltages were 
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molecular plating 

re made up of iso

r ate dissolved in a 

'lat ing voltages were 

400-600 v, giving current of O.S-0.8 rnA across the circular 

target area of 0.12 cm2• The target material was plated onto 

200 ~g/cm2 Ni foils with a supporting Cu-layer on the back 

side. The Cu-layer was removed by dissolution in ammoniacal 

trichloroacetic acid after mounting the foil on the l0xl2 mm 2 

target frame. 

The exact chemical form of the deposit is uncertain, 

most probably it is a mixture of plutonium oxide and nitrate. 

Typically, it is brownish of colour, has a rather smooth 

surface and adheres well to the backing material. 

The isotopic composition of the target material, 

based on the specification of the supplier, A.E.R.E., Harwell, 

d d f d f 24lp . 241Am . h . an correcte or ecay o u ~nto , ~s s own ~n 

table 1 . 

Independently, a mass analysis of aliquots of the 

various Pu samples was performed at Eurochemic, Belgium. 

Prior to the analysis the Pu was isolated from Am (and possible 

U) impurities. The results are given in parenthesis in 

table 1 and show good agreement. 

No chemical fractionation between Pu and Am is 

assumed to take place in the target preparation process. 

'Target thicknesses were determined by a - counting using a sur-

face- barrier silicon detector wlth known efficiency. The solid angle subtended 

by the detector was known both from a measurement of linear 

dimensions and from comparison with absolute count rates of 

representative samples obtained with a windowless gass-flow 

2n proportional counter. Knowing, furthermore, the target 
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area and the isotopic composition the average thickness of 

the heavy element constituent of the targets can be calculated. 

They were typically 100-400 ~g/cm 2 • The combined effect of 

uncertainties in a-counting, detector geometry, and target 

area together with the influence of a possible uneven distri-

bution of the target deposit is estimated to result in an 

over-all uncertainty of 20-25% in the determination of the 

true target thickness as felt by the beam. 

The glass detectors were developed after exposure 

together with a test plate previously expos~ed to a weak. 

252cf source, by etching with 2,5% hydrofluoric acid solution 

for a bout 30 minutes at room temperature. This time was 

chosen to obtain a diameter of 7-8 microns for tracks that 

were perpendicular to the surface. The plates were subse-

quently washed under running water for 20-30 minutes and dried, 

The area of the plates which was exposed to fission 

fragments was marked with the aid of a glass diamond and 

likewise divided into four equal zones. The number of tracks 

in each zone was counted under microscope with lOxl2.5 

magnification. All exposures were counted twice; once at 

the Niels Bohr Institute and once at the Joint Institute 

2.3. Evaluation of Cross Sections 

Delayed fission: The efficiency of detecting fission 

fragments with the glass plates depends on the following . 
factors: solid angle, half life of the isomer, rotation 

frequency of the wheel, angular size of the glass plates and 
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of detecting fission 

on the following 

somer, rotation 

the glass plates and 

the efficiency of the developing and scanning procedure. 

To determine the solid angle the wheel with glass 

plates was run for a definite time with the target replaced 

by a 252cf source of similar shape and size. The spontaneous 

fission count rate of the source had previously been deter

mined using a windowless gas-flow 2w proportional counter 

having a reasonably good plateau for fission fragments. The 

solid angle was found to be (0.365t0.03)/2~. 

The efficiency factor correcting for loss due to decay 

of the isomer is determined graphically. For the two half 

lives in question, the result is 0.345 (0.91 ms) and 0.423 

(14 ms). (The wheel moves through 90° in 5.05 ms.) 

To be able to calculate cross sections one also has 

to know target thicknesses (see above) and the integrated 

beam on the target, which is measured as the charge collected 

by the Faraday cup. 

The over-all uncertainty in the determination of 

absolute isomer cross sections is estimated to be about 30%. 

Prompt fission: The prompt fission fragments were 

recorded during the beam periods by a surface-barrier silicon 

detector mounted at an angle of about 41° with respect to 

the beam direction, fig.l. The detector geometry was deter

mined both by a direct geometrical measurement and by 

a-counting of a sample with known count rate. 

-4; angle was found to be 0 = (2.47tl0)xl0 4~. 

The solid 

For detection 

of fission events the effective geometry is twice this value. 

Knowing the target thickness and the integrated beam 
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an average prompt fission cross section can be calculated 

for each target. The results are given in table 2. 

In calculating the prompt fission cross sections the 

fission fragment angular distribution is assumed to be 

isotropic, although this is not strictly so. A comparison 

. h 1 . d f . "1 . lq,lJ) w~t angu ar an~sotropy ata or s~m~ ar react~ons 

indicates, however, that the error introduced in this way 

is insignific~nt, compared to the over-all experimental 

uncertainty of about 30%. It should be noted that the 

detector angle -corresponds to a position near the midpoint 

between the extrema of the angular distribution. 

2.4. Decay Curves 

As stated the glass plates were scanned in four equal 

zones corresponding to consecutive time periods. A four-

point decay curve can thus be drawn for each exposure to 

check that the fission really is due to isomer decay and.not 

to gr ound-state spontaneous fission or to stray neutrons 

causing prompt fission in the beam-off periods. All exposures 

show a clean decay, except the four lowest-energy irradiations 
241 of Pu (see table 2) where a constant background of the 

order of 20% is present. Presumably it is due to the 

242P < >2q2m . . h h 0 so~ 242 . · u p,n Am react~on w~t t e • ~ Pu contam~nat~on 

present in the target. 

3. Results 
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In fig.2 the results of the decay measurements are 

shown for the reactions (3), (4) and (5) separately. It is 

seen that the half lives are identical within the limits of 

the statistical error. The weighted mean value is 

240m t 112 < . Am) = 0.91*0.07 ms 

in fair agreement with the result of Polikanov et a1. 3 >, 

0.60*0.2 ms. 

3.2. Cross sections 

The measured cross sections for prompt and delayed 

fission are shown in table 2. The iargest contribution to 

the experimental uncertainty comes from the uncertainty in 

estimating target thickness. 

Within the estimated experimental uncertainty of 30\ 

the prompt fission cross sections are consistent with the 

measurements of Huizenga and Vandenboschl?) and others18 ) 

for nearby target nuclei. 

The delayed fission cross section for the reaction (2) 

agrees with the result of Brenner et a1. 15 >, a(d,2n) = 8*3 ~b 

for 12 MeV d. 

In fig.3 the result of proton bombardment of the 
241 Pu targets are shown. In addition to the measured prompt 

and delayed fission cross sections, the measured background 

contribution from the 240 Pu(p,n) reaction, normalized to 

the 3.1\ abundance of this isotope in the 241 Pu target, is 

shown. The background contribution from the reaction (6) 

is zero, table 1. Also shown in fig.3 is the theoretical 
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curve for the total compound nucleus cross section, oT , 

from an optical model calculation due to Jggere19 >. 

3.3. 
241 · 240m . Threshold of the Pu (~2n) Am React~on 

The dramatic decrease in the cross section for pro

duction of the 240
Am isomer at proton energies 11.6-10.6 MeV 

is evidently a threshold effect. The available evidence 

indicates that the fission isomer is formed by a compound 

nuclear reaction. We will therefore analyze the results in 
• 8) 

terms of the Jackson neutron evaporation model • 

The cross section of a (p,2n) reaction (or any other 

compound nucleus reaction with the boil-off of two neutrons) 

in the interval between its threshold and the next higher 

threshold (for (p,3n) or (p,2nf) reactions) can be expressed 

20,8) as 

o(p,2n) = oTxpx[l-(l+6E/T)exp(-6E/T)] (7) 

where p is a branching ratio, taking into account competition 

between fission and neutron evaporation as well as neutron 

evaporation processes, which energetically might lead to the 

isomer but actually bypasses it; 6E is the energy above 

threshold Ep-Eth; and T is the nuclear temperature. It is 

considered to be a constant in accordance with the usual 

assumption of the Jackson model. 

In the relatively small energy interval 10.6-13.6MeV 

remote from other thresholds, p is assumed to be constant. 

Rewriting (7) therefore gives 

o(p,2n)/oT ~ l-(l+6E/T)exp(-6E/T) ( 8) 
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In fig.4a the left hand side of (8), determined as 

described in subsection 3.2, is compared with a calculated 

curve corresponding to the right hand side of (8), using a 

nuclear temperature T = 1.35 MeV, found to be appropriate 

t . l . . f . f 235u . l 21) o exper~menta exc~tat~on unct~ons or + a-part~c es 

and the threshold energy Eth = 10.70 MeV. The curve is 

normalized to the experimental value at 11.6 MeV bombarding 

energy. If, instead of T = 1.35 MeV, values of T = 1.0 MeV 

or T = 2.0 MeV are used, the fits to the experimental points 

are slightly less satisfactory, but the value of Eth required 

to give a best fit only changes by 0.1 MeV. Within the 

assumptions made here, one can therefore safely say that the 

experimental excitation function determines the threshold 

to. be 

Eth(isomer) = l0.70tO.l MeV. 

In order to test the assumptions for the threshold 

behaviour we have compared with reaction data for the reaction 

l69Tm(p,2n)l68Yb (9) 

which has been investigated by R.Graetzer et a1. 9 >. In this 

case the threshold for the ground state reaction is known 22 ). 

The authors have measured excitation functions for excited 

states, whose energy above the ground state they determined 

through measurements of the deexciting conversion electrons. 

In this case T = 1.35(240/168) 112 = 1.61 MeV is used. The 

comparison is shown on fig.4b. The fit is satisfactory and 

apparently insensitive to the effect of spin and excitation 

energy, i\e. level density. 

l3 



It should be noted that the conclusion about the 

threshold value does not in any essential way depend on the 

application of eq,(8), The threshold value which one derives 

will not change significantly if a simpler phenomenological 

comparison of the excitation functions for the reactions (1) 

and ( 9) is used as the basis for the evaluation, Thus, there 

seems, altogether, to be good reasons to believe that present 

experiment determines the threshold energy with the accuracy 

tO,l MeV. 

4. Di-scussion · 

241 240 The Q-value for the Pu(p,2n) Am ground state 

reaction is not accurately known experimentally; the reason 

being that there only exists an estimated value for the 

electron capture decay energy of 240 Am. This estimdte 23 >, 
1300 keV , is equivalent to a neutron binding energy of 

241 . 243 
Am,B(N,241) = 6,7 MeV, By extrapolat~on from . Am and 

245
Am, where the neutron binding energies are accurately 

known
22

), a value of B(N,24l) = 6,6 MeV is predicted, In 

this region of isotopes the neutron binding energies change 

0 ,2-0,3 MeV when going from nucleus A to (A-2) with the same 

Z-value, The extrapolation may therefore be assumed to be 

accurate within t0,2 MeV and hence, the mass of 240 Am is 

determined with the same accuracy, Applying a 0,05 MeV 

. f .1 b . 22) correct~on or reco~ energy one o ta~ns 

Eth(gr .st) = 7.5St0,2 MeV, 

The difference between thresholds 
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E(exct) = 3.15~0.25 MeV 

then represents the upper limit for the excitation energy 

of the spontaneously fissioning isomer in 240Am. The actual 

energy may in principle be smaller, because one could imagine 

the isomer to be accessible only by way of r-emission 

following the neutron evaporation. Considering, however, 

(1) that the compound nucleus reaction excites all the 

degrees of freedom of the nucleus, (II) that the level density 

at 3 MeV excitation energy is quite high in an odd nucleus, 

and (III) that the cross section is found to decrease three 

orders of magnitude without any indications of sub-threshold 

effects, it seems very unlikely that the isomer could have 

an excitation energy lower than 3.15t0.25 MeV. 

Since very high spin values (I>20), required to 

explain the y-emission stability of such a high lying isomeric 

level, are excluded by the reaction data5 ), it follows that 

1 1 . d. . b . . 24) one cannot app y usua sp~n ~s.tr~ ut~on est~mates to 

explain the experimental isomer ratio. The usual treatment 

is based on the assumptions that (I) the energy difference 

between the ground state and the isomer level is small and 

does not influence the isomer ratio, and (II) the isomer 

cross section represents the cumulative yield of all 

reactions going through high-spin channels above a certain 

limiting spin value (or inversely if the spin of the isomer 

is lower than the ground state spin). In the present case, 

none of these conditions apply. Thus, it is trivial that 

the isomer ratio must go to zero when the threshold is 

15 



approached; but it is also to be expected that the tendency 

to accumulate reaction yield on the isomeric state through 

y-radiation from higher lying states is seriously affected 

by the existence of lower lying levels, which compete for 

the y-rays. Analogous considerations apply to the population 

frequency by direct neutron evaporation. Recently Sommer 

and Prokofjev 25 ) have considered the problem of calculating 

isomer ratios as a function of excitation energy of the 

isomeric level by a statistical approach which disregards 

all possible s~lection rules, including spin selection rules, 

and only takes into account the energy dependence of neutron 

evaporation and y-emission probabilities. Applying such 

formalism to 
242Am, using realistic data for the level 

density, they conclude that the experimentally measu~ed 

isomer ratio, a(isomer)/a(gr.st) = 4xl0-4 for the reaction 

(2) with 10-13 MeV deuterons, corresponds to an excitation 

energy of 2.8 MeV. 

This result indicates that the experimental reaction 

cross sections are quite compatible with an excitation 

energy for the isomer of theorder of 3 MeV. Such a con-

elusion requires, however, that the measured cross section 

are representative, viz., that spontaneous fission is the 

predominant decay mode. Experimental proof hereof is still 

lacking. (Thus F.S.Stephens et a1. 26 ) find only a limit 

-2 2 7) a(s.f.)/a(y) > 10 , whereas a(s.f.)/a(a-decay) > 10 , ref •• ) 

The enhanced probability for spontaneous fission is 

readily understood if the excitation energy is 3 MeV. It 

I6 
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•ntaneous fission is 

:rgy is 3 MeV. It 

remains a puzzle why y-emission is so highly retarded 

(t112 <r> > 0.91 ms). 

When it is considered that the nuclear energy surface 

for the heaviest nuclei is relatively shallow, it may not be 

unreasonable to imagine that there can exist secondary 

minima in the energy surface, separated from the ground state 

minimum by an appreciable energy barrier, and that the 

fissioning isomers are nuclei caught in such a minimum. 

Swiatecki et al. have shown 27 ) that the experimentally 

observed deviations from the liquid drop predictions of 

nuclear binding energies might be understood as the result 

of inhomogenuities in the single-particle level densities, 

associated with shell structure; since the liquid drop 

formula is based on the assumption of a homogenuous level 

density distribution in the nucleus. A high level density 

at the Fermi surface results in a smaller binding energy 

and, hence, some nuclei may be more strongly bound in a 

nonspherical equilibrium configuration, where the level 

density is nearer to the average liquid drop level density; 

despite the increase in surface energy. Strutinski, carrying 

this kind of approach further, has analysed level densities 

in the Nilsson scheme 28 ) as a function of mass number and of 

deformation. He findsll) that although there is a general 

tendency to approach a constant level density with increasing 

deformation, significant fluctuations may persist at large 

deformations. As a result secondary minima will occur at 

large deformations in some nuclei. 

17 



The existence of spontaneously fissioning isomers 

may very well be a reflection of such effects. There seems 

to be hope of a more quantitative understanding of the 

phenomenon. 
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Table 1. Isotopic composition of the targets. 

Percent of isotope 

Target 
239Pu 240Pu 241Pu + 241Am 242Pu 

240Pu l. 91 98,0 0,074 0.019 

(0,95) (98,9) (0,060) (0.051) 

241Pu 1.5 3,09 78.8 + 16,1 0,49 

(1. 6) 0.14) (78.8x)) (0.50) 

242Pu 3.13 2.90 3.09 90,88 

(3.03) (2.29) (2.54) (92.13) 

x) Normalized to 78,8%. 
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"' "' 

Reaction 

'242Pu(d ' 2n) 242m Am 

240 Pu ( d ' 2n) 240m Am 

241 Pu ( p t 2n) 240m Am 

2t.OPu ( p 
1 
n) 240m Am 

2•1Ami (p , d) l240mAm 
(p , p 'n)) 

Table 2 
F'or the 

241
Pu( p 12n)

240
rnAm reaction o nly r e l a tive errors 

a re g.hren. The total uncertainty in a u the cross section de
tenninfl.tioils i s estimated to be 30%. 'J"hE> to tal number of de
layed fission tracks, column 3, i s listed to give a n idea o! 
the counting statistics, It is not directly proportional to the 
cross section because it refers to torgets o f varying thick
ness and to different dura tion o f the irradiations. 

Bombardin g 
energy 

Total no .of Cross sections 
dtdayed fis
sion tracks 

(Me V) 

12 . 1 1; ;5s 

12.1 ' 918 

9,6 11• 

10.1 57 

10.3 15 7 

1 0 . 6 98 

1 0.9 25 7 

11.1 196 

11. 3 810 

11.6 1 602 

12.1 3 377 

12.6 • 282 

13 . 6 7 .. 

1 0 .3 •6• 

1 0 . 9 355 

11.3 174 

10 . 3 

Prompt fission 

<1o - 27 cm 2 ) 

170 

215 

29 

50 

58 

73 

90 

105 

116 

1 39 

178 

23 • 

350 

9• 

1 0 5 

Delayed fission 

oo-30cm2) 

7 . 6 " 2 . 0 

3 . 6 "1. 5 

0.012,0.007') 

O. OOS•0 . 007x) 

o . 006 • 0 . 007x) 

0,010 •0 ,007x) 

0.13 • 0.02 

0.52 •0.08 

0,88 •0.18 

1. 9 tQ , 4 

•.o to . 4 

10.5 "2. 0 

19 •• "2. 4 

0 .37 •0.11 

0.41.1 "0 . 13 

0,28 •0.09 

<0,004xx) 

x) Corrected fo r a 20\ f lat background observed in t he decay curves, and for the 

contribution from t he 
24 0

Pu ( p ,n>
240

mAm reaction, due to the 240 pu contents of the 
241

Pu targets. 

xx) Assuming a maximum of 3 delayed fission tracks. 

couNT~R 
•JPT FissiON 

£9....--pROr<• 

~ARGET / .~ ~-F~AoAY 
cUP 

~· . --~ 
~ ~ - ,..~1-t.. 



e:l 

2 <t 0 Pu ( p 
1 
n) 240m Am 

24lAmJ (p , d) l24omAm 
((p , p 'n) j 

l O, 3 

lO. 9 

ll. 3 

lO. 3 

464 

355 

l74 

•>u 1 ~. '+ t 2. 4 

0,37 •O.ll 

94 o.~ .. •0.13 

lOS 0,28 •0.09 

<O.OO&txx) 

X) Corrected for a 20\ flat background observed in t he decay curves, and for the 

contribution from t he 
240

Pu ( p ,n) 240mAm reaction, due to the 240 Pu contents of the 
241

Pu targets. 

xx) Assuming a maximum of 3 delayed fission tracks. 

couNTER 
•JPT fissiON 

~
.......-pRO~"'' 

~--- ~-F~Ao~Y 
clJP 

ae!U'1 ~ 
5~,rr 

t,.f>.t.iP 

.--

$:)/ 

/ 

Fig.l Schematic diagram of the irradiation chamber. The 

target is s t ationary. The rotating wh,el serves 

three purposes (I) it brings t he glass detectors 

recor~ing delayed fission fragments in front of the 

target in t:he intervals between the beam bursts, 

(II) by ~he aid of ~he sli ~• and ~he pho~ocell , it 

provides a pulse which is used to switch the beam off 

just before the glass plate·moves in front of the 

target, and (III) it prevents any residual beam which 

c~t.t.. 

GLAss DE:re:croR 

OIAIING WHt:t:L 

may persist in the beam- off periods from hitting the

target. The distance between the target an~ the 

wheel is 0. S em. A collimator (not shown) prevents 

prompt fission fragments from reaching the glass 

plates. The target backing is thick enogh to stop 

recoils, but allows fiaaion fragment:& t o pass through. 

The beam is monitored by the aid of the Farada y cup 

as well as with the prompt-fission semiconductor counter. 
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Fig,4a Plot of a(isomer)/aT for the reaction 241Pu(p,2n) 240mAm 
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is calculated from eq.(S), see text. The dotted 

curve illustrates a0 !aT for the 240Am grounq state. 
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