

объединенный институт ядерных исследований

 дубна

 дубна}

B.Gleisberg, B.M.Ly, B.Gorski

INVESTIGATIONS OF THE SEPARATION
OF Np, Pa, U, Th AND REE
IN GEOLOGICAL SAMPLES

Submitted to Actinides-89 International Conference, Tashkent, USSR, September 24-29, 1989

Introduction

The quantitative determination of trace amounts of Th, U and REE in very depleted rocks is necessary to get information about genetic processes in the investigated area. U, $T h$ and REE are used as geochemical indicators. On the other hand, the knowledge of the contents of these elements in natural materials is of importance when they are rich enough for their use as raw materials. We treated two types of geological samples which differ oonsiderably in their origin and in the $U, T h$ and REE contents.
Table 1. REE, U and $T h$ oontents in geological samples

- Material

I
II
Element Peridotitic rocks / $1,2 /$ Bastnaesites Monazites /3,4/

\sum REE	$3-15 \mathrm{ppm}$	$73-76 \%$	$56-75 \%$
U	$0.04-0.8 \mathrm{ppm}$	$0.02-0.1 \%$	$0.02-0.35 \%$
Th	$0.15-0.7 \mathrm{ppm}$	$0.1-1 \%$	$0.5-10 \%$

It is clear that the analytical methods and chemical separation procedures should be very different for these two types of materials.

PART I

Radiochemical Neutron Activation Analysia (RNAA)

of Microamounts of REE, U and Th in Peridotitic Hocks
Trace amounts of REE, U and T can be analysed by RNAA. Only effective isolation of the REE-group, of NP-239 and Pa-233 from the interfering isotopes resulting from large amounts of $\mathrm{Fe}, \mathrm{Cr}, \mathrm{Ni}$ and Sc-microamounts allows precise determination of U-, Th- and REEcontents.

With regard to above-mentioned demands two different schemes of separation were tested and compared:
A) Cation exchange and solvent extraction
B) Extraction Chromatography

To estimate the suitability of the described separation schemes for the determination of REE in such types of samples being rich in or Th but poor in REE and thus demanding separation from U or Th before irradiation, the behaviour of U and $T h i s$ presented in this paper as well.

I. Experimental

Determination of Digtribution Coefficients

Distribution coefficients in different systems of examination were obtained under stationary conditions by shaking the reagents for 15 minutes at room temperature. The behaviour of $\mathrm{Sc}, \mathrm{REE}, \mathrm{Np}$ and $P a$ as well as of U and $T h$ was controlled by radicactive tracera

1. 100 mg of cation exohange resin Wofatit KPS were shaken with 8 ml of $\mathrm{HCl} / \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$-solution oontaining Ce-139, Y-88 and Lu-173. After centrifugation aliquots of initial and equilibrium solution were moasured using a Ge(Li)-deteotor, and K_{d} calculated.
2. Extraction experiments with 1.5% TOPO/cyclohexane were carried out by shaking each 1.5 ml of organic and of aqueous phase containing $\mathrm{Np}-239$, $\mathrm{Pa}-233$ or $\mathrm{Sc}-44 / 46$ in HNO_{3}. For Np -extraction 0.1 ml of $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%)$ was added. The γ-activity was measured in aliquots of two phases.
3. Distribution coefficienta for the investigation of the extraction-chromatographic method were determined by using following procedure: A 0.07 M solution of diethylenetriamine-pentaacetic acid (DTPA) in 1 M lactic acid, containing some quantity of HNO_{3} and a salting out reagent (Cu^{2+}) was added to the nitrate of the element studied, labelled by the corresponding radioactive tracer (Np-239, Pa-233, Sc-44/46, Y-88, Tm-170, U-237, and Th-231). After complete dissolution the aqueous phase was shaken with an equal volume of TOPO in berizene ($0.06-0.1 \mathrm{M}$).

Investigation of Separation Schemes

The separation schemes were tested in the presence of GDR Standard Rock ZGI-Serpentinit SW after sample decomposition with a mixture of $\mathrm{HF} / \mathrm{HNO}_{3} / \mathrm{HClO}_{4}$ and adding $\mathrm{Np}-239$, $\mathrm{Pa}-233, \mathrm{Sc}-44 / 46, \mathrm{Y}-88$, $\mathrm{Tb}-\mathrm{I} 60$ and Lu-173. Some chromatographic experiments for sorption and desorption of U and Th were carried out using $U-237$ and Th-231 without any rock matrix.
A) Cation Exchange and Solvent Extraction

The first step - sorption, purification and desorption of REE - was realized in a cation exchange column: Wofatit KPS (length $=80 \mathrm{~mm}$, diameter $=8.5 \mathrm{~mm}$, particle size $=0.2-0.4 \mathrm{~mm}$). The decomposed sample was fully dissolved in a small amount of 0.5 MHCl and injected in the column. After washing with $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} 10.5 \mathrm{M} \mathrm{HCl}$ and 2 M HCl the REE-group was eluted with $6 \mathrm{M} \mathrm{HNO}_{3}$.
B) Extraction Chromatography

TOPO was used as a fixed phase, 20% on supporting agent Wofatit EP-60 (column: length $=40 \mathrm{~mm}$, diameter $=3 \mathrm{~mm}$, particle size of EP-60 $=0.1-0.2 \mathrm{~mm} / 5 /$)

120 mg of decomposed rock sample were dissolved in 0.3 ml $5.5 \mathrm{MHNO}_{3}$ and a mixture of $0.07 \mathrm{M} \mathrm{DTPA}$, salting-out agent ($0.5 \mathrm{~m} \mathrm{Cu}^{2+}$ or $0.2 \mathrm{M} \mathrm{Fe}^{2+}$) was added. This solution was injected in the extraction chromatographic column. The extractant was washed with 3 ml of a pure Cu-DTPA/lactic acid mixture. After removing the salting out reagent with $3 \mathrm{MNH}_{4} \mathrm{NO}_{3}$ separation of REE group, Se and Pa was realized.

RNAA of Peridotitic Rocks and Meteorites by Cation Exchange

 and Solvent ExtractionThe detalled procedure is described in /1,2/.
Sample and standard materiala were irradiated in the Rossendorf Research Reactor for $10-15 \mathrm{hrs}$ at $3-5 \cdot 10^{13} \mathrm{n} / \mathrm{cm}^{2} \mathrm{~s}$. After allowing sample activity to decay for $24-36 \mathrm{hr}$ sample dissolution and separation on Wofatit KPS were carried out. To control the chemical yield Y-88, Ce-144 and Np-238 were used. The evaporated REE fraction was counted using a Ge(Li)-detector.

The Np and Pa containing fraction of the geological sample was evaporated. After destruction of oxalic acid Pa and Np were extracted from HNO_{3}-aolution (10 ml) with 1.5% TOPOkyclohexane (10 ml) in the presence of $\mathrm{H}_{2} \mathrm{O}_{2}$.

I. Resulta and Discussion

A. Cation Exchange and Solvent Extraction

The diatribution coefficienta of some REE in 0.1 M oxalic acid as a function of HCl-concentration on Wofatit KPS are represented in fig. 1. The K_{d}-values are high enough for quantitative sorption of all REE from $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} / 0.5 \mathrm{M} \mathrm{HCl}$. Low HCl concentrations increase the sorption of REE.

The cation exchange separation scheme is presented in fig. 2. Most of the interfering elements pass the resin immediately. Washing with $2 \mathrm{M} H C l$ affects the good purification of REE from Co, Cr and other isotopes. The radiochemically almost pure REE-fraction is eluted from resin with $6 \mathrm{MHNO}_{3}$. The immediate pasaage of Np and Pa demands, as a second step, their selective separation from nearly complete matrix. This is achieved by extraction with TOPO/cyclohexane

Fig. 1. Distribution coefficients of Ce, Y and $L u$ on Wofatit KPS in $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} / \mathrm{HCl}$ as a function of HCl - concentration.

Fig. 2. Behaviour of REE, Np, Pa, Sc, $U, T h$ and other elemente during aeparation on Wofatit KPS.

Fig. 3. Influence of HNO_{3}-ooncentration on the distribution coefficients of Np (IV, V, VI), Pa and Sc Organic phase: 1.5% TOPO in cyclohexane.
from $6-8 \mathrm{MHNO}_{3}$ in the presence of $\mathrm{H}_{2} \mathrm{O}_{2} / 6 /$. The organic phase contains, in addition to the radionuclides $\mathrm{N} p$ and Pa , small Sc-46 -activities.

Detailed investigations of the extraction behaviour of Np , Pa and Sc as functions of the concentration of nitric acid have shown that optimal conditions for separation of $N p$ and $P a$ from $S c$ are obtained uaing $8 \mathrm{MHNO}_{3}$ (fig. 3). It must be mentioned that the K_{d}-value of $N p$ is a total K_{d} of $N p$ (IV, $V, V I$). When the relation between the different valencies of $N p$ is another one than in this experiments, other values of distribution coefficients are obtained. By reextraction of the organic phase with 6-8 M HNO 3 Np-distribution
coefficients >300 were observed. This underlines that there are no losses of Np by washing the organic phase with 6-8 M nitric acid for its purification from interfering matrix isotopes.

With regard to the applicability of the cation exchange method for preliminary U - and Th-separation from REE-microamounts the following conclusions can be drawn:

- U immediately passes the resin from $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} / \mathrm{HCl}-\mathrm{sol}$ ution and the REE-fraction contains no U.
- Th is slowly eluted with $6 \mathrm{M} \mathrm{HNO}_{3}$, thus partially accompanying the REE-fraction.
- If a quantitative REE-Th separation is necessary, Th can be removed from the resin by washing with 40 ml of $4 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ before REE desorption.

B. Extraction Chromatography

Distribution coefficients of Np (IV, V, VI), Pa, Sc as well as REE, U and Th as functions of the concentration of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ can be taken from fig. 4. For Cu concentrations from $\left.0.1-1 \mathrm{M} \mathrm{Cu(NO}_{3}\right)_{2}$ nearly all K_{d}-values increase with increasing Cu^{2+}-concentration. The K_{d} of Pa does not vary at concentrations from $0.5-1 \mathrm{M} \mathrm{Cu}^{2+}$. If the Cu-ooncentration is more than 1 M , the distribution coefficients of Sc and Np continue to grow while the K_{d} values of REE, $U, T h$ and Pa begin to decrease. The total K_{d}-value of $N p$ (IV, $V, V I$) reaches its maximum when the concentration of the salting-out agent reaches 2 M . All K_{d}-values are high enough for the quantitative sorption of elements on the chromatographic column using $0.5 \mathrm{M} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$. The extraction chromatographic experiments, however, indicated that Np is only partially sorbed on the column. This can be connected with different valences of Np as confirmed by reextraction results, and also by a second - step extraction of the aqueous phase.

Table 2. Distribution coefficients of Np on 0.1 M TOPO/benzene

Conditions	K_{d}
first extraction (2.5 M Cu-DTPa, lact.ac.)	5.33
second extraction of aqueous phase	
(2.5 M Cu-DTPA, lact.acid)	0.07
reextraction with 0.5 M Cu -DTPA, lact.ac.)	>200

Fig. 4. Dependerice of the saltingout agent concentration on the distribution coefficients of Y, $\mathrm{Tm}, \mathrm{Sc}, \mathrm{Pa}, \mathrm{Np}(\mathrm{IV}, \mathrm{V}, \mathrm{VI}), \mathrm{U}$ and Th
organic phase: 0.1 M TOPO in benzene for Sc, $N p$, Y, Tm
0.06 M TOPO in
benzene for Th, Pa 0.01 M TOPO in benzene for U
aqueous phase: Cu, DTPA, lact.acid, $0.3 \mathrm{M} \mathrm{HNO}_{3}\left(\mathrm{C}_{\mathrm{Th}}=7.710^{-4} \mathrm{M}\right.$, $\mathrm{C}_{\mathrm{U}}=8 \quad 10^{-4^{3}} \mathrm{M} \quad \mathrm{Th}_{\mathrm{Sc}}=3.4 \quad 10^{-2} \mathrm{M}$,

- Sc without carrier)

However, it must be taken into account that such a complex matrix
as a geological sample may have a great influence on the behaviour of trace elements.

Fig. 5 represents the extraction chromatographic separation of REE, Pa and Sc and the behaviour of other elements using a complexing agent and $0.5 \mathrm{M} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ as a salting-out reagent. A very good separation is achieved. Partially extracted $N p$ is eluted together with Sc with $6 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$.

The results published in /5/ allow the conolusion that a number of most abundant macoamounts present in peridotitio rocks, suoh as $\mathrm{Co}, \mathrm{Ni}, \mathrm{Cr}, \mathrm{Fe}, \mathrm{Al}$, and Mn , can automatically berve as salting-out agents for REE- and Sc-extraction.

Fig. 5. Extraction chromatographic separation of REE, Pa, Sc and cther elements on TOPO from $0.5 \mathrm{M} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}, 0.07 \mathrm{M} \mathrm{DTPA}$, 1 M lact. acid - 100 mg Serpentinit SW

If $0.2 \mathrm{M} \mathrm{Fe}^{2+}$ was used as a salting-out reagent (instead of 0.5 MCu), the results of extraction chromatography were not as good. The partial coextraction of Fe causes great losses of REE and Sc (no losses of Pa) by injection of the sample Serpentinit SW .

The Fe-amounts of this rock ($5.18 \%=1.710^{-2} \mathrm{~mol} / 1$) do not interfere with the sorption of $\mathrm{Sc}, \mathrm{REE}$ and Pa if Cu is added as a salting-out agent.

Conoerning the applicability of the extraction chromatography with TOPO in the presence of oomplexing agents for the separation of REE from U and $T h$ it can be estimated that this method allows the separation of U and Th from REE. It should be noted that great amounts of U and $T h$ compete with the sorption of REE when column capacity is not sufficient. The capacity is $2.510^{-5} \mathrm{Mol}$ Th and 3.510^{-5} Mol U for the column used ($1.110^{-4} \mathrm{Mol}$ TOPO). The presence of eaoh 0.5 mg Th and $0.5 \mathrm{mg} U$ does not interfere with the REEsorption on the chromatographic column, while the presence of each 1.0 mg Th and $1.0 \mathrm{mg} U$ results in losses of $12-18 \%$ of light (Ce) and heavy (Lu) REE.

U and Th are washed out from the column completely by $4-6 \mathrm{M}$ phosphoric acid together with Sc (fig. 5), or by $2 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$.

I. Conclusions

The separation scheme A has already been successfully used for the determination of ppm- and ppb-contents of REE, U and $T h$. The second step (solvent extraction) is very effective for the isolation of Np and Pa from matrix constituents and can be carried out quickly.

The separation scheme B is expected to be applicable to determine the REE- and Th-contents in depleted rocks. Its advantage is the efficient purification of the REE-fraction from Sc and Pa in a
one-cycle process with immediate removal of interfering matrix components.

For RNAA of samples with unknown matrix the chemical yield should always be controlled using radioindicators not interfering with the analysis of the elements being investigated.

PART II

Separation of Th, U and REE in Monazites

Instrumental nuclear analytical methods allow one to determine some light REE (LREE) and Y in Bastnaesites and Monazites. Complete analysis inoluding heavy REE (HREE) requires their separation from matrix components and from large amounts of LREE. Preconcentration of HREE by extraction chromatography with HDEHP demands preliminary separation of $T h, U$ and other elements.

II. Experimental

The behaviour of U and $T h$ during the separation steps was observed using x-ray fluorescence analysis with a ${ }^{109}$ cd-source. Particular investigations aimed at studying the sorption and desorption of U and $T h$, were oontrolled by ${ }^{231} \mathrm{Th}$ and ${ }^{237} \mathrm{U}$ produced by γ-irradiation using the miorotron $M T-25$ in the reactions ${ }^{238} \mathrm{U}_{\mathrm{U}}(\gamma, \mathrm{n}){ }^{237} \mathrm{U}$ and ${ }^{232} \mathrm{Th}(\gamma, \mathrm{n}){ }^{231} \mathrm{Th}$. Fig. 6 describes the separation scheme of Monazite samples. After the sample decomposition (100200 mg) with a mixture of conc. acids $\mathrm{HF}, \mathrm{HNO}_{3}, \mathrm{HClO}_{4}(1: 1: 1.5)$ and evaporation to dryness the residue was dissolved in 11 M HCl (2540 ml).

The sample solution passed an anion exchange resin Dowex 1×8 (50-100 mesh), and Fe, Zr and U were retained. The REE and Th contain-

Fig. 6. Separation scheme for the analysis of T and all REE in Monazites.

Fig. 7. The influence of $\mathrm{H}_{3} \mathrm{PO}_{4}$-concentration on Th measuring effectivity using x-ray fluorescence speotroscopy.
ing the effluent were precipitated with $\mathrm{NH}_{4} \mathrm{OH}$.
After dissciution of the precipitate in $7-9 \mathrm{M} \mathrm{HCl}(10 \mathrm{ml})$ Th-sorption was accomplished on a column where HDEHP was used as a fixed phase (20% HDEHP on the supporting agent Wofatit EP-60, particle size of EP-60 $=0.1-0.2 \mathrm{~mm}$). When the sample has passed the column, $60 \mathrm{ml} 7-9 \mathrm{M} \mathrm{HCl}$ were still necessary to guarantee that no REE are retained on the column.

The REE-solution was evaporated and dissolved in $0.1-0.4 \mathrm{M} \mathrm{HNO}_{3}$ to pass a second HDEHP / EP-60 - oolumn for separation LREE from HREE using a gradient of HNO_{3}-conoentration.

The determination of individual REE contents was realized after separation of aliquots of each fraotion (HREE, LREE) by ion exchange chromatography on Aminex A5 with $\alpha-\mathrm{Hib}$ at $\mathrm{pH}=4.55$ (column: length $=110 \mathrm{~mm}$, diameter $=3 \mathrm{~mm}$, particle aize $=13-14 \mu \mathrm{~m}$). The REE contents were determined by titration of the Arsenazo (III)-REEcomplex with EDTA. This method is described in detail in /7/. After sorption of $T h$ on the first HDEHP-column Th was desorbed with $6 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}(50 \mathrm{ml})$. The Th contents of Monazites could be determined using x-ray fluorescence spectroscopy (${ }^{109}$ Cd-source, Si(Li)-deteotor $30 \mathrm{~mm}^{2}$) in an aliquot of the phosphoric acid solution (1.5 ml) in polyethyelene viala. The influence of the $\mathrm{H}_{3} \mathrm{PO}_{4}$-concentration on the Th measuring effectivity is shown in fig. 7.

After sample decomposition and dissolution with 11 MHCl an insignificant residue remained. X-ray analyais has shown that the residue did not oontain any $U, T h$ and LREE, however, it oontained Ba, Zr and T 1 . Particular investigations after fusion the residue with $\mathrm{Na}_{2} \mathrm{O}_{2}$ have proved that it contains no REE.

II. Results and Discussion

In table 3 the REE contents found in three Monazite samples in comparison with literature values are listed.
Table 3. Felative REE contents in investigated Monazite samples compared with literature values

REE oxides	$14 /$	Contents, \% average of 3 samples
$\mathrm{La}_{2} \mathrm{O}_{3}$	23	243
$\mathrm{Ce}_{2} \mathrm{O}_{3}$	45	42.8
$\mathrm{Pr}_{2} \mathrm{O}_{3}$	5.0	5.5
$\mathrm{Nd}_{2} \mathrm{O}_{3}$	18.4	17.1
$\mathrm{Sm}_{2} \mathrm{O}_{3}$	2.3	2.3
$\mathrm{Eu}_{2} \mathrm{O}_{3}$	0.07	0.16
$\mathrm{Gd}_{2} \mathrm{O}_{3}$	1.7	1.6
$\mathrm{~Tb}_{2} \mathrm{O}_{3}$	0.16	>0.16
$\mathrm{Dy}_{2} \mathrm{O}_{3}$	0.52	-
$\mathrm{Y}_{2} \mathrm{O}_{3}$	2.0	-
$\mathrm{Ho}_{2} \mathrm{O}_{3}$	0.09	0.08
$\mathrm{Er}_{2} \mathrm{O}_{3}$	0.13	0.19
$\mathrm{Tm}_{2} \mathrm{O}_{3}$	0.013	0.33
$\mathrm{Yb}_{2} \mathrm{O}_{3}$	0.061	0.053
$\mathrm{Lu}_{2} \mathrm{O}_{3}$	0.06	0.036

The results are in good agreement with the literature values. The experiments have shown that the $T h$ sorption on the HDEHP column depends on kinetic factors. The determination of the capacity of different sorption rates shows the kinetic influence (Table 4). Table 4. The influence of the flow rate of Th-sorption on the capacity of the sorbent

Rate $\mathrm{ml/cm}^{2} \mathbf{s}$	Capacıty Mol $\mathrm{Th} / \mathrm{Mol} \mathrm{HDEHP}$
55	0.068
10	0.072
6	$\mathbf{1 4}$
3	0.089
0.06	0.119

These results show that at very low sorption rates the theoretical capacity of the sorbent can almost be achieved. For a quantitative Th sorption on the HDEHP/EP-60 column low flow rates are necessary.

The Th contents obtained in three Monazite samples are Iisted in Table 5 compared with measurements of natural radioactivity $/ 8 /$. Table 5. Comparison of results of Th contenta in Monazites using different analytical methods

Sample	Th content, $\%$ RFA after chemical separation	Meas, of natural radioacti- vity /8/
1	5.36	5.55
3	3.60	3.66

The Th contents obtained by x-ray fluorescence analysis after radiochemical separation are in good agreement with those measured by natural radioactivity of the samples.

II. Conclusions

The method described allows a quick separation of large amounts of Th, U and LREE from sinall amounts of HREE. A simultaneous determination of Th contenta using x-ray fluorescence analysis after desorption of Th from the extractant HDEHP/EP-60 by phosphoric acic solution is possible. The x-ray spectrums of the $\mathrm{H}_{3} \mathrm{PO}_{4}$ fractions show no other lires but Th.

In combination with ion exchange chromatography and complexometric titration the contenze of all individual REE can be determined.

Acknowledgements

The authors are thankful to Prof. I. Zvara for his support of this work, to A.G.Byelov for irradiations on the microtron, to E.Troger and A.Milek for their help in carrying out many experiments.

References

1. B.Gleisberg, S.Niese, W.Kramer. Chem. Erde 47 (1987), pp.231-242.
2. B.Gleisberg, S.Niese. 4th Meeting on Nuclear Analytical Methods, Dresden 1987, May 4-8, Proceedinga, Vol. 1, pp. 205-211.
3. D.I.Ryabchikov, V.A.Ryabukhin. "Analytical chemiatry of REE and Yttrium" (in Russian), Nauka, Moscow, 1966.
4. M.Helgorski, M.Levegue. Science et techniques 1978, 32, pp. 19-27
5. B.Gorski, Yu.S.Korotkin, V.N.Kosyakov. Journ. of Radioanal. Nucl. Chem., (Articles, 121, 1/1988), pp. 73-81.
6. B.Gleisberg, S.Niese. 4th Working Meeting "Isotopes in Nature", Leipzig 1986, Proceedings pp. 281-287.
7. B.Gleisberg, B.M.Ly (in prepeare)
8. B.Gleisberg, B.M.Ly, W.Helbig, ZfK Report, KB 1989.

Глайсберг Б., Ли Б.М., Горски Б.
E6-89-725
Исследования по выделению $\mathrm{Np}, \mathrm{Pa}, \mathrm{U}, \mathrm{Th}$
и РЗЭ в геологических образцах
В первой части исследовались две методики радиохимического нейтронно-активационного анализа для определения содержания Th , U и РЗЭ в геологических образцах (а) катионный обмен и экстракция, (б) экстракционная хроматография. Изучапось поведение U и $T h$ с целью оценки использованной методики для образцов с большими содержаниями U и $T h$, но с микроколичествами РЗЭ. Предлагается метод селективного извлечения U и Th . Во второй части описывается эффективная методика выделения и определения РЗЭ и Th в монацитах.

Работа выполнена в Лаборатории ядерных реакций ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1989

G1eisberg B., Ly B.M., Gorski B. E6-89-725

Investigations of the Separation
of $\mathrm{Np}, \mathrm{Pa}, \mathrm{U}, \mathrm{Th}$ and REE in Geological Samples
In the first part two some methods of the radiochemical neutron activation analysis of U , Th and REE trace amounts in geological samples have been studied. They are: (i) cation exchange and extraction, and (ii) extraction chromatography. The behaviour of U and $T h$ was also observed and conclusions were made regarding the applicability of the methods for the rocks which are rich in U and $T h$ but depleted of REE. The method is recommended for the selective separation of U and $T h$. The second part represents an effective separation method for the determination of all REE and Th contents in monazites.

The investigation has been performed at the Laboratory of Nuclear Reactions, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1989

