

объединенный
 инСтитут ядерных исследований

 дубна

 дубна}

C.L.Kathat, M.A.Ousmane*

ON THE INFLUENCE
 OF SECOND CLASS CURRENTS ON

THE SPIN ASYMMETRIES
IN GAMOW-TELLER β-TRANSITIONS

Submitted to International Conference on Electromagnetic Transitions in Atomic Nuclei, April 18-21, 1989, Tashkent, USSR

[^0]The classification of weak hadronic currents into the first class currents (FCC) and second class currents (SCC), in accordance with their properties under the G-parity transformation (where $G=$ Cexp $\left(i \pi T_{2}\right)$, for the first time was given by Weinberg [1]. According to this classification, Dirac (F_{1}), Pauli (F_{2}), axial (F_{A}) and pseudoscalar (F_{F}) form factors belong to $F C C$, and the scalar (F_{S}) and tensor (F_{T}) form factors belong to SCC. Note that SCC, being a serious problem (see, for example, [2,3]) for renormalized gauge theories of the electroweak interactions, have a principle significance for our. understanding of the weak interaction structure.

Today the situation of the search for SCC in the nuclear β-decay seems to be very uncertain [4]. For example, the values of F_{T} given in $[5]$, do not contradict (within the limits of experimental errors) the equality of form factors F_{2} and F_{T}. On the other hand, from the data on the angular distribution of electrons with respect to the nuclear spin orientation it folows that the G-parity of the weak nuclear current is strictly conserved, i.e. $F_{T}=\emptyset$ (see, for example, [6]).

Contradictory and uncertain situation also occurs in the search for SCC in τ-lepton decays in experiments with colliding $e^{+} e^{-}$beams. In 1986-87 the experimental observations of the decay channels $\tau \rightarrow \omega \pi \nu_{\tau}[7]$ and $\tau \rightarrow n \pi y_{\tau}$ [8], induced by the existence of the SCC, were reported. But the most later
reports（see，for example，［9］）questioned the validities of these results．

The search for SCC was carried out in the isa－elastic scattering vn \rightarrow mp $[10,11]$ as well， however，the SCC were not observed．There are also ather experimental data［4］，which do not agree with the results of the above mentioned papers．It should be underlined that for the final solution of the SCC problem it is necessary to carry out a number of independent experiments on measurement of various phusical characteristics of electroweak processes， to which these currents cauld contribute $[12,13]$ ．

The present paper，developing the research made in $[14,15]$ ，is devoted to the study of the corpelation characteristics of the Gamow－Teller阝－transitions in polarized nuclei with taking into account the form factor F_{T} ，the neutrino mass and the contribution from the right－hand leptonic current．

The matrit element of the semi－leptonic weak processes in the framework af the current－current theory of the weak interaction may be written in the form

$$
\begin{equation*}
M_{f i}=G_{F} l_{\Delta l} J_{\Delta l} \tag{1}
\end{equation*}
$$

where G_{F} is the Fermi constant of the weak interaction；$l_{a}=a_{v} \bar{u}_{2 \gamma_{\alpha}}\left(1+\mu_{\gamma}\right) u_{1}$ is the leptonic． current；$u_{j}(j=1,2)$ are the Dirac spinor amplitudes of leptons；${ }_{\sim} a_{A} / a_{V}$ is the parameter characterising the ratio of intensities of the vector and axial parts of the leptonic current
（ $(1+22) / 2$ defines the left－hand，and（1－2）／2 defines
 the hadronic current，$\hat{J}(\vec{x})$ is the nuclear current densitư operator；$q_{a}=\left(\overrightarrow{q^{\prime}}, i q_{D}\right)$ is the 4－momentum transfer．

Following the method of considering nuclear polarization described in $[15,16]$ ，the differential
 the form：
where $\left\{=a_{V}^{2}\left(1+e^{2} ; N=G_{F} /(2 \pi)^{4} ; p_{1}, E_{1}\right.\right.$ and dQ are the momentum，total energy and solid angle of the electron（positron）at $1=e^{-}$（ e^{+}）or neutrina （antineutrina）at $1=w_{e}$（w）θ is the angle between the electron and antineutrina momenta；the angles θ^{*} and β^{*} give the orientation of the polarization axis；the function $F\left(E_{e,}, \theta_{,} \theta^{*}, \rho^{*}\right)$ is defined as follows：

$$
\begin{aligned}
& F\left(E_{e}, \theta_{,} \theta^{*}, p^{*}\right)=f_{1} \phi_{1}+2 f_{2} \phi_{2}+f_{3} \phi_{3}+f_{4} \phi_{4}+f_{5} \phi_{5}+ \\
& +\frac{A}{2} P_{2}\left(\operatorname{cose}^{*}\right)\left[f_{1} \phi_{1}+2\left(f_{2} \phi_{2}-f_{3} \phi_{3}-f_{4} \phi_{4}-f_{5} \phi_{5}\right)\right]+ \\
& +A P_{2}^{1}\left(\operatorname{COSO}^{*}\right) \operatorname{C口S}_{2}^{*}\left(f_{6} F_{L 1}^{5} F_{E 1}^{5}+f_{7} F_{L 1}^{5} F_{M 1}+f_{B} F_{C 1}^{5} F_{E 1}^{5}+\right. \\
& \left.+f_{9} F_{C 1}^{5} F_{M 1}\right)-\frac{A}{4} P_{2}^{2}\left(\cos \theta^{*}\right) \cos 2 \phi^{*} f_{10}\left[\left(F_{M 1}^{5}\right)^{2}-\right. \\
& -\left(F_{E 1}^{5}\right)^{2}+3 P P_{1}^{1}\left(\cos \theta^{*}\right) \operatorname{cosp}^{*}\left(f_{6} F_{L 1}^{5} F_{M 1}+f_{7} F_{L 1}^{5} F_{E 1}^{5}+\right.
\end{aligned}
$$

$\left.+f_{B} F_{C 1}^{5} F_{M 1}+f_{9} F_{C 1}^{5} F_{E 1}^{5}\right)+\frac{3}{2} P F_{1}\left(\cos \theta^{*}\right)\left(2 f_{1} \phi_{2}+f_{2} \phi_{1}\right)$. Here A and F are the alignment and polarization (3) nuclei; P_{L}^{m} (cose*) are the associated Legendre functions:
$\phi_{1}=\left(\left(F_{M 1}\right)^{2}+\left(F_{E 1}^{5}\right)^{2}, \quad \phi_{2}=F_{M 1} F_{E 1}^{5}\right.$,
$\phi_{3}=\left(F_{L 1}^{5}\right)^{2}, \quad \phi_{4}=F_{L 1}^{5} F_{C 1}^{5}, \quad \phi_{5}=\left(F_{C_{1}}^{5}\right)^{2}$,
where $F_{M 1}, F_{C 1}^{5}, F_{L 1}^{5}$ and $F_{E 1}^{5}$ are the matrix elements of the vector magnetic, axial-vector Coulomb, longitudinal and electric multipole operators. The longitudinal polarization of electrons. (positrons) taken into account, leptonic functions $f_{i}(i=1,2$, ..., 10) have the form:
$f_{1}=s_{1}+C+\mathcal{F}_{2}, s_{2} C_{3}$,
$f_{z}=s_{e}\left(\beta_{y} C_{2} \varepsilon_{2}+C_{1}\left(\varepsilon_{1}+C\right)\right)$,
$f_{3}=s_{1}+C+r_{v} s_{2}\left(\cos \theta-2 C_{3}\right)$,
$f_{4}=2\left(C_{1} \varepsilon_{2}-{ }^{\prime 3} C_{2} s_{1}\right)$,
$f_{5}=s_{1}-C_{1}-\beta_{v} \delta_{2} \cos \theta$,
$f_{6}=\mathcal{H}_{2} E_{2}\left(\beta_{2} E_{2} C_{2}-\beta_{e} E_{e^{\prime}} C_{1}\right) \sin \theta / q \sqrt{2}$,
$f_{7}=-\beta_{2} s_{e}\left(E_{e} \beta_{e} \varepsilon_{2}-E_{\nu}\left(\varepsilon_{1}+C\right)\right) \sin \theta / q \sqrt{2}$,
$f_{8}=-\beta_{2}\left(\mathcal{F}_{\mathrm{e}} \mathrm{E}_{\mathrm{e}} \varepsilon_{1}+\delta_{2} E_{2}\right)$ sine/ $\sqrt{2 q}$,
$f_{9}=-s_{e^{i}} \mathcal{S}_{1} \sin \theta / \sqrt{2}$,
$f_{10}=-\beta_{\nu} \delta_{2}\left(C_{3}-\cos \theta\right)$.
Here $\varepsilon_{1}=1-n s_{e} \gamma \beta_{e} ; \varepsilon_{2}=n_{e} \gamma-\beta_{e} ; \gamma=2 x /\left(1+x^{2}\right)$; $C=m_{e^{2}}\left(1-m^{2}\right) /\left[E_{e} E_{2}\left(1+\omega_{2}^{2}\right)\right] ; \beta_{1}=p_{1} / E_{1} \quad(1=e, \quad 山)$ is the velocity of the leptons; $5_{m}= \pm 1$ is the helicity of the electrons (positrons), $C_{1}=\left(\beta_{e} E_{e}+\right.$ $\left.\mathcal{B}_{2} E_{2} \cos \theta\right) / q, C_{2}=\left(\beta_{2} E_{2}+\beta_{e} E_{2} \cos \theta\right) / q, C_{3}=C_{1} C_{2} \quad n$ is " $" 1$ " for β-decay and "-1" for β^{+}-decay.

As an example let us consider the processes ${ }^{12} \mathrm{~B}$ $+{ }^{12} C+e^{-}+\sum^{2}$ and ${ }^{12} N+{ }^{12} C+e^{+}+\nu_{e}$ The matrix elements $F_{M 1}, F_{C 1}^{5}, F_{L 1}^{5}$ and $F_{E 1}^{5}$ have the following form in the nuclear shell model with the harmonic oscillator potential:
$F_{M 1}=\frac{\psi}{6 \sqrt{\pi}} \frac{q}{M_{n}} e^{-\underline{u}}\left[F_{1}-\mu(2-y)\right]$,
$F_{L_{1}}^{5}=-\frac{\sqrt{2} \psi}{3 \sqrt{\pi}} e^{-y}(1-y)\left(F_{A}-\frac{q^{2}}{2 M_{n}} F_{P}\right)$,
$F_{E 1}^{5}=-\frac{\psi}{3 \sqrt{\pi}} e^{-4} F_{A}(2-y)$,
$F_{C 1}^{5}=-\frac{\psi}{3 \sqrt{2 \pi}} \frac{q}{M_{n}} e^{-y}\left[\frac{3}{2} F_{A}-(1-\underline{2})\left(q_{f} F_{P}-2 M_{H} F_{T}\right)\right]_{\text {(6) }}$
Here $\psi=-0.003$ [17]; $M_{n} i s$ the nucleon mass; $\mu=$ $F_{1}+2 M_{n} F_{2} ; q_{\square}=E_{\square}$ is the transition energy; $y=$ $(b q / 2)^{2}$, where b is the oscillator parameter.

In the long-wavelength 1 imit $\left(q / M_{n} \approx 0, y \approx \square\right)$ the differential β-decay rate of polarized ${ }^{12} \mathrm{~B}$ and ${ }^{12} N$ nuclei is given by expression (2) in which the
factor N and the function $F\left(E, \theta, \theta^{*}, \rho^{*}\right)$ are given bu the respective expressions:

$$
N=\frac{2 G_{F}^{2} \psi^{2} F_{A}}{27(2 \pi)^{5}}
$$

$$
F\left(E_{e}, \theta, \theta^{*}, p^{*}\right)=F_{A}\left(2 f_{1}+f_{3}\right)+4 q f_{2} F_{2}+r q f_{4} F_{T}+
$$

$$
+A P_{2}\left(\cos \theta^{*}\right)\left[F_{A}\left(f_{1}-f_{3}\right)+2 q f_{2} F_{2}-\gamma q f_{4} F_{T}\right]+
$$

$$
+A P_{2}^{1}\left(\cos \theta^{*}\right) \cos \phi^{*} \sqrt{2}\left(f_{6} F_{A}+q{ }_{7} F_{2}+\gamma_{Q} f_{8} F_{T}\right)+
$$

$+\frac{A}{2} P_{2}^{2}\left(\cos \theta^{*}\right) \cos 2 p^{*} f_{10} F_{A}+3 P_{1}\left(\cos \theta^{*}\right)\left(f_{2} F_{A}+2 q f_{1} F_{2}\right)+$
$+\overline{2} \operatorname{VPP}_{1}{ }^{1}\left(\cos \theta^{*}\right) \cos \phi^{*}\left(f_{7} F_{A}+q f_{G} F_{2}+\operatorname{mq}_{9} F_{T}\right)$.

In the case of nuclear polarization along the electron (positron) momentum, the function $F\left(E_{e}, \theta, \theta^{*}, \bullet^{*}\right)$, which determines differential rate (2), gets the form
$F\left(E_{E}, \theta ; \theta^{*}, \phi^{*}\right)=H_{D}-2 A\left[F_{A} \beta_{e} \beta_{2} \cos \theta-\gamma F_{T}\left(H_{1}-\frac{3}{2} H_{3}\right)+\right.$
$\left.+\operatorname{nr}_{2}\left(H_{2}+\frac{3}{2} H_{3}\right)\right]-3 \lambda P\left[n_{\lambda} F_{A}\left(\beta_{e}-\beta_{2} \cos \theta\right)-\right.$
$-r f_{e} F_{T} H_{3}-2 F_{2}\left(q\left(C_{1}-\beta_{e} f_{2} C_{2}\right)+\frac{1}{2} \gamma_{e} H_{3}\right) I$.
Here
$H_{D}=F_{A}\left(3-A_{E_{2}} \cos \theta+3 C\right)-2 n F H_{1}-4 r_{2} F H_{2}$
$H_{1,2}=r_{e}^{2} E_{e}+\beta_{2}^{2} E_{2}+\beta_{e} A_{2}\left(E_{2}+E_{e}\right) \cos \theta$,
$H_{3}=i_{v}^{2} E_{v} \sin ^{2} \theta$.
\ln (B) the parameter λ is "+1" for 志 $\prod_{\eta} \prod_{\mathrm{f}}$ and $"-1 "$ for $\vec{s}_{n} \uparrow \downarrow_{e_{e}}$. Here (and below) \vec{t}_{n} is the ${ }^{\text {ennit }}$ vector in the nuclear polarization direction. Note that H_{0} gives a differential rate averaged over the spin states of the initial nucleus.

After integration of differential rate (2) over the neutrino (antineutrino) solid angle with allowance for (8), for the electron asummetry coefficient defined as

$$
\begin{equation*}
A_{e}=\frac{d \beta^{\mp}\left(\xi_{n} \uparrow \uparrow 叩_{e}\right)-d W_{\beta^{\mp}}\left(\xi_{n} \uparrow \backslash \vec{p}_{e}\right)}{d \beta^{\mp}\left(\xi_{n} \uparrow \uparrow \vec{p}_{e}\right)+d W_{\beta^{\mp}}\left(\vec{S}_{n} \uparrow \backslash \vec{p}_{e}\right)} \tag{10}
\end{equation*}
$$

we obtain
$A_{e} \cong-\beta_{e} F\left(m(1-C)+\frac{4}{3} \gamma^{2} \tilde{F}_{2}\left(\beta_{2}^{2} E_{e}-\beta_{w}^{2} E_{w}\right)+\frac{2}{3} \gamma \gamma_{e}^{2} E_{e} \tilde{F}_{T}\right.$

where $\tilde{F}_{X}=F_{X} / F_{A}(X=2, T)$.
By neglecting the terms of order $m_{e} F_{2}$ and $m_{e} F_{T}$ in eq. (10) we obtain
$A_{e} \approx-B_{e} \gamma P\left[\gamma(1-C)+\frac{Z}{3} E_{e}(1-A)\left(\tilde{F}_{T}-\gamma \tilde{F}_{2}\right)+\right.$
$+\frac{2}{3}(1 / r-r)\left(2 E_{0}-5 E_{e}\right) \tilde{F}_{2} 1$.
The behaviour of the coefficient A_{e} as a function of the electron energy at various values of
the alignment $(A=0.6$ and 0.01$)$ and tensor form factor $\left(\mathrm{MF}_{\mathrm{T}}=-5\right.$, \emptyset and +5) is shown in Fig. 1. From the figure it is seen that for determination of the

Fig. 1. Energy dependence of the coefficient As (normalized bu fie) with ${ }_{*}=1, m_{2}=0$ and $F^{\circ}=0.6$. The solid curves ($1,2,3$) belong to the case of $A=$ 0.6 and the dashed curves (1', 2', 3^{\prime}) - to the case of $A=0.01$.
form factor F_{T} it is advisible to measure the coefficient A_{e} for the small values of. the alignment and high energies of electrons (because the discrepancy between the curves of this case and of the case, when $A=1$ and the form factor F_{T} is absent, tends to be visibly high).
ln a case, when nuclei are polarized along the neutrino (antineutrino) momentum, the function $F\left(E_{e}, \theta, \theta^{*}, \psi^{*}\right)$ gets the form
$F\left(E_{e}, \theta, \theta^{*}, \varphi^{*}\right)=H_{\square}-2 A\left[F_{A B^{\beta} \beta_{2}} \cos \theta-n F_{T}\left(H_{1}-\frac{3}{2} H_{4}\right)+\right.$
$\left.+\operatorname{noF}_{2}\left(\mathrm{H}_{2}-\frac{3}{2} H_{4}\right)\right]+3 \lambda F\left[\operatorname{moF}_{A}\left(\mathcal{B}_{2}-\mathrm{B}_{\mathrm{E}} \cos \theta\right)-\right.$
$-r B_{2} F_{T} H_{4}+2 F_{2}\left(q\left(C_{2}-\beta_{e} \beta_{2} C_{1}\right)+\frac{1}{2}\left(\beta_{2} H_{4}\right)\right]$,
where $H_{4}=\gamma_{e^{2}}^{E_{e}} \sin ^{2} \theta_{;}$the parameter λ is $"+1 "$, for $\vec{s}_{n} \uparrow \prod_{p_{2}}$ and $"-1 "$, for $\vec{S}_{n} \uparrow \prod_{p_{2,}}$

After integration of differential rate (2) over the solid angle dne with allowance for (13), for the neutrina (antineutrino) asymmetry coefficient defined as
we obtain the expression
$A_{2} \cong \beta_{2} F\left(\eta \gamma(1-C)+\frac{2}{3} \gamma \beta_{2}^{2} E_{2} \tilde{F}_{T}(1-A)+2 \tilde{F}_{2}\left[E_{2}-\right.\right.$
$-\frac{2}{3}\left({ }_{E}^{2} E_{e}\left(1-\gamma^{2}\right)-\frac{1}{3} \gamma^{2} \gamma_{v}^{2} E_{\nu}(2+A)\right] 3$.
On neglecting the terms of order $m_{e} F_{2}$ and $m_{e} F_{T}$ the asymmetry coefficient A_{i}, takes the form
$A_{2} \approx F_{2} \gamma P\left[\eta(1-C)+\frac{2}{3} E_{2}(1-A)\left(\tilde{F}_{T}+\gamma \tilde{F}_{2}\right)-\right.$
$\left.-\frac{2}{3}(1 / \gamma-\gamma)\left(2 E_{0}-5 E_{2}\right) \tilde{F}_{2}\right]$.
In Fig. 2 the energy dependence of the coefficient A_{2} for various values of the alignment $(A=0.6$ and 0.01$)$ and SCC form factor (MF $_{T}=-5,0$ and +5) is shown. Unlike the coefficient A_{E}, the coefficient A_{2}, is sensitive to the form factor F_{T} at small electron energies.

Note that the coefficients A_{E} and A_{2} are sensitive to the SCC and greatly depend on the value

Fig. 2. Energy dependence of the asymmatry coefficients $\quad A_{2,} \quad$ with the same value of,m_{w}, F and A as for the coefficient A_{e} -
and the sign (with respect to F_{2}) of the form factor F_{T} only for $A \neq 1$. The contribution of the form factors F_{T} and F_{2} to coefficients A_{e} and A_{2} are correlated and therefore the form factor F_{T} may be estimated using the value of the form factor F_{2} obtained from the CVC-hypothesis or determined bu the other observables.

Thus, the experimental study of the energy dependence of the asymmetry coefficients A_{e} and A_{2} for the ensemble of nuclei with $A \neq 1$ might add to improvement of the present limits on F_{T}.

Now let the nuclei be polarized along $\mathbf{u}_{5}=$ ($_{v}{ }_{v}$ $\left.x \vec{p}_{e}\right) x \vec{b}_{e}$. Then the function $F\left(E_{e}, \theta, \theta^{*}, p^{*}\right)$ determining differential rate (2) summed over the spin states of electrons (positrons) is given bu the expression

$$
\begin{aligned}
& F\left(E_{2}, \theta, \theta^{*}, \infty^{*}\right)=H_{0}+A\left[F_{A^{\beta} e^{\beta} y} \cos \theta+n F_{T}\left(H_{1}-3 H_{3}\right)+\right. \\
& \left.+n_{2} F_{2}\left(H_{2}+3 H_{3}\right)\right]-3 \lambda \cdot P_{2} \beta_{2} \sin \theta\left[n_{\gamma} F_{A}-\right.
\end{aligned}
$$

$\left.-\gamma q \beta_{e}^{\prime} c_{1} F_{T}+F_{2}\left(2 E_{2,}-q \rho_{e} C_{1}\right)\right] 3$,
where λ ' is $"+1$ " for $\vec{s}_{n} \uparrow \uparrow \vec{u}_{5}$ and $"-1 "$ for $\vec{s}_{n} \uparrow \downarrow_{u_{5}}$.
For the asymmetry coefficient, defined as
integrating eq. (2) over the antineutrino (neutrino) solid angle with allowance for eq. (17) we obtain
$A_{S} \simeq-\frac{1}{4} \pi \gamma \beta_{2} F \operatorname{in}(1-C)+\frac{1}{3}\left[E_{2}\left(\operatorname{H}_{2} \tilde{F}_{T}+\left(6 / \gamma-5 \gamma\left(\beta_{2}^{2}\right) \tilde{F}_{2}\right)+\right.\right.$

$+(x-1 / x) \operatorname{rice}_{e} \tilde{F}_{2} 3$.
Unlike the case with the coefficient A_{e} here the maximum contribution from the form factor F_{T} to A_{S} is obtained at the end of the g-spectrum for $r=1$ and $A=1$. In this case for massless neutrino $\left(m_{2}=\right.$ b) the asummetry coefficient A_{g} takes a simple form: $A_{5}=-\frac{1}{4} \pi F\left(n-\frac{2}{3}\left(\hat{Y}_{e}^{2} E_{e} \tilde{F}_{T}\right)\right.$.
For other values of the alignment A the energy dependence of the coefficient A_{S} at various values of F_{T} is shown in Fig. $\mathrm{J}_{\text {. }}$

In the case of nuclear polarization along the direction perpendicular to the reaction plane

by the expression
$F\left(E_{E}, \theta, \theta^{*}=\phi^{*}=\pi / 2\right)=H_{0}+A\left(F_{A^{\prime}: 2} \beta_{2} \cos \theta-n F_{T} H_{1}+n \gamma F_{2} H_{2}\right)$.

Fig. 3. Energy dependence of the asymmetru coefficients A_{5} with the same value of *, m_{L}, P and. A as for the coefficients A_{e} and A_{ν}.

Fig. 4. Energy dependence of the asymmetry coefficients A_{N} with $=$
1 and $A=0.6$. curves 1 , 2 and 3 correspond to $M F_{T}=-5, \square$ and +5 .

Note that in this case the contributions of form factors F_{T} and F_{2} may be separated, since they enter into (21) with different functions H_{1} and $H_{2}=$ In particular, in the middle of the fospectrum H_{2} is small and so the contribution from the weak magnetism (a term proportional to F_{2}) may be neglected. After integration of differential rate (2) over the solid angle $d \alpha_{\nu}$, with allowance for (21), the
asymmetry coefficient; which is defined as

$$
\begin{equation*}
A_{N}=\frac{d W_{\beta^{\mp}}\left(t_{n} \uparrow \uparrow \vec{P}_{2} \times{P_{B}}_{e}\right)-d W_{\beta^{\mp}}(\text { unpolar })}{d W_{\rho^{+}}(\text {unpolar })} \tag{22}
\end{equation*}
$$

gets the form
$A_{N}=-\frac{1}{3} n A\left[\tilde{F}_{T}\left(\beta_{2}^{2} E_{e}+\hat{\beta}_{2}^{2} E_{2}\right)-\gamma \tilde{F}_{2}^{2}\left(\beta_{2}^{2} E_{2}-\beta_{2}^{2} E_{2}\right) \cdot\right]$.
Fig. 4 represents the energy dependence of the coefficient A_{N} for $x=1$ and $A=0.6$. Curves 1,2 and 5 relate to the values $\mathrm{MF}_{\mathrm{T}}=-5,0$ and +5 , respectively. In the middle of the frspectrum the pure effects ($A_{N}{ }^{\sim} F_{T}$) of SCC are predicted. (In this case the contribution of the weak magnetism form factor F_{2} is suppressed).

Note that using eqs. (8), (13), (17) and (21) one can study also the angular dependence of the coefficients A_{e}, A_{2}, A_{S} and A_{N}, which may give important information on the form factor F_{T}.

Now we consider the electron longitudinal polarization degree defined by the formulae:

$$
\begin{equation*}
F_{e}=\frac{d W_{\beta^{\mp}}\left(s_{e}=1\right)-d W_{\beta^{\mp}}\left(s_{e}=-1\right)}{d W_{\beta^{\mp}}\left(s_{e}=1\right)+d W_{\beta^{\mp}}\left(s_{e}=-1\right)} \tag{24}
\end{equation*}
$$

In the case of decay of nuclei, aligned along the direction of the electron (positron) emission, the polarization P_{e} is given by

$\left.-2\left(r_{2}^{2} E_{2}\left(1-r^{2}\right)\right]-\gamma E \underset{E}{\tilde{F}} T^{(1-A)\left(1-\gamma^{2}\right)}\right] 3$.
In the case of pure (V-A)-structure of leptonic current $(\gamma=1)$ the polarization $P_{e} g e t s$ the form
$P_{e} \cong-n\left(\mathcal{B}_{e}\left\{1-\frac{2}{3} n E_{e}\left(1-\gamma_{e}^{2}\right)\left[\tilde{F}_{T}(1-A)+\tilde{F}_{2}(2+A)\right]\right\}\right.$.
It follows from eq. (25) and (26) that the form factor F_{T} contribute to P_{e} only for $A \geqslant 1$. Eq. (25) for $A=0$ gives the expression for the polarization P_{e} which is the same as in the case of the decay of unpolarized nuclei $[12,13,18]$. The energy dependenca of the polarization F_{e} for various values of the alignment and form factor F_{T} is shown in Fig. 5.

Fig. 5. Energy dependence of the electron longitudinal polarization degree F_{e} with $F=\emptyset$ and the same value of x, m_{2}, and A as for the coefficient A_{e}

Thus, it follows
from the analysis
carmied out that the scc carried out that the SCC effects induced by the form factor F_{T} are correlated with the contributions from the form factor F_{2} and the parameter . So, for the unambiguous solution of the SCC problem a large number of independent experiments on the study of the energy and angular de-
pendence of different characteristics of the nuclear. β-deday 15 needed. These characteristics are, for example, the spin correlation coefficients A_{e}, A_{L}, A_{S}, and A_{N} as well as the electron longitudinal polarization degree F_{f} in the P-decay of oriented nucLei. These characteristics have different sensitivities to the tensor form factor in different energy regions of the β-spectrum and for different values of alignment A. So, it is preferable to measure the coefficient A_{e} for small alignment A and at high electron energies, and the coefficient. A, for the same alignment, but at low electron energies. The electron polarization F_{e} is most sensitive to SCC at the middle of the β-spectrum. For $A=1$ the coetficients A_{e}, A_{2}, and the polarization P_{e} do not depend on the form factor F_{T} and therefore one can determine the deviation of the parameter ferom unity (i.e., the contribution from the right-hand current). The maximum contribution from the form factor F_{T} to the coefficient $A_{S} i s$ reached at the end of the β-spectrum for $A=1$. The measurement of the coefficient A_{N} in the middle of the o-spectrum may give direct information on the value and the sign of the form factor F_{T}. In the case of the absence of SCC $\left(F_{T}=0\right)$ the experimental study of the energy dependence of the coefficient \mathcal{A}_{N} will give information on the value of the parameter de.

References

1. Weinberg 5. Phus. Fev., 1958, v. 112, p. 1375. 2. Langacker P. Phys. Rev., 1977, v. D15, p. 2386. 3. Lobov G.A. Frepint ITEP-65, 1987.
2. Morita M. Hyperf. Interact., 1985, v. 21, p. 143. 5. Lobov G.A. Sov. J. Izv. Akad Nauk. (ser. fiz.) 1972, v. 36, p. 881.
3. Minamisono T. et al. Hyperf. Interact., 1987, v. 34, p. 135.
4. Albrecht W.H. et al. Freprint DESY 86-142, 1986.

日. Derrick M. Freprint ANL-HEP-CP-87-42, 1987.; Derrick M. et al. Fhys. Lett., 1987,v. B189,p. 260.
9. Albrecht W.H. et al. Freprint DESY 88-113, 1988.
10. Baker N.J. et al. Phys. Rev., 1981, v. D23,p. 2499.
11. Kurihara Y. J. Sci. Hirochima Univ., 1987, v. A51, p. 1.
12. Samsonenko N.V., Samgin A.L., Kathat C.L. Sov. J. of Nuclear Phus. 1988, v. 47, p. 348.
13. Samsonenko N.V., Kathat C.L., Samgin A.L. Nucl. Fhus., 1989, V. A491, p.642.
14. Samsonenko N.V., Dusmane Manga Adamou, Samgin A.L. Abstracts of Fapers Fresented at the xxxyili Meeting on Nuclear Spectroscopy and structure Conference. L.: Nauka, 1988, p. 263.
15. Samsonenko N.V., Dusmane M.A., Kathat C.L., Samgin A.L. Freprint JINR P6-88-925, Dubna, 1988.
16. Donneily T.W. New Vistas in Electro-Nuclear Phusics. - New York-London, Plenum Fress,1986, P.151.
17. Donnelly T.W., Peccei F.D. Fhys. Reports, 1979, v. 50, p. 1.
18. Kerimov B.K., Samsonenko N.V., Kathat C.L., Elegavhari A.I. Sov. J. Izv. Akad Nauk. (ser. fiz.) 1986, v. 50, p. 185.; 1987, v. 51, p. 994. Received by Publishing Department on June 6, 1989.

Катхат Чै.Л., Усман М.А.
E6-89-412
О влиянии токов второго рода на спиновые асимметрии в гамов-теллеровских β-переходах

Получено выражение для дифференциальной вероятности гамов-теллеровских β-переходов в поляризованных ядрах с учетом токов второго рода, массы нейтрино и вклада лептонного $(\mathrm{V}+\mathrm{A})$-тока. Исследовано влияние формфактора F_{T} на коэффициенты корреляций $\mathrm{A}_{\theta}, \mathrm{A}_{\nu}, \mathrm{A}_{S}$ и A_{N}, а также на поляризацию электронов P_{e}. Показано, что экспериментальное исследование энергетической зависимости этих коэффициентов позволит улучшить имеюшиеся ограничения на формфактор F_{T}.

Работа выполнена в Лӓборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1989

Kathat C.L., Ousmane M.A.
E6-89-412
On the Influence of Second Class Currents on the Spin Asymmetries in Gamow-Teller β-Transitions

An expression for the differential rate of Gamow-Teller β-transitions in polarized nuclei with allowance for the second class currents, the neutrino mass and the contribution from the leptonic ($\mathrm{V}+\mathrm{A}$). current is obtained. The influence of the form factor F_{T} on the correlation coefficients $\mathrm{A}_{\mathrm{e}}, \mathrm{A}_{\nu}, \mathrm{A}_{\mathrm{S}}$, and A_{N}, as well as on the electron polarization P_{e} is studied. It is shown that the experimental investigation of the energy dependence of these observables will allow improvement of the present limits on F_{T}.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1989

[^0]: People's Friendship University, Moscow, USSR

