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Mwonnep . u ap. E7 - 12219

CraTHCcTHYeCKHe Npenelib! pal3pewHMOCTH GAH3KO pacnoNnoXKeHHbIX
FHKOB B CHeXTpAX XAPAKTEpPHCTHYeCKOro peHTreHOBCKOro H3/Ay4yeHus

B 3kcnepumentax N0 H3IMEPEHHI0 XAPaKTepPHCTHYECKOro PeHTreHUBCKOro
WallyyeHHs HOHH3HPOBAHHLIX ATOMOB BO3HHMKAKT CymMapHuie NMEKK, COAepma-
‘1de Hecxonbko nuuuA, [Tpy pasgenenna CyMMApHOro NHK& Ha oraeibHuie
uuxed (Ao 5 nuxos) yunToiBaeTCs colepkHMOe BCEX KaHA/NOB B OKPECTHOCTH
cymmapHoro nuka, IlepeonpenelienHag cHCTeMa ypaBHeHHl pellaercst MeToaOM
Ha¥MeHbWHX XpaapaTos. C MOMOIBI0 HHCAA O6YCNOBREHHOCTH CHCTEMB!
onpeueneﬂa HeofxoaHMAaAd MHHEMANMBHAH CTATHCTHKE, HyXHafli Adg pas3gelleHnsd
cymmapHoro nura, [pu 3TOM OTAeNbLHBIA NHK MOAEIHPOBAJICA TayCCOBLIM
HKOM WM peanssoft annaparypuoft dyuxuuneR, CraaxuBaH#e CyMMapHOro
uuxa He ynydliaeT pa’pelifMoCThb.

PaGora semonieda 8 Oraene soBbiX MeTonoB yckopenHa OWAH,

MpenpauT OGveAHHEHHOTNO HHCTHTYTA SAEpHBIX HCC/eaosaxnft, [y6sa 1978

Miller G. et al, E7 - 12219

Statistical Limits for the Unfolding
of Closely Overlapping Peaks in the X-Ray
Spectrum Analysis

The conditional number of the linear equation system
for the unfolding ot maximum 5 overlapping peaks with
well-known positions was computed. The peaks were simu-
lated not only by a Gaussian func:cion but also by a more
realistic function constructed with a random generator.
Using the conditional number, the statiatics and the
area of the compound peak needed for good unfolding
were evaluated. The chance cf failure is increased by

smoothing the compound peak.

The investigation has been performed at the
Department of New Acceleration Methods, JINR.
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1. INTRODUCTION

The characteristic X~ray lines of ionized
atoms get out of place as a function of the degree
of ionization. One can determine shifts in the
energies to a precision of the order of one thou-
sandth of the natural line width/!. But if a par-
ticle beam consists of ions with different ioniza-
tion states, then for inner shell ionization pro-
cesses a group of lines can be expected instead
of one line the positions of which can be deter~-
mined by the Dirac-Fock-Slater method 2/, The ioni-
zation state in electron-ion rings of the heavy
ion ERA (JINR, Dubna) is a function of time 73/,
and the central point of an experiment for beam
diagnostics 4/ is to ‘evaluate the time function
of the ion charge spectrum in the electron ring
by means of unfolding of measured compount X-ray
peaks.

In the present paper we are interested in the
error of the evaluated single peak heights after
unfolding, This error is produced by the statis-
tics of the compound peak and the single peak
fit inaccuracy. At first a simple symmetric Gaus-
sian function is taken for the single peak. This
model is sufficient to investigate the error im-
provement in the solution of the equation system.
But a better model is needed for good unfolding.
For this purpose we propose to use the statistical
counts of all channels in the range with a measu-
red single peak in the center without fit, respec-
tively. For this investigation we constructed
single and compound peaks artificially with
a random generator on a computer. In the case
of very closely overlapping peaks the effect of
the base line shape #/ and the change of the full
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width at half maximum (fwhm) is sufficiently small,
In all other cases the possibility for peak separa-
tion goes worsening.

2. SINGLE PEAKS WITH GAUSSIAN SHAPE

In the first type of investigation we accept
that the sum peak contains n single peaks with
Gaussian shape. 2

(=2
n 0¥
xx)= X He 2g? (1)
k=1
in which x is the channel number, z are counts
in this channel, H, is the height and X, is the
well-known position of the Kk -th peak, and ¢ is
the standardized variance. If 2z is known, the
problem of unfolding is to determine the single
peak heights Hr We have used the channels in the
interval

(¥,-R) <X (X + 20) (2)

which are mostly far enough from the background,
if X, is the sum peak channel with the maximum
counts. Usually the number of equations is larger
than that of unknown peak heights. For example,

we have 41 equations if ¢=10. Therefore the sys-
tem is overdetermined and must be solved with

a minimization method. For this purpose a residual
vector (R) is needed

(Z) = (& 1) +(R) (3)

in the matrix style of writing. The matrix (A) con-
tains in the columns discrete values of the Gaus-
sian function shifted in the position of the k-th
single peak in accordance with eqg. (1). In our

case it has a poor condition and the exactness of
the solution is limited. Using a favourable solu-
tion method A/ (orthogonalization of the column
vectors) or double precision numbers, we can prac-
tically exclude the errors stipulated by a computer.
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Therefore the reason for tLhe inexactness of the
solution is only the inaccuracy of the vector (2)
the components of which have statistical oscilia-
tions These oscillations are amplified by the un-~
folding, and we want to determine the multiplier
for the amplification now, With this aim we as-
sume that an exact vector (Z) gives an exact solu-
tion vector (H) and we solve only the system

(AZ) = (A) (AH) + (R) (4)

for some (we use 1 000) different vectors (AZ) the
components of which are normally distributed. 1In
accordance with the peak shape, we take

(x-xp)?

- 202
p=y € 4 Az .. (5)

for the standardized variance in the distribution
function. Taking only the amount of the largest
componént in the solution vector (AH), the multiplier
is defined by

|AH_ | .
L (6)
Azpay

and is also a rate for the condition”®/ of the mat-
rix (A) as in quadratic matrices. Therefore we
want to call x the condition number of (A). The
distribution of « 1is approximately normal and
the integral gives the probability W for a given
vpper boundary of x. This function is shown in
fig. 1 with two examples of the parameters n

and Ax/s in which Ax is the distance between the
single peaks., In the following we use the upper
boundary for such « with a probability of 68.3%
and designate it as Ky« ID fig. 2 «, is shown as

a function of the distance between the single
peaks. FPor n>2 we assume that all distances are
egqual, One can see that in the double logaritinmic
graph all characteristics are straight lines.
This means that we have the proportion
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Fig, 1. Two examples for the probability W as
a function of the upper boundary of «. a) n=2,
b) n=5 (all distances are equal).
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Using quadratic matrices,

the proportionality

In the case of a
single peak heights
the area of the sum
For this purpose we

(7)

we have also proved

for n=2 and n=3 analytically.
given inaccuracy for the

it 1s possible to determine
peak needed for the unfolding.
introduce the well-known

equation . for the statistical oscillations of the

counts
Az oy = VI, (8)
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Fig., 2, Conditional number as a function of the

single peak distance,
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into eq. (6) and obtain

Posd 10 (9)
z "
max Zmax
Finally
Ky 2
=T . (10)
max B
Ah max / 2 max

Multiplying by 2.50 we obtain an approach to the
peak area

Ko 2
F = 25¢( ——mc—e0—) ", (11)
AHmax / Zmax
AHmax
which is sufficient for an error less than R
max

with a 68,3% probability. In many cases we have
studied the function a-K: and found that the de-~

pendence on ¢ is very small. F.gure 3 demonstrates
this for two examples.

L. 8000 ne2
w0 =
Ll :———"'—"—'_——T AX
sl  —— ===001
© 6000F o o g
e TEST PEAK
4000
n=3
2000
r- ..__._' + P %:DZ
'y [l N - .
2 4 6 8 10

—_—
Fig. 3. The main point of the peak area as a func-
tion of g. Mence it follows that the effect of o
or the number of channels is small in the interval
{(2) for the unfolding.




3. NONGAUSSIAN PEAKS

Usually in spectral analysis practice X-ray
peaks do not have an exact Gaussian shape and in
modern programs fits are used with two half-~Gaus-
sian curves with different widths connected at
their tops. But for good unfolding a better appro-
ximation is needed because small differences bet~
ween the real peak and its approximation are multi-
plied by the algorithm and the results are unsa-
tisfactory. For a mathematical description we in-
troduce a difference matrix (AA) into eq. (3) and
obtain

(Z) = [(&) + (AA)H) + (R). (12)

One can see that (AA)(H) is an additional error
vector which will be also multiplied by . There-
fore an exact approximation of the single peak
shape is the main condition for good unfolding

and we propose to construct the matrix (A) itself
by a single test peak measured with a suitable
source in the area of our interest. In order to
construct the k-th column of (A) this test peak
must be shifted to the position x, computed by
the Dirac-Fock~Slater method. For shifts smaller
than one channel an interpolation is necessary.
The interpolation is a problem because we do not
have an even function but discrete counts with
statistical oscillations only. Theretore it seems
advantageous to construct a polynomial function of
corresponding degree through some points, and it
is easy to determine the function at any positions.
There is one more reason because we have found that
the matrix (A) is often singular if p<n in a p-
point interpolation. Therefore we used a 5-point
interpolation and saw that the peak shape conti-
nues invariably. We examined this method on a com-
puter generating the test peak by the formuia

12
2=( > RANF()/0)o + X, +0.5. (13)

where x is an integer and RANF is a random proce-
dure for numbers between O and 1, The difference
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between the test peak and an exact Gaussian peak
is small but if thus constructed spectra consist
of some independent single peaks, it is usually
impossible to unfold them on the basis of eqg. (1).
On the other hand, the results were better using
eq, (13} for construction of the matrix (A) as
well. Based on this, we further evaluated the con-
ditional number k, and the function o-k2 , The re-~
sults designated by "“Testpeak" are shown in figs,2
and 3, respectively, and are in good agreement
with the exact Gaussian peak investigation, The
differences were greater only for n>3.0f course,

in spite of better approximation the statistics

of the test peak has an influence on the total
error, In this case one must use for x the multi-

plier
Zhax (Sum peak)
1+ .
Znax (Test peak) (14)

We present now an example which demonstrates the
efficiency of the method, An artificially com-
posed compound peak consists of three single peaks
with =5 and the specification in the table,

The area of the test peak for construction of the
matrix (A) was 2 000 000.

Table

Specification of the compound peak and computed
single peak heights, n=3, Axe=~0.2

k L3 F, (area) H, (exact) Hyl{unfolded)
1 99 100 000 7 871 7 664
2 100 200 000 15 742 14 970
3 lol 400 000 31 483 32 453

One can see that the maximum error (in the
third component) with respect to Z,ax 1S only 2%.
Using eq. (9), we can expect an error less than
8% with a 6B.3% probability. This means that we

10




-

<

w
i

—~°

g

i

w

o TEST PEAK e
o SUM PEAK \ 44
*

10° COUNTS PER CMANNEL {TEST PEAK)
s
L)
————
Bt
—
10*COUNTS PER CHANNEL ISUM PEAK)

o
n
T
\
—
.
;/./'

85 $0 95 100 105 10
CHANNEL NUMBER

Fig. 4. Sum and test peaks.

have had a favourable statistics. The sum and test
peaks for this example are shown in fig. 4. By the
way, all peaks were constructed by various se-
quences. Therefore they are statistically indepen-
dent,

In the last type of this investigation we have
studied the effect of a smoothing procedure based
on a five-point-mesh on the unfolding. Many com-
puted examples have shown that the accuracy most-
ly goes worsening using the method of smoothing.
Only in some cases we have observed an indepen-
dence of the smoothing. Figure 5 shows for the
above example that the separated single peak
heights very strongly vary with smoothing cycles
and one obtaines unsuitable results,
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Fig, 5. Effect of smoothing on the unfolding ac-
curacy.

4. CONCLUSIONS

In the case of well-known single peak positions,
we have determined the area of the sum peak which
is necessary for good unfolding. Using a high re-
solution spectrometer with a high intrinsic Ge de-
tector, the normalized X-ray shifts Ax/¢ for
multiple-ionized atoms are of the order of 0.01-0,2,
In a real time one can obtain a peak area of the

.order of 107 counts which corresponds to a «,
of about 10%? for a 10% inaccuracy of the single
peak heights, Than it is impossible to unfold .

a sum peak in more than three single peaks at the
present time, We have a . .~nce to expand this 1li-
mit only for higher counting rates and a better
resolution of the spectrometer.
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