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Статистические пределы разрешимости близко расположенных 
ликов в спектрах характеристического рентгеновского излучения 

В экспериментах по измерению характеристического рентгеновского 
излучения ионизированных атомов возникают суммарные пики , содержа­
ние несколько линий. При разделения суммарного пика на отдельные 
.:ики (до 5 ПИКОЙ) учитывается содержимое всех каналов в окрестности 
суммарного лика . Переопределенная система уравнений решается методом 
наименьших квадратов. С помощью числа обусловленности системы 
опреаелена необходимая минимальная статистика , нужная для разделения 
суммарного пика . При этом отдельный пик моделировался гауссовым 
пиком или реальной аппаратурной функцией. Сглаживание суммарного 
пика не улучшает разрешимость. 

Работа выполнена в Отделе новых методов ускорения ОИЯИ. 
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S t a t i s t i c a l Limits for the Unfolding 
of C l o s e l y Overlapping Peaks in the X-Ray 
Spectrum A n a l y s i s 

The c o n d i t i o n a l number of the l i n e a r equation system 
for the unfo ld ing ot maximum 5 over lapping peaks with 
well-known p o s i t i o n s was computed. The peaks were simu­
l a t e d not only by a Gaussian funct ion but a l s o by a more 
r e a l i s t i c func t ion cons truc ted with a random genera tor . 
Using the c o n d i t i o n a l number, the s t a t i s t i c s and the 
area of the compound peak needed for good unfolding 
were e v a l u a t e d . The chance of f a i l u r e i s increased by 
smoothing the compound peak. 

The i n v e s t i g a t i o n has been performed at the 
Department of New A c c e l e r a t i o n Methods, JINR. 
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1. INTRODUCTION 
The characteristic X-ray lines of ionized 

atoms get out of place as a function of the degree 
of ionization. One can determine shifts in the 
energies to a precision of the order of one thou­
sandth of the natural line width/1/r. But if a par­
ticle beam consists of ions with different ioniza­
tion states, then for inner shell ionization pro­
cesses a group of lines can be expected instead 
of one line the positions of which can be deter­
mined by the Dirac-Fock-Slater method ̂  The ioni­
zation state in electron-ion rings of the heavy 
ion ERA (JINR, Dubna) is a function of time / 3 /, 
and the central point of an experiment for beam 
diagnosticsЛ/ is to evaluate the time function 
of the ion charge spectrum in the electron ring 
by means of unfolding of measured compount X-ray 
peaks. 

In the present paper we are interested in the 
error of the evaluated single peak heights after 
unfolding. This error is produced by the statis­
tics of the compound peak and the single peak 
fit inaccuracy. At first a simple symmetric Gaus­
sian function is taken for the single peak. This 
model is sufficient to investigate the error im­
provement in the solution of the equation system. 
But a better model is needed for good unfolding. 
For this purpose we propose to use the statistical 
counts of all channels in the range with a measu­
red single peak in the center without fit, respec­
tively. For this investigation we constructed 
single and compound peaks artificially with 
a random generator on a computer. in the case 
of very closely overlapping peaks the effect of 
the base line shape / 5 / and the change of the full 
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width at half maximum (fwhm) is sufficiently small. 
In all other cases the possibility for peak separa­
tion goes worsening. 

2. SINGLE PEAKS WITH GAUSSIAN SHAPE 
In the first type of investigation we accept 

that the sum peak contains n single peaks with 
Gaussian shape. 

z(x) = 1 H.e 2(72 (1) 
k=l K 

in which x is the channel number, z are counts 
in this channel, H k is the height and x o k is the 
well-known position of the к-th peak, and a is 
the standardized variance. If г is known, the 
problem of unfolding is to determine the single 
peak heights R . We have used the channels in the 
interval 

(x - 2w) < x < (x + 2ст) (2) 
v О — — 0 

which are mostly far enough from the background, 
if x Q is the sum peak channel with the maximum 
counts. Usually the number of equations is larger 
than that of unknown peak heights. For example, 
we have 41 equations if a= 10. Therefore the sys­
tem is overdetermined and must be solved with 
a minimization method. For this purpose a residual 
vector (R) is needed 

(Z) = (A) (H) + (R) (3) 

in the matrix style of writing. The matrix (A) con­
tains in the columns discrete values of the Gaus­
sian function shifted in the position of the k-th 
single peak in accordance with eq. (1). In our 
case it has a poor condition and the exactness of 
the solution is limited. Using a favourable solu­
tion method л / (orthogonalization of the column 
vectors) or double precision numbers, we can prac­
tically exclude the errors stipulated by a computer. 
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Therefore the reason for the inexactness of the 
solution is only the inaccuracy of the vector (Z) 
the components of which have statistical oscilla­
tions These oscillations are amplified by the un­
folding, and we want to determine the multiplier 
for the amplification now. With this aim we as­
sume that an exact vector (Z) gives an exact solu­
tion vector (H) and we solve only the system 

(AZ) = (А) (ДН) + (R) (4) 

for some (we use 1 OOO) different vectors (AZ) the 
components of which are normally distributed. In 
accordance with the peak shape, we take 

P = V e 2" 2 Az m J M r (5) 
" v max 

for the standardized variance in the distribution 
function. Taking only the amount of the largest 
component in the solution vector (ДН). the multiplier 
is defined by 

|ДН 
Az, 
max1 

к = (6) "max 

rix (A) as in quadratic matrices,. Therefore we 
want to call к the condition number of (A). The 
distribution of к is approximately normal and 
the integral gives the probability W for a given 
upper boundary of к. This function is shown in 
fig. 1 with two examples of the parameters n 
and Ax/a in which Ax is the distance between the 
single peaks. In the following we use the upper 
boundary for such к with a probability of 68.3% 
and designate it as « . In fig. 2 ка is shown as 
a function of the distance between the single 
peaks. For n>2 we assume that all distances are 
equal. One can see that in the double logarithmic 
graph all characteristics are straight lines. 
This means that we have the proportion 
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a) 

300 
— Я 

Ь) 

6000 

Fig. 1. Two examples for the probability W as 
a function of the upper boundary of K . a) n=2. 
b) n=5 (all distances are equal). 
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кп -(-2-) . (7) 

Using quadratic matrices, we have also proved 
the proportionality for n=S and n=3 analytically. 

In the case of a given inaccuracy for the 
single peak heights it is possible to determine 
the area of the sum peak needed for the unfolding. 
For this purpose we introduce the well-known 
equation for the statistical oscillations of the 
counts 

A z m a x - V ^ m a z < 8 ) 

3.31 0.02 0.04 0.06 008 0.1 0.2 0.4 0.6 0.8 1 
Д * 
6 

Fig. 2. Conditional number as a function of the 
single peak distance. 
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into eq. (6) and obtain 
1ДН | к 

VK 
Finally 

zmax - *• 

(9) 

A K max/Zmax 
(10) 

Multiplying by 2.5a we obtain an approach to the 
peak area 

F = 2.5a ( ДН /z max max 
) 2 . 

which is sufficient for an error less than 

(11) 

""max 

with a 68.3% probability. In many cases we have 
studied the function а-кг and found that the de­
pendence on a is very small. Figure 3 demonstrates 
this for two examples. 

— f 
Fig. 3. The main point of the peak area as a func­
tion of a. Hence it follows that the effect of a 
or the number of channels is small in the interval 
(2) for the unfolding. 
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3. NONGAUSSIAN PEAKS 
Usually in spectral analysis practice X-ray 

peaks do not have an exact Gaussian shape and in 
modern programs fits are used with two half-Gaus­
sian curves with different widths connected at 
their tops. But for good unfolding a better appro­
ximation is needed because small differences bet­
ween the real peak and its approximation are multi­
plied by the algorithm and the results are unsa­
tisfactory. For a mathematical description we in­
troduce a difference matrix (AA) into eq. (3) and 
obtain 

(Z)~[(A) +(AA)1(H) + (R). (12) 

One can see that (ДА) (Н) is an additional error 
vector which will be also multiplied by к. There­
fore an exact approximation of the single peak 
shape is the main condition for good unfolding 
and we propose to construct the matrix (A) itself 
by a single test peak measured with a suitable 
source in the area of our interest. In order to 
construct the k-th column of (A) this test peak 
must be shifted to the position x o k computed by 
the Dirac-Fock-Slater method. For shifts smaller 
than one channel an interpolation is necessary. 
The interpolation is a problem because we do not 
have an even function but discrete counts with 
statistical oscillations only. Therefore it seems 
advantageous to construct a polynomial function of 
corresponding degree through some points, and it 
is easy to determine the function at any positions. 
There is one more reason because we have found that 
the matrix (A) is often singular if p<n in a p-
point interpolation. Therefore we used a 5-point 
interpolation and saw that the peak shape conti­
nues invariably. We examined this method on a com­
puter generating the test peak by the formula 

12 x=( S RANF(k)/<r)ff+ x„+0.5. (13) k=l 
where x is an integer and RANF is a random proce­
dure for numbers between 0 and 1. The difference 
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between the test peak and an exact Gaussian peak 
is small but if thus constructed spectra consist 
of some independent single peaks, it is usually 
impossible to unfold them on the basis of eq. (1). 
On the other hand, the results were better using 
eq. (13) for construction of the matrix (A) as 
well. Based on this, we further evaluated the con­
ditional number к„ and the function а-кг . The re-
suits designated by "Testpeak" are shown in figs.2 
and 3, respectively, and are in good agreement 
with the exact Gaussian peak investigation. The 
differences were greater only for n>3.0f course, 
in spite of better approximation the statistics 
of the test peak has an influence on the total 
error. In this case one mu^t use for K the multi­
plier 

1 + / zmax (Testpeak) (14) 

We present now an example which demonstrates the 
efficiency of the method. An artificially com­
posed compound peak consists of three single peaks 
with (7 = 5 and the specification in the table. 
The area of the test peak for construction of the 
matrix (A) was 2 OOO 000. 

Table 
Specification of the compound peak and computed 
single peak heights, n = 3, Ax/'a = 0.2 

kok Fk (area) H k (exact) H k(unfolded) 

1 99 lOO OOO 7 871 7 664 
2 lOO 200 OOO 15 742 14 970 
3 101 400 OOO 31 483 32 453 

One can see that the maximum error (in the 
third component) with respect to z m a x is only 2%. 
Using eq. (9), we can expect an error less than 
8% with a 68.3% probability. This means that we 
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Fig. 4. Sum and test peaks. 

have had a favourable statistics. The sum and test 
peaks for this example are shown in fig. 4. By the 
way, all peaks were constructed by various se­
quences. Therefore they are statistically indepen­
dent . 

In the last type of this investigation we have 
studied the effect of a smoothing procedure based 
on a five-point-mesh on the unfolding. Many com­
puted examples have shown that the accuracy most­
ly goes worsening using the method of smoothing. 
Only in some cases we have observed an indepen­
dence of the smoothing. Figure 5 shows for the 
above example that the separated single peak 
heights very strongly vary with smoothing cycles 
and one obtaines unsuitable results. 
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Fig. 5. Effect of smoothing on the unfolding ac­
curacy. 

4. CONCLUSIONS 
In the case of well-known single peak positions, 

we have determined the area of the sum peak which 
is necessary for good unfolding. Using a high re­
solution spectrometer with a high intrinsic Ge de­
tector, the normalized X-ray shifts Ax/u for 
multiple-ionized atoms are of the order of 0.01-0.2. 
In a real time one can obtain a peak area of the 
order of 10 7 counts which corresponds to а ка 

of about lo 2 for a 10% inaccuracy of the single 
peak heights. Than it is impossible to unfold 
a sum peak in more than three single peaks at the 
present time. We have a :' -nee to expand this li­
mit only for higher counting rates and a better 
resolution of the spectrometer. 
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