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Эффект отдачи и кинематика молекулярной модели в реакциях 
с передачей 

В работе рассматриваются кинематические свойства адиабатического 
(молекулярного) представления волновой функцин задачи трех тел, кото ­
рое может быть использовано при исследовании квазимолекулярных 
эффектов в реакциях с тяжелыми ионами. Построены матричные преоб­
разования гамильтониана в адиабатическом представлении, которые 
позволяют поставить граничные условия задачи рассеяния и учесть 
эффект отдачи при передаче нуклона (кластера) от одного остова 
к другому. 
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1. INTRODUCTION 
Some experimental data on heavy ion scat ter ing 

may be descr ibed in the framework of nuclear mo­
lecu la r orbitals. The qualitative ideas which s e r v e 
to introduce this model were used much earlier in 
atomic physics where this approach is usually r e ­
ferred to a s the "perturbed stationary s ta tes" method 
or the adiabatic s ta tes representat ion ' z ' .The useful­
n e s s ' of the adiabatic representat ion is unquest io­
nable in the atomic physics , never the less , its d e ­
fects a r e still being d i s c u s s e d ' 1 , 3 , 4 / . T h e s e defects 
become more important with increasing mass of 
a particle transferred in the course of the r e a c ­
tion. T h e origin of the problem lies in the fact 
that a simple one or two-state approximation of tho 
adiabatic representat ion fails to be t uocessful for 
some problems. Therefore we need to include more 
s ta tes of the adiabatic bas i s or, in other words, 
to take into account the adiabatic correct ions . There 
exis ts a good illustration of this problem namely, 
the calculations of the mesoatomic p r o c e s s e s in 
the adiabatic representat ion when due to the large 
mass of a muon in comparison with that of a n e l e c ­
tron for atomic problems the role of the adiabatic 
correct ions may become d e c i s i v e ' 5 ' . This fact was 
recognized a l so by many investigators of the heavy-
ion transfer problems (refs. ' 6 _ 8 ' ). The purpose of 
this paper is to present some recent resul ts on the 
s tudies of the propert ies of the adiabatic r e p r e s e n ­
tation and to refine upon the treatment of the s o 
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called recoil effect in the adiabatic representa­
tion '6/.This effect (translational exponential factor in 
atomic physics (refs. /1.3,4/ )) is initiated also by the 
finite mass of the valence (transferred) particle. Our 
treatment will clearly demonstrate the kinematic na­
ture of the difficulties which appear in the adiabatic 
representation. This encourages us to discuss the 
problem without specifying the type of the particle 
interaction, we only suppose that the two-center nuc­
lear problem can be resolved thus providing the 
basis for the adiabatic representation of the total 
wave function. 

Typical processes to which our model considera­
tions can be applied are discussed in the recent 
paper of Becker et al. /?/ and in the review article 
of von Oertzen and Bohlen ' 8 ' . 

The review paper of E.Elbaz' 6^ gives a clear 
presentation of the treatment of the recoil effect in 
heavy-ion transfer reaction calculations for other 
models. 

2. COORDINATES AND RECOIL OPF ATORS 

We restrict ourselves to the analysis of the reac­
tions in which one of the interacting nuclei is des­
cribed in terms of a structureless core plus a valence 
nucleon, the other being a bare structureless core. 
We suppress spin variables. Let ltd), R<2) be the 
coordinate vectors of the cores and R(3) that of the 
valence particle. Then if m ,m, and m„ are masses 
of three particles the coordinate transformation 

Я = (m,R(1> + m 0 R< 2 >+m,R^) /^ . 

"г = " R < 3 ) -(m t R ( 1 ) + m 2 R ( 2 V ( m 1 +m a ) , 

R = l t ( 2 ) - R ( l ) , (i = m 1 + m 2 + m 3 

(1) 
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enables us to separate the motion of the CM of 
the system and gives the internal Hamiltonian of 
the form 

H = - W A 5 + v i 8

+ H o - ( 2 ) 

Ho=-ll^7 + V ri> + v

B 8 ( r

2 > ( 2 a ) 

and the Schrodinger CM equation 

IW(R,t) = E44R,r). (3) 

Here we put1i=l and introduce the notation 

l/M=l/m + 1/m , l/m=l/m + l/(pi +m ) . , , . 
1 8 3 1 8 (2b) 

Т 1-н<»1-й< 1>. Г 8 Л < 8 > Л < » . 

This choice of variables allows one to "separate" 
the "molecular" two-center problem with Hamiltonian 
H Q . The separation is not complete a s H 0 depends 
on R. 

We are going to study the exchange reaction 

(Cj + n) + c g -Cj+teg +n) (4) 

starting with eq. (3). Unfortunately the CM variables 
(R,r) . are natural neither for the direct nor for the 
rearrangement channels of the process (4). The ap­
propriate' , CM coordinates for the nonreactive scat ­

tering channels are (R.,r Л , where ?j i s the posi­
tion ̂ vector of the nucleon with respect to core с, , 
and R. is the position vector of core c g with respect 
to the CM of the system (Cj-нп). The boundary con­
ditions for the left-hand silde of the process (4) have 
a simple form only in these variables /ч/шWe perform 
ttje transformation from the (R, r) coordinates to the 
(R . , г.) coordinates in two s teps by the scheme 
(ft.r) -.(R.r^ -. (Rj.rj) , 
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which can be effected by the unitary operator 

T t = expQS^Vj) exp(a t R V?) (5) 

with a 1 =m 2 / (m 1 + m g ) and /3X = - m 3 / ( m 1 + m 3 ). For the 
rearrangement channe ls we u s e the operator 

T 2 = еч,(/3 2Г 8У^ехр(а 2"ку ?) (б) 

with a2=-ml/(.m1+mj^and /3 2 =m 3 /(m B +m a ). It is e a s y 
to verify that T t and T 2 operators do accomplish 
n e c e s s a r y coordinate transformations 

-* —i -• 

T. r T . =r. , 
i i l 

T.RT" 1 = R . , i = 1,2. i l l 

(?) 

Next we apply Tj transformations to the Schrodinger 
eq. (з) to rece ive 

H. 4> , (R , , r ) =E44(R. , T j (8) 
i i i i l l i ' v ' 

with 

Н . - Т . Н Т Г 1 . ( g ) 

Ф. (R • Д . ) = T. V ( R . r ) . 
1 1 1 ' 1 v ' 

It follows from the definition of T\ that H= a r e 
"good" ciiannel Hamiltonians, thus e q s . (5) and (б) 
give what can be called the recoil operators a s they 
account for the recoil e f f e c t / 6 - 8 / . One should expect 

/ 9 / 
that in terms of the adopted bas i s s t a t e s the recoil 
opera tors have the form of infinite matrices (cf. the 
d i scuss ion of the translational exponential factor 
in refs. /3,4/ ), 
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3 . A D I A B A T I C R E P R E S E N T A T I O N 

We u s e s p h e r i c a l p o l a r ^ c o o r d i n a t e s R, 0 , Ф 
for t h e i n t e r n u c l e a r v e c t o r R a n d wri te the Hamil -
ton i an (2) in t h e u s u a l w a y 

H = _ J _ ( J _ + - i L . ) 2 _ _ i _ | _ J ±lsmO-$-) + ~l 2 l | + V +H . 
2M R <9R 2MR8 sin0 дв дв s i n 8 6 ^ 2 is 0 

(10) 
S i n c e p o t e n t i a l s in HQ h a v e t h e a x i a l s y m m e t r y 
a r o u n d the a x i s jo in ing two c o r e s it is helpful to 
t r ans fo rm t h e n u c l e o n c o o r d i n a t e s to the " b o d y -
fixed" c o o r d i n a t e s y s t e m b y the ro ta t ion 

D(<I>, 0,0) = exp(-iO>rz) exp(-if?Py). ( l l ) 

At th i s s t e p t h e or ig in of the n u c l e o n c o o r d i n a t e s 
i s t a k e n to b e the CM of the nuc l e i . T h e t r a n s f o r ­
mat ion to t h e "geome t r i c c e n t e r of n u c l e i " n u c l e o n 
c o o r d i n a t e s m a y a l s o b e u s e f u l w h e n i n t r o d u c i n g the 
t w o - c e n t e r b a s i s . T h u s we n e e d a n o p e r a t o r of 
t h e finite t r a n s l a t i o n 

T = e x p ( - i * ^ - p ) , к =(m -m )/(m +m ). (32) 
a z 2 1 2 1 

It c a n b e v e r i f i e d ' 3 ' that the effc. ' of t h e t r a n s ­
format ions ( l l ) a n d (12) i s r e d u c e d to the s u b s t i t u ­
t ions in t h e Hamil tonian (10) of t h e t r a n s f o r m e d p a r ­
tial d e r i v a t i v e s ' 3 ' 

л - 1 д . д . ,„ KR . 

/C^A = J L _ i [ f c o S ^ - ( £ _ * J L p )SinO], ( 1 3 ) 

дф дф z x 2 *y 

A - 1 _ i - A , _£_ - j i . p , 
dR dR 2 * 

with 

A = TD. (14) 
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The final form of the Hamiltonian 

H = A~l HA (15) 

can also be obtained by other methods /8.3,7/1 This 
Hamiltonian has c* lot of terms and can be parti­
tioned in a number of different ways. 

Now we are ready to introduce the adiabatic 
representation of our problem (4). That means that 
in the Schrodinger equation 

H4<(R,0 = ЕФ(Ё\Г) (16) 

we try to expand the total wave function in the 
form 

4'(R.r) = 2 1A (

e

l\R)<^^ )(r;R) + |^^ )(R)^ >a;R) > (17) 

where <£^(r;R) and ф^г, R) are the solutions of 
the fixed cores (two-center) problem 

•А0ф^Нг.Щ -E<J>(R)*e(?;R). (IB) 

Two summations in (17) represent two types of so­
lutions of equation (l8) which account for the valence 
nucleon forming either (Cj+n) + c g o r ( c 2 + n) + c 1 sys­
tem in the limit of large R. One may say that the 
expansion (17) defines the two component form of 
the wave function. The substitution of (17) into eq. 
(16) with further integration over nucleon coordinates 
converts equation (16) into the system of equations 
for ф U)(R) 

H$VJlB)-E**°<B). (19) 

where 

" Ш) 1 , . , д ^ 1 . 8 , ij 
Ф 2М <JR R « 0 
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1 . 1 ^ d . л д 
2MR2 sine M 30 s i n z e ЭФ ар (20) 

T h e s t r u c t u r e of m a t r i c e s <_£->, <-£-> a n d <——>is 
dR дв дФ 

defined by the right-hand s ides of e q s . (13). T o put 
the proper boundary conditions, we need to examine 
the R -• oo limit of H L § . It is e a s y to obse rve that 
the only genera l simplification we rece ive in this 
limit is the degenerat ion of the matrix Hamiltonian 
into the two component forr.i 

/H<»> 0 \ 

It follows from the different asymptotic charac te r of 
two s u b s e t s ф^ (r;<«) and 0^( r ;~ ) of the two-
center bas i s a n ! l eads to the asymptotic Schrbdinger 
equation cf the form 

C"::)(i:)-(i:) -
T h e asymptotic Hamiltonians in eq. (22) still have 
a complicated s t ruc ture but it is c lear that in the 
adiabatic representa t ion the direct and rearrangement 
channels c a n be treated separa te ly in the asymptotic 
reg ion ' 3 ' * / . Th i s is due to the fact that we require 
different coordinate sys tems to study the direct and 
rearrangement channels . 



4. A S Y M P T O T I C A L L Y A D A P T E D 
A D I A B A T I C R E P R E S E N T A T I O N 

A n y c o o r d i n a t e s y s t e m c a n b e u s e d to d e r i v e 
p h y s i c a l q u a n t i t i e s t h u s in p r inc ip l e it i s p o s s i b l e 
to ob ta in a formula for t h e s c a t t e r i n g ampl i tude in 
the a d i a b a t i c r e p r e s e n t a t i o n . But we s h o u l d e x p e c t 
t h i s formula to h a v e a c o m p l i c a t e d form d u e to t h e 
fact tha t c o o r d i n a t e s u s e d a r e u n n a t u r a l for the 
a s y m p t o t i c d e s c r i p t i o n of the s y s t e m . O u r aitn i s to 
c o n s t r u c t a n a s y m p t o t i c a l l y s imp le Hami l ton ian . 

T h e s p e c i f i c form of t h e Hami l ton ian (20) w h i c h 
p e r s i s t s t o a p p e a r in t h e R-»« limit w a s i n t r o d u c e d 
b y t h e t r a n s f o r m a t i o n (IB). T h u s , to d i a a p n a l i z e t h e 
o p e r a t o r of the k ine t i c e n e r g y in the a s y m p t o t i c 
r e a i o n we s h o u l d c o n s t r u c t t h e i n v e r s e t r a n s f o r m a ­
t ion 

A -• D T (23) 

with t w o - c o m p o n e n t m a t r i c e s 

T (» 0 

. ) 
(23a) 

0 T W 

a n d 

/ D ( 1 ) 0 \ 
D ~4» D»j (23b) 

w h e r e 

Т ^ м р О к - ^ р ^ ) (24a) 

a n d 

D ( i ) = exp(10<P j > )exp(i<fc:£ j> ) . (24b) 
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Matrices <pj> . < t,}> and <£*>„ are R-.» limits of 
г g во • у °° Z °° 

the equivalent adiabatic matrices. 
Thus, if instead of the Schrodinger system (19) 

with the Hamiltonian H we use the transformed Ha-
miltonian 

H-A^HA (25) 

and the wave function 

Ф = A ; > (26) 

then it follows from (15) and (25) that H is reduced 
in the R-»~ limit to 

H ( 1 J ) ( \ l ( д x Ь 1 

2 M R 8 sine дв M s i a a e дф2 -

This asymptotic Hamiltonian is much simpler than 
that in the adiabatic representation. The price to be 
paid for this simplicity is that trie "potential energy" 
matrix becomes to be a function of the orientation 
angles of the intercore axis. This accounts tor the 
fact that in the decomposition of the total wave 
function we used the two-center basis which was 
quantized with respect to the intercore axis and 
now we treat the collision problem with asymptotic 
states quantized with respect to an axis fixed in 
space. The helicity amplitude representation dis­
cussed recently by Becker et al.'"' is an alterna­
tive approach to the same problem. 

The calculation of.matrix A is straightforward 
and can be accomplished analytically for the Cou­
lomb' 3 ' oscillator'l°/and separable/ 14/interactions. 
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5. RECOIL CORRECTIONS 

In the preceding section we have found the Ha-
miltonian of the asymptotically adapted adiabatic 
representation for the rearrangement collision prob­
lem (4). The asymptotic form of this matrix Hamllto-
nian is given by eq. 2̂7) and implies that radial and 
angular parts of the wave functioa #(R) should be 
separated by substituting 

Ф(i) (R) - x(J)(R)\M W. *> / R • < 2 8) 

Farther integration over angular variables pro­
duces the system of radial equations which are still 
coupled in the R-»«> limit. The direct diagonalization 
of this radial asymptotic Hamiltonian, which can be 
accomplished by the constant matrix leads to the 
asymptotically uncoupled system of equations. This 
matrix depends on the magnitude of the intercore 
orbital momentum L (and spin variables). For the 
sake of simplicity we shall omit its discussion that 
can be justified to some extent if we restrict our 
analysis to the case of slow collision and in both 
the subsets of the expansion (17) choose only de­
generate in the R-»<» limit solutions of the two-center 
problem. This ansatz forces the asymptotic Hamilto­
nian to be diagonal. Naturally it leads to the partial 
omission of the recoil corrections what we shall 
discuss below. 

In this case the Hamiltonian given above in the 
limit allows us to formulate the boundary conditions 
in the usual way. This means that the scattering 
matrix can be found from the asymptotic form of 
the wave function 

V^R) —• -̂ r- 2 (8L + 1)P. (cost?) x (29) 
R-,oc 2l L L Ч ' 

*[{-l)b+1 ф{? ($)ф(1«-)+Ф*\к)фЬ-,<~)8*]у. 
Li Li L» 
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Here the underlined entities a r e diagonal matrices 
and у is a coefficient matrix. This formula is a d i ­
rect generalization of the usual three-dimensional 
partial w a v e representat ion of the wave function 
for our particular c a s e / n / N o w , a s follows from the 
notation (26) and the propert ies of $(i>(r;R) from 
eq. (18) 

Ф™&-)-Ф™Ь^) , (зо) 
with фа and ф^ being the wave functions of the 
free (Cj + n) and ( c 2 + n) sys tems, and f = m/m j 3 . 
where mj 3 is the reduced mass of the respect ive 
pair 

l/m j 3 = l / m j + l / m 3 . (31) 
hi 

Becker et al . have a l so discussed, this property 
of the two-center bas i s , and Matveenko and Pono-
m a r e v ' 9 ' have a l ready demonstrated in a simple c a s e 
how this difficulty c a n be overcome. 

Formula (30) gives r i se to recoil correct ions 
of the first type which a r e purely mass dependent 
and c a n oe taken into account by a matrix of the 
sca l e transformation С 

ф ( £ j r .) =ф (г рс (32) 

which pe rs i s t s to have the two-component form 

(33) 
/ c ( 1 ) о \ 

^ o c ( 2 ) y ' 

different С acting in different channel s u b s p a c e s . 
Another origin of recoil., correct ions is the fol­

lowing relations for vector R 

R = (-l) [R . - r .m 3 / (m j + m 3 ) ] (34) 

which initiate in the asymptotic region 

13 



R - R . - m . _ / m . ( R . r )/R . (35) 
j j« j J J J 

This produces the form factor type matrix transfor­
mation F 

exp[iK ( j )(m. /m )№ r .)/R . ]4>(i){?.) = 4>U\f)V . (36) 
J 3 J J J J J J_ 

again F has the two-component form 

/ F ( 1 > 0 \ 
(37) 

So we can represen t the asymptotic wave function 
(29) in the form 

4'(R,r) > — I ( 2 L 4 l ) P (costOn-l)1^ V ' ^ V ^ S ]}~ 
R->°° 2i L L L , , 

(38) 
with the "proper" S -matrix 

S L = F * C S ^ C _ 1 F - 1 (39) 

and у being a new coefficient matrix. 
We have thus transformed the S a scat ter ing mat­

rix found in the asymptotically adapted adiabatic 
representat ion to the equivalent S -matrix which ac t s 
between asymptotic s ta tes in proper coordinates . 
T h e transformation matrices С and F account for 
the recoil correct ions originated by the recoil opera­
tors (5) and (б). Their specific forms (3 2) and (33) 
could be introduced due to the asymptotic property 
of the two-center bas i s given by eq. (ЗО). In the 
general c a s e both matrices С and F have infinite 
dimensions, and the finite s ta te decomposition of the 
wave function introduced earl ier should be tested. 
It follows from our d i scuss ion that the finite s tate 
ansa t z may be expected to be reliable for small 
mass of the va lence particle and for low collision 
energ ies . But, in general , different p r o c e s s e s should 
be analysed separately. 
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6. CONCLUSION 
The essent ia l point of our d i scuss ion is the 

suggest ion that the two-center problem (quasimolecule) 
(18) can be solved. The first example when this can 
be done is the celebrated molecular hydrogen ion' 12/. 
The other example which is more relevant for nuc ­
lear problems is the "two-center oscillator", where 
the complete se t of solutions in three dimensions can 
be constructed, a s it was proposed in ret,'l3(A. po­
werful method for solving the two-center problem 
with separab le part icle-core interaction has been 
proposed ' 1 4 / T h i s model is especial ly interesting for 
the heavy-ion problems. In these particular c a s e s 
all the matrices introduced in this paper can be 
c o m p u t e d ' 3 ' 6 , 1 0 ' . This puts our scheme on some 
footing. Becker et a l . ' 7 ' (among others / s / ) u se the 
linear combination of separa te nucleon orbitals in­
s tead of the two-center bas i s . This formulation can 
be more practical than ours , never the less , it a p ­
pea r s to be l e s s convenient to present the e s s e n c e 
of the method. 

When the molecular features and the exchange 
a r e expectad to be important in the reaction to be 
studied, then the program presented in this paper 
can be realized if a proper two-center bas i s can be 
produced. This task becomes much simpler in the 
two-state a p p r o x i m a t i o n ' 7 ' 8 ' when almost all the 
matrices introduced in the text degenera te into diago­
nal matrices. 
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