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Recojl Effect and Kinematics of the Molecidar
Statrs Approach to Heavy-lon Transfer Reactions

The kinematic properties of the adiabatic representation
4 the total wave function which can be useful to demonstate
thiee molecular features in the heavy-ion transfer reac.lons are
discussed, The matrix transformation of the adiabalic lamiltonian
which simplifies its asymptotic form is then constructed, This
allows one to treat the recoil effect in the form of a simple
matrix transformation of the adiabatic § -nsitrix,

The investigation has been performed at the Laboratory
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1. INTRODUCTION

Some experimental data on heavy ion scaltering
may be described in the framework of nuclear mo-
lecular orbitals. The qualitative ideas which serve
to introduce this model were used much earlier in
atomic physics where this approach is usually re-
ferred to as the "perturbed stationary states" method’!
or the adiabatic states representation /%, The useful-
ness' of the adiabatic representation is unquestio-
nable in the atomic physics, nevertheless, iis de-
fects are still being discussed’ 13-4 These defecis
become more important with increasing mass of
a particle transferred in the course of the reac-
tion. The origin of the problem lies in the fact
that a simple one or two-state approxnnation of the
adiabatic representation fajls to be :uccessful for
some problems, Therefore we need to include more
states of the adiabatic basis or, in other words,
to take into account the adiabatic corrections., There
exists a good illustration of this problem namely,
the calculations of the mesoatomic processes in
the adiabatic representation when due to the large
mass of a muon in comparison with that of an elec-
tron for atomic problems the role of the adiabatic
corrections may become decisive’/%. This fact was
recoghnized also by many investigators of the heavy-
ion transfer problems (refs,”%® ). The purpose of
this paper is to present some recer! results on the
studies of the properties of the adiabatic represen-
tation and to refine upon the treatment of the so-



called recoil effect in the adiabatic representa~
tion/6/, This effect (translational exponential factor in
atomic physics (refs, /1,8,4/ )) is initiated also by the
finite mass of the valence (transferred) particle, Our
treatment will clearly demonstrate the kinematic na-
ture of the difficulties which appear in the adiabatic
representation, This ericourages us to discuss the
problem without specifying the type of the particle
interaction, we only suppose that the two-center nuc-
lear problem can be resolved thus providing the
basis for the adiabatic representation of the total
wave function,

Typical processes to which ocur model considera-
tions can be applied are discussed in the recent
paper of Becker et al./?” and in the review article -
of von Oertzen and HBohlen /8/,

The review paper of E,Elbaz/8/ gives a clear
presentation of the treatment of the recoil effect in
heavy-ion transfer reaction calculations for other

models.

2. COORDINATES AND RECOIL CPF ATORS

We restrict ourselves to the analysis of the reac-~
tions in which one of the interacting nuclei is -des-
cribed in terms of a structureless core plus a valence
nucleon, the other being a bare structureless core,
We suppress spin variables, Let 'ﬁ(l)_‘_f{@) be the
coordinate vectors of the cores and R(3) that of the
valence particle, Then if m by, and m_ are masses
of three particles the coordlinate transformation

%

RO - R@, o R
(m‘R +m2R +m3R Yy,

3 LB ), p(R
r =R (miR +m2R ))/(m1+m2).

(1)

d - -
R = R(z)-R“). poEm+m,+m,



enables us to separate the motion of the CM of
the system and gives the internal Hamiltonian of
the form

1 Ao

H=—§M—AR+V12+H0, (2)
1

Hy= =gz + Vyg(r ) + Voo (e)) (2a)

and the Schrddinger CM equation
H¥(R,r) = E¥Y(R,1). (3)

Here we putfi=1 and introduce the notation

iI/M=1/m + l/m2 , 1/m= l/ms +1/(m1+mg) , (2b)

o

&

T RGLRW T _ROGO_R®
1 I - :
This choice of variables allows one to '"separate"
the "molecular" two-center problem with Hamiltonian
HO_R’I‘he separation is not complete as H, depends
on R.
We are going to study the exchange reaction

(e +m +c sc +(c,+n) (9)

R
starting with eq. (3). Unfortunately the CM variables
(R,r) . are natural neither for the direct nor for the
rearrangement channels of the process (4). The ap-
propriate’ CM coordinates for the nonreactive scat-
tering channels are (R,r,), where T, is the posi-
tion vector of the nucleon with respect to core €y
and R, is the position vector of core ¢, with respect
to the CM of the system (cl-nn). The boundary con-
ditions for the left-hand side of the process (4) have
a simple form only in these variables /7 ‘We perform
the {ransformation from the (R,r) coordinates to the
(R“ri) _’coondinates_’ in two steps by the scheme

@®Rr) ~®R.TY - ®R T,



which can be effected by the unitary operator

T, = exp(8,,%) ema R V;) (5)

with a,=m /(m1+m2) and ﬁl=—-m3/(m1+m3). For the
rearrangement channels we use the operator

T, = ex(B, :g Vyexp(a ;Rv?) (6)

with «a =-m1/(ml+m2) and B, =m3/(m2+m3). It is easy
to verify that T, and Tgoperators do accomplish
necessary coordinate transformations

T RT =%,
i i i
(?)

P
T RT, =R, , i=12,

i i i

Next we apply T, transiormations to the Schrodinger
eq. (3) to receive

H Y (R r)=E%®R, ) (8)
with

-1
H, = T,HT

(9)

¥, (R, .5, =T, ¥R,0).

It follows from the definition of T; that H; are

"good” channel Hamiltonians, thus egs, (55 and (6)
give what can be called the recoil operators as the
account for the recoil effect/6-8/ . One should expect};/
that in terms of the adopted basis states the recoil
operators have the form of infinite matrices (cf. the
discussion of the translational exponential factor

in refs, /3.4/),



3. ADIABATIC REPRESENTATION

We use spherical polar_coordinates R, 0, ¢
for the internuclear vector R and write the Hamil-
tonian (2) in the usual way

2
H =-—(l Sy 1 1 9 gpg 9y, 1 —hv H
R 4R 2MRE sing J6 30  sin®%) 99° 122
10
Since potentials in Hg have the axial symmetry )
around the axis joining two cores it is helpful to
transform the nucleon coordinates to the "body-

fixed" coordinate system by the rotation
D(®,0,0) = exp(~i0f ) exp(~if¥ ). (11)

At this step the origin of the nucleon coordinates

is taken to be the CM of the nuclei. The transfor-
mation to the "geometric center of nuclei" nucleon
coordiriates may also be useful when introducing the
two-center basis. Thus we need an operator of

the finite translation

. R o a
T= exp(—xx-a—pz). K =(m, mx)/(m2+m1)' (129)
It can be verified/a/ that the effe.! of the trans-

formations {11) and (12) is reduced t¢ the substitue-
tions in the Hamiltonian (10) of the tivi::sformed par-

tial derivatives/ 3/
“1 9 8 ... KR
ATl 949 | ,
96 3 1ty
- 13
A" 9 A - 9 (e coso-¢ - <Bp ysingl, (13)
En 3¢ 2 172 Ny
-1 g a .
K19 A -9 _jkp
IR R 2P
with
A =TD. {(14)



The final form of the Hamiltonian
H-A1lnaA (15)

can also be obtained by other methods /237, This
Hamiltonian has & lot of terms and can be  parti-
tioned in a number of different ways.

Now we are ready to introduce the adiabatic
representation of our problem (4), That means that
in the Schradinger equation

HY(R,r) =E¥(R,r) (16)

we try to expand the total wave function in the
form '

YR.1) = 3 v Pme S R)+§¢§’(R)¢‘§’( T:R), (17)

where ¢V (:R) and qS(g{r R) are the solutions of
the fixed cores (two-center) problem

A0 R) =EQ®g, T:R). (18)

Two summations in (17) represent two types of so-
lutions of equation (18) which account for the valence
nucleon forming either (¢, +n)+cg Or (cg+n)+c; Sys-
tem in the limit of large R. One may say that the
expansion (17) defines the two component form of
the wave function, The substitution of {17) into eq.
(16) with further integration over nucleon coordinates
converts_ equation (16) into the system of equations
for :,b(l)(R)

el ) B ) P (3 ind
H g Vg®=Ey "®), (19)
where
(i) 1 ] 1.9
Hag =~ (“3R™* &' e



1 1 a a i d Ry ij

- <=—>Binf<—> - ———< e
MRZ S0 90 a0 o 2g 00 ap (20
ij i
+lV121aB +Ea(R)8“. Saﬁ.
The structure of matrices <—a—>, <i-> and <9-is
JdR a6 o

defined by the right-hand sides of egs. (13). To put
the proper boundary conditions, we need to examine
the R » o limit of Aud. It is easy to observe that
the only general simplification we receive in this
limit is the degeneration of the matrix Hamiltonian
into the two component forni

{11)
H 0

Pt

Hg - . (29)
off (0 H(zz))
It follows from the _’dit'ferent asymptc'otic character of
two subsets () (i) and ¢® (r'x) of the two-

center. basis and leads to the symptotic Schrodinger
equation cf the form

Hay gy )
( (s”’)( ® ) F ¢(2) ' (22)
0 H " 6@

The asymptotic Hamiltonians in eq, (22) still have

a complicated structure but it is clear that in the
adiabatic representation the direct and rearrangement
channels can be treated separately in the asymptotic
region/%4/. This is due to the fact that we require
different coordinate systems to study the direct and
rearrangement channels,’



4, ASYMPTOTICALLY ADAPTED
ADIABATIC REPRESENTATION

Any coordinate system can be used to derive
physical quantities thus in principle it is possible
{o obtain a formula for the scatlering amplitude in
the adiabatic: representation, Bul we should expect
this formuia to have a complicated form due to the
fact that coordinates used are unmatural for the
asymptotic descriplion of the system. Our aim is to
construct an asymptotically simple Hamiltonian,

The specific form of the Hamiltonian (20) which
persists to appear in the Rax limit was introduced
by the transformation (15). Thus, to diagonalize the
operator of the kinetic energy in the asymptotic
region we should construct the inverse transforma-
tion
A, =D T (23)

ro

with two-component matrices

TV o
Yoo X TE‘” (23a)
and
p®
D, = o @)/ (23b)
where
T('f) = exp(ix—2R—<pi >.) (24a)
and
DD = emio<el> Yemag:els ). (24b)
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Matrices <pj ' <t)>_ and <l are R < limits of
the equxwﬂent aélabatxc matnces.

Thus, if instead of the Schridinger system (19)
with the Hamiltonian H we use the transformed Ha-
miltonian

L) -

H-A_HA (25)
and the wave function

v =Aly (26)

then it follows from (15) and (25) that H is reduced
in the R+« limit to

*(lj) 1,9 1,2
Hog =) = - o3k * &
(27)

-l 2 (sine-d. 1 £EV A

gMp® siné 9o ¥ sin®e aqs

This asymptotic Hamiltonian is much simpler than
that in the adiabatic representation, The price to be
paid for this simplicity is that the "potential energy"
matrix becomes to be a function of the orientation
angles of the intercore axis. This accounts tor the
fact that in the decomposition of the total wave
function we used the two-center basis which was
quantized with respect to the intercore axis and
now we treat the collision problem with asymptotic
states quantized with respect to an axis fixed in
space, The helicity amplitude representation dis-
cussed recently by Becker et al,/? is an alterna-
tive approach to the same problem,

The calculation of matrix & is straightforward
and can be accomplished analytically for the Cou-
lomb/% oscillator/1%/and separable/14/interactions,

17



5, RECOIL: CORRECTIONS

In the preceding section we have found the Ha-
miltonian of the asymptotically adapted adiabatic
representation for the rearrangement collision prob-
lem (4). The asymptotic form of this matrix Hamilto-
nian is given by eq. (27) and implies that radial and
angular parts of the wave function ¢ (R) should be
separated by substituting

O® - x Py, ,6,8)/R. (28)

Further integration over angular variables pro-
duces the system of radial equations which are still
coupled in the R+« limit, The direct diagonalization
of this radial asymptotic Hamiltonian, which can be
accomplished by the constant marix leads to the
asymptotically uncoupled system of equations, This
matrix depends on the magnitude of the intercore
orbital momentum L (and spin variables)., For the
sake of simplicity we shall omit its discussion that
can be justified to some extent if we restrict our
analysis to the case of slow collision and in both
the subsets of the expansion (17) choose only de-
generate in the R+~ limit solutions of the two-center
problem, This ansatz forces the asymptotic Hamilto-
nian to be diagonal. Naturally it leads to the partial
omission of the recoil corrections what we shall
discuss below,

In this case the Hamiltonian given above in the
limit allows us to formulate the boundary conditions
in the usual way. This means that the scattering
matrix can be found from the asymptotic form of
the wave function

-»> 1
¥(r,R) ey E(ZL + I)PL {cosd) x (29)

L+1 (9

«l1) ¢L(R)¢<E~)+¢(L*’(m¢<?;w)s:1y.

12



Here the underlined entities are diagonal matrices
and y is a coefficient matrix. This formula is a di-
rect generalization of the usual three-dimensional
partial wave representation of the wave function
for our particular case/ll/Now, as follows from the
notation (26) and the properties of ¢(J) (f:R) from
ey. (18)
iy - ~ (i d

¢V () = ¢ ¥ €70, (30)
with a(l)and 5((12) being the wave f{unctions of the
free (c1+n) and (c2+n) systems, and ¢, =m/m i3
where g is the reduced mass of the respective
pair

Vmg =1/m; +1mg (31)

Becker et al./7/ have alsc discussed this property
of the two-center basis, and Matveenko and Pono-
marev’/9% have already demonstrated in a simple case
how this difficulty can be overcome,

Formula (30) gives rise to recoil corrections
of the first type which are purely mass deperdent
and can vpe taken into account by a matrix of the
scale transformation G

O S (32)

which persists to have the two-component form

¢V o ‘
C =\, c® , (33)

different CU)acting in different channel subspaces.
Another origin of recoil, corrections is the fol-
Iowing relations for vector R

J) -»> -»>
R= 1 IR, = Tmg/ (m; + my)l (39)
which initiate i‘r} the asymptotic region

v 13
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- - I3
R=R,-my/m®;r)/R;. (39)

This produces the form factor type matrix transfor-
mation F

) o7 ZO) W 36
explik '(m  /m YR T VR 167 )=¢ T OF, (36)

again F has the two~component form

F(l) 0
F=\yg rp@]}" (37)

So we can represent the asymplotic wave function
(29) in the form

. S L+l (= -
¥(R,1) —s _21_. E(2L+ 1)PL(cosu)[(-1)“ A ¢(+)¢SLI};
Rooo 2i L
38
wilh the "proper" §-matrix (38)
R e T X ot "
§,=F C8,CF (39)

and ¥ being a new coefficient matrix,

We have thus transformed the 5?2 scattering mat-
rix found in the asymptotically adapted adiabatic
representation to the equivalent §-matrix which acts
between asymptotic states in proper coordinates,
The transformation matrices € and F account for
the recoil corrections originated by the recoil opera-
tors (5) and (6), Their specific forms (32) and (33)
could be introduced due to the asymptotic property
of the two-center basis given by eq., (30). In the
general case both matrices C and F have infinite
dimensions, and the finite state decomposition of the
wave function introduced earlier should be tested.

It follows from our discussion that the finite state
ansatz may be expected to be reliable for small
mass of the valence particle and for low collision
energies, But, in general, different processes should
be analysed separately.

14



6, CONCLUSION

The essential point of our discussion is the
suggestion that the two-center problem {guasimolecule)
(18) can be salved, The first example when this can
be done is the celebrated molecular hydrogen ion/12/,
The other example which is more relevant for nuc-
lear problems is the "two-center oscillator", where
the complete set of solutions in three dimensions can
be constructed, as it was proposed in ref,/13/A po-
werful method for solving the two~center problem
with separable particle-core interaction has been
proposed/”.This model is especially interesting fo:
the heavy-ion problems, In these particular cases
all the matrices introduced in this paper can be
computed/3:6.10/, This puts our scheme on some
footing, Becker et al./7/ (among others /8/ ) use the
linear combination of separate nucleon orbitals in-
stead of the two-center basis. This formulation can
be more practical than ours, nevertheless, it ap-
pears to be less convenient to present the essence
of the method,

When the molecular features and the exchange
are expectad to be important in the reaction to be
studied, then the program presented in this paper
can be realized if a proper two-center basis can be
produced, This task becomes much simpler in the
two-state approximation/7:8/ when almost all the
matrices introduced in the text degenerate into diago-
nal matrices,
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