

объөдинвнны" МНетитУт адөрных исөледований дубна

E6-94-382
Brudanin V.

MEASUREMENT OF THE INDUCED
PSEUDOSCALAR FORM FACTOR
IN THE CAPTURE OF POLARIZED MUONS BY Si NUCLEI*

Submitted to «Nuclear Physics A»

[^0]
V.Brudanin, V.Egorov, T.Filipova, A.Kachalkin, V.Kovalenko, A.Salamatin, Yu.Shitov, I.Stekl, S.Vassiliev, V.Vorobel, Ts.Vylov, I.Yutlandov, Sh.Zaparov Joint Institute for Nuclear Research, 141980 Dubna, Russia

J.Deutsch, R.Prieels, L.Grenacs

Universite Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
J.Rak

Institute of Nuclear Pinysics, 25068 Rez, Czech Republic
Ch.Briancon
Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, 91405 Orsay, France

1 Introduction

The standard weak interaction model describing semileptonic processes such as β-decay, eand μ-capture, predicts the following form of the axial weak current at the nucleon-level;

$$
\begin{equation*}
\left.G U_{u d}<n\left|g_{A}\left(q^{2}\right) \cdot \dot{\gamma}_{\alpha} \gamma_{s}+g p\left(q^{2}\right) \cdot \frac{i q_{a} \gamma_{s}}{m}+g T\left(q^{2}\right) \cdot \frac{q_{a} \sigma_{a \beta} \gamma_{s}}{2 M_{p}}\right| p\right\rangle \tag{1}
\end{equation*}
$$

where the second and the third terms are induced by the structure of the nucleon and depend on the momentum-transfer $q[1]$. The value of the axial form factor $g_{A}(0)$ is measured in the widely investigated process of neutron β-decay : $g_{A}(0)=-1.257 \pm 0.003[2]$, whereas the influence of the induced pseudoscalar form factor g_{P} becomes significant only at $q^{2}>m_{e}^{2}$ and thus can be observed only in μ-capture. If we assume that the induced paeudoscalar coupling in μ-capture is predominantly due to the capture of the muon by a virtual pion, then the well-known Goldberger-Treiman prediction of gr (using the Partial Conservation of the Axial Current - PCAC) can be formulated[3, 4]:

$$
\begin{equation*}
g_{P}\left(q^{2}=0.88 m_{\mu}^{2}\right)=g_{\pi N N}\left(-m_{\pi}^{2}\right) \cdot f_{\pi} \cdot \frac{2 m_{\mu}}{q^{2}+m_{\pi}^{2}} \simeq g_{A}\left(q^{2}\right) \cdot \frac{2 M m_{\mu}}{q^{2}+m_{\pi}^{2}} \simeq 7 g_{A}\left(q^{2}\right) \simeq-8.7 \tag{2}
\end{equation*}
$$

which is in good agreement with the average mean value of gp measured for μ-capture in hydrogen[5]:

$$
\begin{equation*}
g_{P}^{\operatorname{erp}}\left(0.88 m_{\mu}^{2}\right)=-8.7 \pm 1.9^{2} \tag{3}
\end{equation*}
$$

The g_{T} term is zero if one accepts invariance under G-parity transformation.
In case of μ-capture by a nucleus the values of all form factors could be influenced by the nuclear hadronic medium. This modification is induced by that of $g_{\pi N N}, f_{\pi}$ and the mass of the virtual pion m_{r}, and therefore should be very sensitive to the parameters of nuclear matter, such as "nuclear temperature", pion density, etc. Some estimations[8]-[12] predict a significant quenching of g_{A} and g_{P} for "infinite" nuclear medium :

$$
\begin{align*}
& g_{A}^{\infty} \approx 0.75 g_{A} ; \tag{4}\\
& g_{P}^{\infty} \approx 0.33 g_{P} . \tag{5}
\end{align*}
$$

Does such quenching really exist? This open question could be answered by the investigation of semileptonic processes in nuclei of wide mass band. Today sparse and discrepant informations on g_{A} in nuclei[13]-[15] indicate that the quenching rather does not exist. The same conclusion may be reached on g_{P} in the ordinary μ-capture (OMC) in carbon:

$$
\begin{array}{rlrl}
g_{P}^{\operatorname{exP}}\left(0.73 m_{\mu}^{2}\right) / g_{A}^{\exp }\left(0.73 m_{\mu}^{2}\right) & =9.0 \pm 1.7 & & {[48]} \\
& =9.6 \pm 2.4 & & {[17]} \tag{6}\\
& =10.1 \pm 2.4 & {[18]}
\end{array}
$$

On the other hand, the experiments[19]-[23] on the radiative μ-capture (RMC) indicate the strong dependence of g_{P} on nuclear mass. Unfortunately, RMC data are nuclear model

[^1]dependent and so this conclusion may not be sufficiently reliable; some alternatif approaches conclude even to no sizeable modification of g_{P} at all [24].

As it can be seen from this discussion, it would be very important now to measure g_{A} and (especially) g_{P} in $O M C$ for targets with $A>12$. Such experiments might provide also informations on nuclear temperature and pion mass and density dependance which is important for astrophysics.

2 The method of angular correlation

The most sensitive tool to obtain the g_{P} / g_{A}-value are experiments involving angular correlations in OMC.

Consider the capture of polarized muon by a nucleus (A.Z). This process produces the excited daughter nucleus $(A, Z-1)$ which has very significaint recoil caused by the muonic neutrino emission ($E_{\nu} \simeq m_{\mu} \simeq 100 \mathrm{McV}$). Within the lifetime τ a nuclear excited state could deexcite by γ-transition(s) with energy E_{γ} and multipolarity L :

$$
\begin{align*}
\mu^{-}+(A, Z)_{i} \xrightarrow{\mu C} & (A, Z-1)_{L_{t}}^{E_{i}}+\nu_{\mu} \tag{7}\\
& r \longrightarrow(A, Z-1)_{L_{0}}+\gamma E . L
\end{align*}
$$

The angular correlation between the residual muon polarization $\overrightarrow{\boldsymbol{P}}$ and momenta of neutrino $\overrightarrow{\mathbf{q}}$ and γ-quantum $\overrightarrow{\mathbf{k}}$ in allowed ordinary μ-capture[25]-[28] can be written as

$$
\begin{equation*}
W=1+\left(\alpha+\frac{2}{3} \cdot c_{1}\right) \cdot(\overrightarrow{\mathbf{P}} \cdot \overrightarrow{\mathbf{k}}) \cdot(\overrightarrow{\mathbf{k}} \cdot \overrightarrow{\mathbf{q}})+\left(a_{2}+b_{2} \cdot(\overrightarrow{\mathbf{P}} \cdot \overrightarrow{\mathbf{k}}) \cdot(\overrightarrow{\mathbf{k}} \cdot \overrightarrow{\mathbf{q}})\right) \cdot P_{2}(\overrightarrow{\mathbf{k}} \cdot \overrightarrow{\mathbf{q}}) \tag{8}
\end{equation*}
$$

where P_{2} is a Legendre polynomial and $\alpha, a_{2}, b_{2}, c_{1}$ are the correlation coefficients. The coefficient α gives the asymmetry of the neutrino emission; the other ones depend on the γ multipolarity and describe the anisotropy of γ-radiation caused by particular polarization of the recoil nucleus after the capture of polarized muon with the emission of polarized neutrino).

Using the multipole analysis [29, 30, 31] based on the total transferred angular momentum u, it is possible to describe the process of muon capture by means of the nuclear amplitudes $M_{u}(u+1)$ and $M_{u}(-u)$ which are the functions of the reduced nuclear matrix elements [kuu], [kwup] and form factors $g_{\mathrm{A}}\left(q^{2}\right), g_{\mathrm{V}}\left(q^{2}\right), g_{\mathrm{P}}\left(q^{2}\right), g_{\mathrm{M}}\left(q^{2}\right), g_{\mathrm{S}}\left(q^{2}\right)$ and $g_{\mathrm{T}}\left(q^{2}\right)$ (and/or of their linear combinations $G_{\mathrm{A}}, G_{\mathrm{P}}$) :

$$
\begin{align*}
G_{\mathrm{A}} & =g_{\mathrm{A}}-\left\{g_{\mathrm{V}}+g_{\mathrm{M}}\right\} \cdot \frac{E_{\nu}}{2 M} ; \tag{9}\\
G_{\mathrm{P}} & =\left\{g_{\mathrm{P}}-g_{\mathrm{A}}-g_{\mathrm{T}}-g_{\mathrm{V}}-g_{\mathrm{M}}\right\} \cdot \frac{E_{\nu}}{2 M} \tag{10}
\end{align*}
$$

In case of an allowed $0^{+} \rightarrow 1^{+}$transition ($u=1$) these amplitudes are:

$$
\begin{align*}
& M_{1}(-1)=\sqrt{\frac{2}{3}}\left\{\left(\frac{1}{3} G_{\mathrm{P}}-G_{\mathrm{A}}\right) \cdot[101]+G_{\mathrm{P}} \frac{\sqrt{2}}{3} \cdot[121]-\frac{g_{\mathrm{A}}}{M} \cdot[011 p]+\frac{g_{\mathrm{V}}}{M} \sqrt{\frac{2}{3}} \cdot[111 p]\right\} ; \tag{11}\\
& M_{1}(2)=\sqrt{\frac{2}{3}}\left\{\left(G_{\mathrm{A}}-\frac{2}{3} G_{\mathrm{P}}\right) \cdot[121]-G_{\mathrm{P}} \frac{\sqrt{2}}{3} \cdot[101]+\frac{g_{\mathrm{A}}}{M} \sqrt{2} \cdot[011 p]+\frac{g_{\mathrm{V}}}{M} \sqrt{\frac{2}{3}} \cdot[111 p]\right\} . \tag{12}
\end{align*}
$$

Assuming the absence of CP-violation, all the correlation coefficients in (8) could be expressed as functions of a unique parameter x which is the ratio

$$
\begin{equation*}
x \equiv M_{1}(2) / M_{1}(-1) \tag{13}
\end{equation*}
$$

in the following way :

$$
\begin{align*}
& \alpha=\frac{1}{3} \cdot \frac{1+4 \sqrt{2} x-x^{2}}{1+x^{2}} ; \tag{14}\\
& c_{1}=Q_{2}\left(I_{f}^{\pi} \rightarrow I_{0}^{\pi}, L\right) \cdot \frac{1-x / \sqrt{2}-x^{2}}{1+x^{2}} ; \tag{15}\\
& a_{2}=Q_{2}\left(I_{f}^{\pi} \rightarrow I_{0}^{\pi}, L\right) \cdot \frac{\sqrt{2} x-x^{2} / 2}{1+x^{2}} ; \tag{16}\\
& b_{2}=Q_{2}\left(I_{f}^{\pi} \rightarrow I_{0}^{\pi}, L\right) \cdot \frac{\frac{3}{2} x^{2}}{1+x^{2}} . \tag{17}
\end{align*}
$$

Here, the factor Q_{2} depends on spin sequence ($I_{f}^{\pi} \rightarrow I_{0}^{\pi}$) and the multipolarity L of γ transition:

$$
\begin{array}{lll}
Q_{2}\left(1^{\pi} \rightarrow 0^{\pi} ;\right. & M 1 & = \\
Q_{2}\left(1^{\pi} \rightarrow 2^{\pi} ;\right. & M 1+E 2) & = \tag{18}\\
\frac{1}{10} \cdot\left(1-6 \sqrt{5} \cdot \delta+5 \delta^{2}\right) /\left(1+\delta^{2}\right)
\end{array}
$$

where δ is the ratio of $E 2$ and $M 1$ components in the γ-transition.
The main objectif of the experiment is the determination of the parameter x which describes the alignment of the nuclear state produced in the μ-capture process. $g_{\mathrm{p}} / g_{\mathrm{A}}$ can be extracted from the measured value of x in a nuclear model independent way only using the so-called Fujii-Primakoff approximation (FPA) [1, 32, 33], i.e. neglecting in the expressions (11) and (12) all matrix elements other than the leading one [101]. One obtains:

$$
\begin{equation*}
\frac{3 x}{x+\sqrt{2}}=\frac{g_{\mathrm{P}}\left(q^{2}\right)-g_{\mathrm{A}}\left(q^{2}\right)-g_{\mathrm{T}}\left(q^{2}\right)-g_{\mathrm{V}}\left(q^{2}\right)-g_{\mathrm{M}}\left(q^{2}\right)}{\left(2 \mathrm{M}_{\mathrm{N}} / q \cdot g_{\mathrm{A}}\left(q^{2}\right)-g_{\mathrm{V}}\left(q^{2}\right)-g_{\mathrm{M}}\left(q^{2}\right)\right.} . \tag{19}
\end{equation*}
$$

For example, let us consider the capture of muons by ${ }^{28} \mathrm{Si}$ which was already investigated by G.H.Miller et al. [34]. Taking into account that the value of the transferred momentum q^{2} in this case :

$$
\begin{equation*}
q^{2}=m_{\mu}^{2} \cdot\left(\frac{2 \mathrm{E}_{\nu}}{m_{\mu}}-1\right) \approx 0.848 m_{\mu}^{2} \tag{20}
\end{equation*}
$$

and using the following values $[2,10,33,35]$ of $g_{i}\left(q^{2}\right)$:

$$
\begin{array}{ccc}
g_{\mathrm{V}}(0) & =+1 & \text { (from } C V C \text {) } \tag{21}\\
g_{\mathrm{M}}(0) & =+3.706 & \text { (from } C V C \text {) } \\
g_{\mathrm{A}}(0) & =-1.257 \pm 0.003 & \text { (from neutron } \beta \text {-decay) } \\
g_{\mathrm{V}}\left(0.848 m_{\mu}^{2}\right) / g_{\mathrm{V}}(0) & \approx+0.978 & \\
g_{\mathrm{M}}\left(0.848 m_{\mu}^{2}\right) / g_{\mathrm{M}}(0) & \approx+0.970 & \\
g_{\mathrm{A}}\left(0.848 m_{\mu}^{2}\right) / g_{\mathrm{A}}(0) & \approx+0.981 &
\end{array}
$$

one obtains :

$$
\begin{equation*}
\frac{g_{\mathrm{P}}\left(0.848 m_{\mu}^{2}\right)-g_{\mathrm{T}}\left(0.848 m_{\mu}^{2}\right)}{g_{\mathrm{A}}\left(0.848 m_{\mu}^{2}\right)}=\frac{68.37 x}{x+\sqrt{2}}-2.71 \tag{22}
\end{equation*}
$$

If we suppose now that $g_{\mathrm{T}}=0$, we obtain finally :

$$
\begin{equation*}
g_{\mathrm{P}} / g_{\mathrm{A}}=\frac{68.37 x}{x+\sqrt{2}}-2.71 \tag{23}
\end{equation*}
$$

The simple and nuclear model independent expression (23) is not longer valid if one takes into account the remaining matrix elements ([121], $\left[011_{p}\right]$ and [111p]) and one has to evaluate the ratio of these matrix elements to the dominant [101]-one. Wo are aware of two approaches to this problem: one of S.Ciechanowicz (CA) (ref.[36]) and one of R.Parthasarathy and V.N.Sridhar (refs.[37, 38]). Unfortunately the various correlation coefficients (14)-(17) produced by the authors of refs.[37, 38], in their most complete treatment (Model II), are inconsistent as they do not correspond, as they should, to common values of the parameter. Awaiting a clarification of this inconsistency, we use in this paper exclusively the evaluation of ref.[36] (CA).

The angular correlations described in (8) can be investigated with the method proposed in Ref.[39]. The method consists in the precise measurement of the sperific shape of γ lines corresponding to the decay of short-lived excited states of the recoil nuclei. The non detectable momentum $\overrightarrow{\mathbf{q}}$ of the neutrino can be infered from the momentum of the recoiling excited nucleus and if the latter deexcites fast enough it can transmit its recoil information through the Doppler shift of the subsequent γ-emission. The residual muon polarization $\overrightarrow{\mathbf{P}}$ could be measured independently with the $\mu S R$-technique. the momentum $\overline{\mathbf{k}}$ is simply determined by the set-up geometry, the angle between $\overrightarrow{\mathbf{k}}$ and $\overrightarrow{\mathbf{q}}$ cam be deduced from the value of the γ-quantum Doppler shift.

In case of a Si target the lines of 1229 and 2171 keV which are emitted in the decay of the short-lived (1^{+}) level of the daughter nucleus ${ }^{28} \mathrm{Al}$ have an asymmetric shape; the first one has, in addition, an obvious two-hump shape. The slope is caused by the fixed neutrino helicity and depends on the g_{A}-value, whereas the dip at the line center is caused by the alignement of the recoil nucleus and could be explained by the presence of g_{p}.

Such experiments are not easy. A pioneering one[34] achieved in 1972 reached a rather wide range of solutions for the parameter \boldsymbol{x}. Moreover the various correlation coefficients of the γ-transition were inconsistent.

To improve the accuracy, various factors should be included into the data analysis in addition to the ones considered by the authors of ref.[34]. One of the main ones is the slowing-down of the daughter nucleus before the emission of the γ-ray. Because of recoil after neutrino emission, the γ-energy is, in reality :

$$
\begin{equation*}
E_{\gamma}(t)=E_{\gamma}^{0} \cdot(1-\underline{V}(t) \cdot(\overrightarrow{\mathbf{k}} \cdot \overrightarrow{\mathbf{q}})), \tag{24}
\end{equation*}
$$

where E_{γ}^{0} is the transition energy in rest, and V is the velocity of nucleus al the moment of $\boldsymbol{\gamma}$-transition. Just after $\boldsymbol{\mu}$-capture (at $\boldsymbol{t}=0$) this velocity is

$$
\begin{equation*}
V(0)=\left(1+2 \cdot \frac{\left(M_{i}-M_{\mathrm{f}}\right)+\left(m_{\mu}-m_{e}\right)-E_{1 \mathrm{~S}}}{M_{\mathrm{f}}}\right)^{1 / 2}-1, \tag{25}
\end{equation*}
$$

(here, $M_{i, S}$ represents the mass of initial and final neutral atoms, respectively, and $E_{1 S}$ is the muon binding energy at the 1 S -shell in the muonic atom of a target). Because of the scattering and slowing-down of the recoiling nucleus $V(t>0)$ changes its magnitude. The subsequent Doppler shift reduction depends on the level lifetime τ and can be estimated using the $L S S$-method [40]-[45].

Both the above mentioned effects (the neutrino emission correlated with the muon residual polarization and the recoil slowing-down), as well as the finite target-detector geometry and detector response function, produce the specific shape of the measured γ-lines. In order to understand the relative contribution of all these factors and to choose the most appropriate target. we simulated the relevant q-lines for carbon, magnesium. silicon and sulfur solid targets. Analysis of the simulation results showed that slowing-down in solid targets plays a very significant role if the level lifetime τ is more than $\mathbf{1 0}-20$ fis and makes the measurement impossible at $r \geq 100 \mathrm{fs}$. At the other hand. if $\tau \leq 100$ fs. the slowingdown process modifies the q-line mainly in a symmetric way (fven momenta), whereas the $g_{\mathrm{F}} / \mathrm{gA}_{\mathrm{A}}$-ratio induces also a line asymmetry (odd momentum). Both values ($g_{\mathrm{p}} / \mathrm{g}_{\mathrm{A}}$ and τ) can consequently be determined from the experimental line shape.

Finally, taking into accome the yield of 9 -rays [46.47 .48$]$ and the mum de-polarization in different substances [49]. a single cristal of natural silicon (abundance of ${ }^{2 /} \mathrm{Si}$ is $9.2 .2 \%$) has been choosen as the appropriate target. Some of the excited levels of ${ }^{28} A 1$ populated in muon capture $\mathrm{lyy}^{28} \mathrm{Sj}$ and relevant to this experiment are shown on fig. 1. The :200: kel level $\left(I^{\pi}=1^{+}\right)$is short-lived enough ($\left.\tau \simeq 65 f s[50]\right)$ and decays by iwo \boldsymbol{q}^{-t} transitions: either by a $M I\left(1^{+} \rightarrow 0^{+}\right)$-transition of $I Q 29 \mathrm{kit} \mathrm{I}^{\prime}$. or by a mixed $. \mathrm{MI}+\mathrm{E}: \mathrm{I}^{\prime}\left(1^{+} \rightarrow 2^{+}\right)$-transition of 2171 keV . Botld γ-lines are good candidates for the analysis.

3 Experimental procedure

The experimental set-up using the secondary μ^{-}-beam of the JINR Phasotron $[51]$ is shown on Fig.2. A more detailed desrription of it can be found in ref. [52]. The muons with a momentum of $125 \pm 6 \mathrm{MeV} / \mathrm{c}$ and a longitudinal polarization of about -0.7 cross three plastic scintillator counters (\#1..3) and stop in the silicon target ($\mathbf{6} \mathbf{6 x} 2.5 \mathrm{~mm}$). As the distance between the proton-beam target and the mon target is very long (22 m), the admixture of pions do not exceed 0.5%; the content of electrons is 9%. To reduce the beam energy a. graphite moderator of 9 cm thickuess is used. As a result. a $1 \mu \mathrm{~A}$ proton leam produces about $10^{4} \mu$-stops per second in the target.

Two high volume ($205 \mathrm{~cm}^{3}$) HP Ge detectors detert the \boldsymbol{q}-quanta. They are installed on a platform which can be moved aloing the beam axis, so that it is possible to change the angle ($\overrightarrow{\mathbf{P}} \cdot \overrightarrow{\mathbf{k}}$) from 60" in "Backward" position up to 120 " in "Horward" position. In a preliminary test run it was found that muon decay electrons with the energy up to 50 MeV caused the saturation of the pre-amplifiers (especially with cold FEET) and distorted the response function of the γ-spectrometer. To reduce this distortion, the γ-detectors were shielded with "anti-Michel" plastic scintillator counters (\#5,(6) which produce "velo" siguals long enough as to enable electronic restoration ($100 \mu \mathrm{~s}$).

Fast electronics select the "single" incoming muons and opell a gate of 2μ delayed by 50 ns after the μ-stop in order to avoid the prompt radiation detection and reduce the uncorrelated background. Every hour the detectors are moved from "Backward" to "Forward" and vice versa. Twire per day an energy and resolution calibration is made with the standard ${ }^{56} \mathrm{Co},{ }^{00} \mathrm{Co}$ and ${ }^{228} \mathrm{Th} \gamma$-sources.

4 Analysis of the results

The cumulative γ-spectrum shown on Fig. 3 represents, for illustration, the sum of "Backward" and "Forward" spectra. Each of them in its turn is the sum of "good γ " measured by both Ge detectors during the 130 hours of total measuring time. The shifts in energycalibration were monitored permanently and duely corrected for.

Several γ-lines of ${ }^{28} \mathrm{Al}$ have significant Doppler broadening, but only two lines were analysed carefully: the 1229 and 2171 keV ones. both originating from the 1^{+}level at 2202 keV . As it was mentioned before, the specific shape of γ-lines is determined by many factors. They are:

- The polarization of the beam and the de-polarization process in the larget. In our case the residual muon polarization was measured by means of $\mu \mathrm{SH}$-method. We get $\overrightarrow{\mathbf{P}}=(-10.25 \pm 0.25) \%$.
- The relative beam-target-detector geometry. It was measured carefully in both positions ("Backward" and "Forward"). The longitudinal distribution function of μ-stops in the target was deduced from the " μ-stop range curve". The radial distribution is Gaussian corresponding to the beam cross-section ($F W H M_{x}=6 \mathrm{~cm}, F W H M_{Y}=12 \mathrm{~cm}$).
- The initial recoil velocily $|V(0)|$. It can be calculated very precisely (Equ.25) from the energy conservation. It is possible because there is no any significant population of the level $2202 \mathrm{kt} V$ from the upper states [50] as shown by the absence of the corresponding γ-lines in our spectra.
- The life time τ of the 2202 keV lencl. We suppose it to be roughly known ($\tau=$ $65 \pm 35 \mathrm{f} s)[50]$ but consider it as a parameter to be determined in our fittiug procedure.
- The target density and its micro-structure. Our target is a single cristal of natural silicon ($\rho=2.33 \mathrm{~g} / \mathrm{cm}^{3}$).
- The angular correlation coefficients $\alpha, c_{1}, a_{2}, b_{2}$. These coefficients are of course unknown: they are the main parameters to be determined in the experiment. Note that in the case of $2[7 / \mathrm{keV}$ line they contain also the unknown ratio δ of the transition multipolarity mixture (Eqn.18):
- The possible γ-feeding of the 2202 keV level from the upper states. The most probable candidate for such feeding is $1+3105 \mathrm{keV}$ level, but the corresponding γ-line of 903 keV is not present in spectrum. So, the distortion of the investigated γ-lines through this effect may be neglected.
- The population of the $2202 \mathrm{kr} V$ level in the ${ }^{29} \mathrm{Si}(\mu, \nu n)$ reaction. There are only 4.67% of ${ }^{29} \mathrm{Si}$ in natural silicon, and from systematics its effective yield, relative to the main reaction, is not expected to exceed $\sim 10 \%$ [46]. The recoil of daughter nucleus in this process is determined by the momenta of both the neutrino and neutron and so depends on the neutron energy which is not known with precision. The emission of each of these two particles would induce a flat "rectangular" broadening of the consequent γ-line, the simultaneous emission of both results in a "isosceles triangular" broadening which is the convolution of two rectangular components. Such a "triangular" addition
is a constant fraction ξ of both of the investigated lines; the value of this fraction ξ is unknown in principle and its effect will be considered below; the half-width Δ of the "triangle" could be roughly estimated from the analysis of similar triangular γ-lines of 1719,2010 and 2941 keV which are present in the spectra due to the ${ }^{28} \operatorname{Si}(\mu, \nu n)$ reaction.
- The shape of background. Background lines should be the same in the "Forward" and "Backward" spectra and, therefore, could not distort the odd coefficients α and c_{1}, whereas the values of the even coefficients a_{2} and b_{2} could be distorted significantly. Fortunately, the 2171 keV line has a constant flat background. The background of the second line ($1229 \mathrm{ke} V$) has a much more complicated structure (see Fig.4) and includes three more components:

1. An asymmetric and slightly decreasing triangular bump with $E \geq 1204 \mathrm{keV}$ due to the reaction ${ }^{74} \mathrm{Ge}\left(n, n^{\prime} \gamma_{1204}\right)$ [53] caused in the Ge detectors itself by fast neutrons. The iong right-side tail of this γ-line originates from the pile-up of γ-quanta and the recoil energy of Ge nuclei $[54,55]$ which are both detected by the same $\mathbf{G e}$ detector. The precise shape of this bump can be obtained from the analysis of the similar lines of 596 and 608 keV from ${ }^{74} \mathrm{Ge}$, as well as the 1040 keV one from ${ }^{70} \mathrm{Ge}$ and the 691 keV one from ${ }^{72} \mathrm{Ge}$. A similar bump (with a much longer tail) could be seen in π-capture experiments [56] where the neutrons are emitted with higher energy.
2. A symmetricaly broadened triangular $1222 \mathrm{keV} \gamma$-line emitted from the shortlived 3956 keV state of ${ }^{27} \mathrm{Al}$ populated in the ($\mu, \nu \mathrm{n}$)- reaction; this contribution could be estimated from the analysis of similar γ-lines at 1719 , 2210 and 2941 keV .
3. A "normal" (not broadened) $1238 \mathrm{keV} \gamma$-line emitted from the relatively long-lived 2058 keV state of ${ }^{56} \mathrm{Fe}$ populated in (n, n^{\prime}) reaction as well as in the β^{+}decay of the long-lived ${ }^{56}$ Co nuclei present in the surrounding activated materials.

- Tho response function of the detection system. It is a Gaussian with parameters obtaiced from non-broadened background lines at 1173,1332 and 2614 keV , as well as from the lines of the additional external calibration sources. As a result, the average energy resolution ($F W H M$) at the energy $1229 \mathrm{keV}(2171 \mathrm{keV})$ was found to be $2.99 \mathrm{keV}(3.70 \mathrm{keV})$ for the detector " A " and $2.99 \mathrm{keV}(4.00 \mathrm{keV})$ for the detector " B ", respectively.

Taking into account the above factors, we calculated the value of χ^{2}, comparing our spectra with the theoretically simulated lines. Several fits with different conditions were carried out using the standard "MINUIT" code. In each case all the fitted lines (1229 and/or 2171 keV , detected by the detector " A " and " B " in "Forward" and in "Backward" position) were simulated simultaneously by their corresponding theory, consequently the resulting value of λ^{2} reflected the quality of the fit for all the spectra. The conditions of the fits and the results, with errors corresponding to the 67% CL, are listed and discussed below. The $g_{\mathrm{P}} / g_{\mathrm{A}}$ ratios presented in the Tables are deduced from the corresponding x-values using ref.\{36] (CA) and are given here for illustration only. Fits were performed introducing more and more realistic assumptions resulting of course in increased complexity. They are presented in sections 4.1 to 4.5 ; the treatment of 4.4 being the most realistic, it provides our final results.

$4.1 \quad 1229 \mathrm{keV} \gamma$-line only; background linear with no structure.

As the first approximation, the line of 1229 keV was analysed assuming the absence of background lines in the 1215-1236 keV energy region. This background was first subtrackted from each of the four spectra and the position of the peak deternined from the sum of the results. Parameters fitted were the following ones ${ }^{3}$:

- the γ-line area (4),
- the ${ }^{n} x^{n}$-value (1).

The life-time τ of the 2202 keV level could not be used as free parameter and the results presented in Table 1 computed for fixed values of τ show a strong dependence on this value. Therefore additional information is required to precise x and g_{P} / g_{A}.

Table 1. 1229 keV -line; background linear.				
τ	x	$g_{\mathrm{P}} / \mathrm{g}_{\mathrm{A}}$	χ^{2}	
$[\mathrm{fs}]$		(CA)	full	norm.
20	$+0.085 \pm 0.036$	-2.3 ± 1.3	168.8	0.692
30	$+0.137 \pm 0.039$	-0.5 ± 1.4	169.5	0.695
40	$+0.193 \pm 0.044$	$+1.4 \pm 1.4$	170.6	0.700
50	$+0.255 \pm 0.052$	$+3.4 \pm 1.6$	171.9	0.705
60	$+0.328 \pm 0.065$	$+5.5 \pm 1.8$	173.3	0.710
70	$+0.422 \pm 0.095$	$+8.0 \pm 2.4$	174.8	0.716
80	$+0.878 \pm 0.250$	$+17.3 \pm 4.2$	175.8	0.720

4.22171 keV γ-line only; background linear with no structure.

In order to constrain the τ-value, the 2171 keV line was analysed using the following free parameters :

- the $\boldsymbol{\gamma}$-line area (4),
- the " x "-value (1),
- the 2202 keV level life-time τ (1).

The background and the peak position were determined as for the $1299 \mathrm{keV} \gamma$-line (cfr. 4.1). The $E 2 / M 1$ mixture parameter δ is definitely unknown. The only and very rough limitation which could be deduced a priori from the systematics and from the level life-time is that this $1^{+} \rightarrow 2^{+} \gamma$-transition is fast enough, and therefore might be predominantly $M 1$. The results for the δ-parameter fixed in the region from -0.2 up to +1.2 are shown in the Table 2.

[^2]| δ | $\begin{gathered} \top \\ {[\mathrm{fs}]} \end{gathered}$ | \cdots | $\begin{aligned} & g_{P} / g_{A} \\ & \text { (CA) } \end{aligned}$ | 1^{2} | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | full | norm. |
| -0.20 | 50 ± 7 | -0.080 ± 0.071 | -9.2 2 3.3 | 257.6 | 0.907 |
| -0.10 | 60 ± 6 | $+0.059 \pm 0.092$ | -3.3 ± 3.6 | 261.5 | 0.921 |
| 0.00 | 63 ± 4 | $+0.301 \pm 0.161$ | $+4.8 \pm 4.7$ | 258.5 | 0.910 |
| +0.10 | 51 ± 3 | $+0.701 \pm 0.122$ | $+14.2 \pm 8.4$ | 249.5 | 0.879 |
| +0.20 | 15 ± 2 | $+0.701 \pm 0.239$ | $+14.2 \pm 4.7$ | 241.6 | 0.851 |
| +0.10 | 33 ± 2 | +0.70i ± 0.195 | $+14.3 \pm 3.8$ | 232.9 | 0.820 |
| +0.60 | $27 \pm$ | $+0.712 \pm 0.20 \%$ | $+14.4 \pm 3.9$ | 230.1 | 0.811 |
| +0.80 | 26 ± 2 | $+0.713 \pm 0.20 .7$ | +14.4 ± 3.9 | 2.30.2 | 0.810 |
| $+1.00$ | $2 \mathrm{~s} \pm 2$ | $+0.710 \pm 0.190$ | $+14.3 \pm 3.7$ | 230.9 | 0.813 |
| +1.20 | 31 ± 2 | $+0.70 * \pm 0.196$ | $+14.3 \pm 3.8$ | 23.3 .3 | 0.818 |

Unfortunately, it is impossible to extract the δ-value with suflicient accuracy from the 2171 kel' line alone. but the strong correlation betwern δ and r on one hand, and the relatively weak correlation betweren of and s on other hand, allows one to do it combining the data on both γ-lines as will be discussed in the following section.

4.3 Both the 1229 and the 2171 keV γ-lines: background lincar.

In the two separate fits discussed before we did not converge to a minimum if all the parameters, including τ and δ, were hept free: the 1292 hel l line is $1(x)$ semsitive to τ and x. the 217 keV line is less sensitive to α but depends on δ. In hoth cases there is no welldefined minimum on the λ^{2}-surface. In the joimt analysis of both the $12, n$ he 1 and the $2171 \mathrm{kf} V$ lines, however, the minimum becomes deeper and can be casily located. After the determination of the backgrounds and the peak positions as disernssed above, the following parameters remained free and wore filled:

- the $\boldsymbol{\gamma}$-line areas (8).
- the " \boldsymbol{r} "-value (1),
- the 2002 ke V level life-time $\tau(1)$,
- the Ed/M1 mixing ratio δ for the 9171 krl' 7 -line (1).

We obtained the following result:

$$
\begin{array}{rlrl}
\delta & = & +0.54 & \pm 0.39: \\
\tau & = & 39.1 & \pm 5.4 \mathrm{fs} ; \\
r & = & +0.269 & \pm 0.044: \tag{26}\\
g_{\mathrm{P}} / g_{\mathrm{A}} & =+3.8 & \pm 1.3((\cdot A) .
\end{array}
$$

The precision on $r\left(\right.$ resp. $\left.g_{\mathrm{P}} / g_{\mathrm{A}}\right)$ could be somewhat improved if the mixing ratio δ would be measured in a separate experiment. This fealure is illustrated in Taible 3 below.

δ	$\begin{gathered} 7 \\ {[\mathrm{fs}]} \end{gathered}$	r	$\begin{aligned} & g_{\mathrm{P}} / g_{\mathrm{A}} \\ & \left(C^{\prime} A\right) \end{aligned}$	${ }^{2}$	
				full	no
-0.20	75 ± 6	+0.262 ± 0.080	+3.6 ± 2.4	456.2	$0.8 \overline{1}$
-0.10	70 0	+0.326 ± 0.082	$+5.5 \pm 2.3$	443.2	0.846
0.00	63 ± 3	$\underline{+0.340} \pm 0.073$	$+5.9 \pm 2.0$	432.3	0.8.25
+0.10	55 ± 3	$\underline{+0.329} \pm 0.061$	$+5.5 \pm 1.7$	424.6	0.810
+0.20	49 ± 2	+0.311 ± 0.051	$+5.0 \pm 1.5$	420.1	0.802
+0.40	42 ± 2	$+0.280 \pm 0.040$	$+4.2 \pm 1.2$	417.0	0.796
+0.60	38 ± 3	+0.266 $\pm 0.0 .36$	$+3.7 \pm 1.1$	416.8	0.795
+0.80	38 ± 3	+0.263 ± 0.036	$+3.7 \pm 1.1$	416.8	0.795
+1.00	39 ± 3	+0.268 ± 0.037	$+3.8 \pm 1.1$	416.8	0.795
+1.20	39 ± 3	$\underline{+0.268 \pm 0.044}$	$+3.8 \pm 1.3$	417.0	0.80

4.4 Both the 1229 and the $2171 \mathrm{keV} \gamma$-lines; composite background.

As the final and most realistic approach let us take now into account the composite structure of the background in the $1200-1240 \mathrm{keV}$ region. As it was mentioned above, this background should include:

1. An asymmetric triangular line 190.5 keV from the reaction ${ }^{74} \mathrm{Ge}\left(n, n^{\prime}\right)^{74} \mathrm{Ge}^{1205}$ with the unknown area S_{1205} and with the known width of the bigh energy tail Δ_{1205}. This value was estimated from the analysis of the similar $596,608,69 \mathrm{~J}$ and 1040 keV lines. In our fit it was fixed to

$$
\begin{equation*}
\Delta_{1205}=32.5 \mathrm{keV} . \tag{27}
\end{equation*}
$$

2. An isosceles triangular line of 1222 keV from the reaction ${ }^{28} \mathrm{Si}(\mu, \nu \mathrm{n}){ }^{27} \mathrm{Al}^{3956}$ with the unknown area S_{1222} and with the known half-width Δ_{1222}. The value of Δ_{1222} was estimated from the analysis of the similar 1719,2210 and 2941 keV lines. In our fit it was fixed to

$$
\begin{equation*}
\Delta_{1222}=6.35 \mathrm{keV} \tag{28}
\end{equation*}
$$

3. A normal (unbroadened Gaussian) line of 1838 keV from the reaction ${ }^{56} \mathrm{Fe}\left(n, n^{\prime}\right)^{56} \mathrm{Fe}$ 2085 with the unknown area S_{1238}.

So, we repeated the previous fitting procedure, after the determination of the linear part of the background and that of the peak positions as discussed above, with the following free parameters :

- the γ-line areas (8),
- the " x "-value (1),
- the 2202 ke V level life-time τ (1),
- the $E 2 / M I$ mixing ratio δ for the $2171 \mathrm{keV} \gamma$-line (1),
- the areas $S_{1 z o s}$ of the $120.5 \mathrm{keV} \gamma$-lines (4),
- the ratio $S_{1222} / S_{1229}(1)$,
- the areas S_{1238} of the $1238 \mathrm{keV} \boldsymbol{\gamma}$-lines (4).

The fit is excellent as illustrated in Fig.4. The resulting parameters do not differ significantly from the previous one and give us additional confidence in the background-independence of our result :

$$
\begin{array}{rlrll}
\delta & = & +0.74 & \pm & 0.29 ; \\
\tau & = & 38.2 & \pm 2.8 \mathrm{fs} ; \\
x & = & +0.254 & \pm 0.034 ; \tag{29}\\
S_{1222} / S_{1229} & = & 0.106 & \pm & 0.014 ; \\
g_{\mathrm{P}} / g_{\mathrm{A}} & = & +3.4 & \pm & 1.0(C A) .
\end{array}
$$

As in the previous fit, the result would be more precise if we would know the δ-value from any other independent experiment. The slight dependance of the results on the δ-value is illustrated in Table 4.

Table 4. 1229 keV and 2171 keV r -lines; composite background.					
δ	$\begin{gathered} \tau \\ {[\mathrm{fs}]} \end{gathered}$	\boldsymbol{x}	$\begin{aligned} & g_{p} / g_{A} \\ & (C A) \end{aligned}$	χ^{2}	
				full	norm.
-0.20	73 ± 6	+0.242 ± 0.072	+3.0 ± 2.2	659.4	0.882
-0.10	69 ± 4	+0.299 ± 0.072	+4.7 ± 2.1	646.8	0.865
0.00	62 ± 3	+0.315 ± 0.064	+5.2 ± 1.8	636.0	0.850
+0.10	55 ± 3	$+0.308 \pm 0.055$	$+5.0 \pm 1.6$	628.3	0.840
+0.20	49 ± 2	$+0.294 \pm 0.047$	$+4.6 \pm 1.4$	623.5	0.834
+0.40	42 ± 2	+0.269 ± 0.038	$+3.8 \pm 1.1$	619.9	0.829
+0.60	39 ± 3	$+0.256 \pm 0.035$	$+3.4 \pm 1.1$	619.4	0.828
+0.80	38 ± 3	+0.255 ± 0.034	$+3.4 \pm 1.0$	619.4	0.828
+1.00	39 ± 3	$+0.259 \pm 0.035$	$+3.5 \pm 1.1$	619:4	0.828
+1.20	41 ± 2	$+0.266 \pm 0.037$	+3.7 ± 1.1	619.7	0.829

It should be noted that the compilated background visible under the 1229 keV line (Fig.4a, 4b) can be suppressed using a $\gamma-\gamma$ coincidence requirement; this approach waa followed by D.S.Armstrong et al., in a TRIUMF-experiment similar to the one reported here [57].

4.5 1229 and 2171 keV -lines; composite background including the contribution of the ${ }^{29} S i(\mu, \nu n)$ reaction.

Before concluding, we discuss briefly the eventual impact of contributions from the contaminant ${ }^{29} \mathrm{Si}(\mu, \nu n)$ reaction. As it ${ }^{\mathrm{w}} \mathrm{was}^{\text {mitentioned above, the contribution of this reaction is }}$ unknown, but if the corresponding γ-yields for ${ }^{22} \mathrm{Si}$ and ${ }^{29} \mathrm{Si}$ are similar - then the contribution $\boldsymbol{\xi}$ of the "isosceles triangle" to both the 1229 and the $2171 \mathrm{keV} \gamma$-lines should be within several per cent. In order to investigate the impact of this value on the results, the previous fitting was repeated with the same free parameters but with a non-zero fixed value for ξ. The half-width of the "triangle" was eatimated from 1719, 2210 and 2941 keV linea :

$$
\begin{align*}
& \Delta_{1229}=8.8 \mathrm{keV}, \\
& \Delta_{1271}=15.6 \mathrm{keV} . \tag{30}
\end{align*}
$$

The results are shown below (Table 5).

$\boldsymbol{\xi}$	$\boldsymbol{\delta}$	[fs]	\boldsymbol{x}	$\begin{aligned} & g_{\mathrm{r}} / g_{\mathrm{A}} \\ & (\mathrm{CA}) \end{aligned}$	${ }^{2}$	
					full	norm.
0.00	+0.74 ± 2.90	38 ± 3	+0.254 ± 0.034	+3.4 ± 1.1	619.4	0.832
0.05	+0.62 ± 0.71	38 ± 5	$+0.263 \pm 0.043$	$+3.6 \pm 1.3$	613.6	0.825
0.10	$+0.59 \pm 0.27$	38 ± 5	$+0.272 \pm 0.043$	$+3.9 \pm 1.3$	609.1	0.819
0.15	$+0.54 \pm 0.41$	38 ± 6	+0.281 ± 0.047	$+4.2 \pm 1.4$	605.7	0.814
0.20	$+0.52 \pm 0.35$	38 ± 6	$+6.290 \pm 0.050$	$+4.4 \pm 1.5$	8003.1	0.811

As it can be seen from the Table 5 , a slight $5-10 \%$ contribution from the ${ }^{29} \mathrm{Si}(\mu, \nu n)$ reaction would not be crucial but a large value would significantly modify our results. To take this eventual modification into account, one has to measure the relative yield of the 1398 keV and $1229,2171 \mathrm{keV} \gamma$-quanta with an enriched ${ }^{29} \mathrm{Si}$ target and determine the precise shape of these "triangular" lines.

5 Discussion and conclusions

- Our most reliable results are the enes obtained in the analysis disctssed in 4.4 and reported in Table 4. We measured parameter $x \equiv M_{1}(2) / M_{1}(-1)$ (Equ.29). Its translation to g_{p} / g_{A} requires however the use of a nuclear model. This feature is illustrated in Fig. 5 where we compare the relation between $g_{\mathrm{P}} / g_{\mathrm{A}}$ and x obtained in a realistic nuclear model (CA, ref.[36]) to the one obtained in the Fujii-Primakoff approximation (FPA; Equ.23) which becomes model-independent neglecting all matrix elements other then the leading [101] one.
In Fig. 5 we show also the measured value of x (Equ.29) and the value of g_{p} / g_{A} deduced from it evaluating the correction-terms using a realistic nuclear model (CA). Taken at face-value, this result would indicate a sizcable ($3.4 \pm 1) / 7 \simeq(50 \pm 14) \%$ quenching of $g_{\mathrm{F}} / g_{\mathrm{A}}$ compared to its value predicted by PCAC (Equ.2). As, however, the use of the $F P$-approximation results in no quenching (cfr. Fig.5), one has to investigate the sensitivity of this intriguing result to the model used by the author of ref.[36] (CA). A group of theoreticians in JINR, Dubna is actually undertaking this task.
- To reduce the number of free parameters and thus to improve precision on the parameter x and make it more reliable two additional independent measurements should be done :

1. The measurement of the $\boldsymbol{\gamma}$-spectrum in μ-captune by an enriched ${ }^{29}$ Si target. Such a relatively short measurement would provide the yield as well as the precise line shape of the 1229 and $2171 \mathrm{keV} \gamma$-lines emitted in the ${ }^{29} \mathrm{Si}(\mu, \nu \mathrm{n})$ reaction with respect to the $1398 \mathrm{keV} \gamma$-line from the ${ }^{29} \mathrm{Si}(\mu, \nu)$ reaction. Kinowing the detector efficiency and comparing these data with the $1398 \mathrm{keV} \mathrm{\gamma} \boldsymbol{\gamma}$-line observed in this work, one could extract the precise ξ - and Δ-values of the "isosceles triangular" contributions discussed in section 4.5. We should stress that our result (Equ.29, Fig.5) neglects this contribution ($\boldsymbol{\xi}=0$) and one has to verify the reliability of this assumption.
2. The measurement of the angular distribution of the prompi 1229 and 2171 keV γ-quanta in the ${ }^{28} \mathrm{Mg}\left({ }^{3} \mathrm{He}, \mathrm{p}\right)$ reaction. The excited ${ }^{28} \mathrm{Al}^{2202}$ nucleus obtained

3. Some of the relevant excited levels of ${ }^{28} \mathrm{Al}$ populated in muon capture by ${ }^{28} \mathrm{Si}$.

$1 . .6$ - Plastic scintillators
A,B - Moveble HP Ge $\boldsymbol{\gamma}$-detectors
Hard trigger :

rrorr $\left(\gamma_{A}\right):=A \cdot \overline{4} \cdot \overline{5}: \quad\left(\gamma_{\mathrm{B}}\right):=\mathrm{B} \cdot \overline{\mathbf{4}} \cdot \overline{6}$
\longrightarrow (eood $\boldsymbol{\gamma}_{\mathrm{A}, \mathrm{B}}$): $=\left(\boldsymbol{\gamma}_{\mathrm{A}, \mathrm{B}}\right) \cdot($ gate $)$
4. The experimental set-up and trigger-logic.

5. The cumulative γ-spectrum i.e. the sum of all "good γ " measured by both Ge detectors in both positions during 130 hours of iotal measuring time.

6. The best fit to the 1229 keV and $2171 \mathrm{keV} \gamma$-lines under conditions discussed in section 4.4. Some slight systematic excess of the deviations can be attributed to the nonGaussian nature of the response function.

7. Dependence of $g_{\mathrm{P}} / g_{\mathrm{A}}$ on the parameter x measured in this experiment ($C A$: evaluation of ref.[36], FPA : nuclear model independent approximation; cfr. text). Our reault (cfr. 4-4) is shown as well as the resulting value, to be compared to the PCAC-prediction.
in this reaction [58. 59] or a similar one would be produced with a non-zero alignment and, therefore, comparing the angular distribution of these ($\mathrm{M} /$) and ($M 1+\delta \cdot E Q$) quanta. one could extract the δ-value of the 2171 hicl'transition. This would improve the precision on the parameter \boldsymbol{r} (efr. section 4.t).

- More generally, in order to reduce the eventual systematic errors and to minimize both the correlated and the uncorrelated background. the experimental set-up should be improved in various respects:

1. it should be complemented with magnetic coils to use of muon spin rotation instead of moving the 9 -detector (this would allow to measure various $\overline{\mathbf{P}}$-values simultaneously in the same experiment and to keep the beam-target-detector geometry constant):
2. neither shielding nor bram collimation with heary materials should be used to reduce the uncorrelated neutron flux producing the (n, n) reaction in the Ge detectors;
3. the active shielding of the Ge detectors should be improverl to make this shielding more effertive against both the Michel-electrons and the neutrons and thus to reduce the correlated background.

6 Acknowledgments

We would like to thank the staff of JINR Phasotron and Beangroup for their support during the experiment, Dr. T.Mamedov for his mSK-measurements and Dr. V.Zinov for fruitful discussions. We are indebted to Dr. V.Sandukovsky and A.Revenko who prepared HP Ge detectors.

References

[1] H.Primakof, Rev. Mod. Phys. 31 (1959) 802.
[2] Particle Data Group, Phys. Rev. D45 (1992) VIII.9.
[3] M.L.Goldberger and S.B.Treiman, Phys. Rev. 111 (1958) 354.
[4] L.Grenacs, Aun. Rev, Nucl. Part. Sci. 35 (1985) 455.
[5] G.Bardin ct al., Nucl. Phys. A352 (1981) 365;
Phys. Lett. 104B (1981) 320.
[6] M.Hasinoff, private communication.
[7] L.I.Ponomarev, Pror. of the Im. Conf. on Muonic Aloms and Moleculew. Monte Verita, Birkhanser Verlag, Basel (1993) 129; Nucl. Phys. A384 (1982) 302.
[8] S.Wycech, Nucl. Phys. B14 (1969) 133.
[9] M.Ericsson, Prog. Nucl. Part. Phys. 1 (1978) 67.
[10] V.V.Balashov, G.J.Korenman, R.A.Eramzhyan, "Pogloschenie mezonov atomnymi yadrami". Atomizdat. Moscow. 1978.
[11] P.Desgroland and P.Guichon. Phys. Rev. C19 (1979) 120.
[12] M.Lutz, S.Klimt and W.Weise, Nurl. Phys. A542 (1992) 521.
[13] E.G.Adelberger et al., Phys. Rev. Lett. 67 (1991) 3658.
[14] E.K. Warburton, Phys. Rev. C43 (1991) 233.
[15] K.Kubodera and M.Rho, Phys. Rev. Lett. 67 (1991) 3479.
[16] L.Ph.Roesch et al., Phys. Rev. Lett. 46 (1981) 1507.
[17] M.Fukui el al., Phys. Lett. B132 (1983) 255.
[18] Y.Kuno et al., Phys. Iett. B148 (1984) 270.
[19] A.Frischknecht ef al., Phys. Rev. C32 (1985) 1506.
[20] M.Dobeli et al., Phys. R.v. C37 (1988) 1633.
[21] D.Armstrong et al., Phys. Rev. C40 (1989) 1506.
[22] D.Armstrong et al., Phys. Rev. C43 (1991) 1425.
[23] D.Armstrong et al., Phys. Rev. C46 (1992) 1094.
[24] H.W.Fearing and M.S.Welsh, Phys. Rev. C46 (1992) 2077.
[25] N.P.Popov, Zh. Eksp. Teor. Fiz. 44 (1963) 1679.
[26] G.M.Bukat and N.P.Popov, Zh. Eksp. Teor. Fiz. 46 (1964) 1782.
[27] A.P.Bukhvostov and N.P.Popov, Phys. Lett. B24 (1967) 487.
[28] Z.Oziewicz and A.Pikulski, Arta Phys. Pol. 32 (1967) 873.
[29] M.Morita and A.Fujii, Phys. Rev 118 (1960) 606.
[30] V.V.Balashov and R.A.Eramahyan, Atomic Energy Review, (Vienna), 5 (1967) 3.
[31] R.A.Eramzhyan, Proc. of III Int. Symp. on Weak and Electromagnetic Interaction (WEIN-92), Dubna,Russia, June 16-22, 1992 (World-Scientific, Singapore, 1992) 282.
[32] A.Fujii and H.Primakoff, Nuo. Cim. 12 (1959) 327.
[33] H.Primakoff, Elementary-particle aspects of muon decay and muon capture. In: "Muon Physics", ed. V.W.Hughes, C.S.Wu. N.-Y., Academic Press, v. 2 (1975) 3-48.
[34] G.H.Miller et al., Phys. Rev. Lett. 29 (1972) 1194.
[35] B.R.Holstain, Phys. Rev. C29 (1984) 623.
[36] S.Cifechanowicz, Nucl. Phys. A. 267 (1976) 472.
[37] R.Parthasarathy and V.N.Snulhar. Phys. Rev. C18 (1978) 1796.
[38] R.Parthasarathy and V.N.Sridhar. Phys. Rev. C23 (1981) 861.
[39] L.(Grenacs e7 al. Nucl. Instr. and Meth. 58 (1968) 164.
[40] J.Lindhard. M.Scharff, H.E.Schiott. Dansk. Víd. Selsk. Mat.-Fys. Medd. 33 (1963) 3.
[41] A.E.Blaugrund, Nurl. Phys. 88 (1966) 5017.
[42] K.B.Winterborn, Nucl. Phys. A 246 (1975) 293.
[43] S.Kalbitzer ct al., Z. Phys. A278 (1976) 223.
[44] I.Kh.Lenberg, A.A.Pasternak, Sovrememye metody yadernoi spekiroskopii. Leningrad. "Nauka", 1985. 3.
[45] M.K.Georgieva ft al., Elem. (hast. i At. Yadra, 20 (1989) 9307.
[46] . G.H.Miller ef al. Phys. Rev. C6 (1972) 487.
[47] H.J.Evans, Nucl. Phys. A207 (1973) 379.
[48] L.Ph.Roesch of af., Phys. Lett. B107 (1981) 31.
[49] V.S.Evseev, Depolarization of Negative Muons and Interaction of Mesonic Atoms with the Medium. In : "Muon Physics". ed. V.W.Hughes. ('.S.Wu. N.-Y.. Academir Press. v. 3 (1975) 235-298.
[50] P.M.Fadt, "Energy levels of $A=21-44$ nuclei", Nucl. Phys. A521 (1990) 1.
[51] M.P.Balandin et al., JINR, Dubna. 9-90-435 (1990).
[52] V.G.Egorov ef al., JINR, Dubna, P6-91-430 (1991).
[53] K.C.Chung rt al., Phys. Rev. C2 (1970) 139.
[54] R.L.Bunting and J.J.Kraushaar, Nucl. Instr. and Meth. 118 (1974) 565.
[55] G.Braun, A.Bockisch, W.Neuwirth, Nucl. Instr. and Meth. 224 (198.1) 112.
[56] A.Shinohara et al., KEK Preprint 93-132 (1993); (to be published in Nucl. Instr. and Meth. B).
[57] D.S.Armstrong of al., Report at. Int. Workshop on Low Earrgy Mhon Science, April 4-8, 1993, Santa Fe, NM.
[58] D.O.Boerma and Ph.B.Smith, Plys. Rev C4 (1971) 1200.
[59] D.F.Start et al., Nuel. Phys. A206 (1973) 207.

Received by Publishing Department
 on September 28, 1994.

[^0]: *The work was supported in part by the Russian Foundation for Fundamental Research

[^1]: ${ }^{2}$ Thia value was obtained amuming for the $\lambda_{\text {ortho-gere }}$ tranaition rate the experimental value of ($4.1 \pm$ 1.4) $\cdot 10^{4}$ as given in [5]. It was, however, pointed out by M.Hamoni[6] that the use of the theoretical one ($\lambda_{\text {erthe-para }}=7.1 \cdot 10^{4}$; Ref.[7]) would result in $g_{f}^{\text {arf }}\left(0.88 m_{\mu}^{2}\right)=-3.8$.

[^2]: ${ }^{3}$ The number of free parameters for each contribution is shown in parentheses.

