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NATURE OF PHYSICAL PROBLEM 

Many papers have been devoted recently to particle-rotatio­

nal coufling (Coriolis effect) in odd deformed nuclei (e.g., 

refs. 1 -41 ) , when the experimental spectrum could be often 

explained by this coupling. Therefore, one can expect that 

the Coriolis coupling plays, as well, a significant role in 

odd-odd deformed nuclei for which a lot of experimental data 

appeared lately (e.g., refs. 151 ). The program gives a possi­

bility of extracting pure intrinsic energy values from expe­

rimental data. This is important for testing the theoretical 

models for intrinsic structure of odd-odd nuclei. The program 

calculates the perturbed energy levels. It is written as a sub­

routine to be used with the MINUIT minimization program 16 / 

which makes a least-square fit to the experimental energy le­

vels. Hixed amplitudes of the wave functions are obtained for 

the final fit. 

METHOD OF SOLUTION 

In order to take the Coriolis coupling into account, the 

matrix of the total Hamiltonian is constructed and diagona­

lized. The Jacobi diagonalization method is used repeatedly 

in the search for the eigenvalues and coupling amplitudes for 

all spin values. Simultaneously, the adjustment of all the 

parameters is carried out until a least-square fit to the ex­

perimental energy levels is obtained. 

RESTRICTION ON THE COMPLEXITY OF THE PROBLEM 

The current version is dimensioned for 20 interacting ro­

tational bands, the maximum spin 1=19, and maximum 10 expe­

rimental energy levels for each of the interacting rotational 

bands. 

TYPICAL RUNNING TIME 
The running time depends on the number of interacting bands 

and the number of free parameters. Therefore the required time 

varies from one to several tens of minutes on the CDC 6500 

computer. 
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LONG WRITE-UP 

I. Description of the Program 
The program is based on the "two particles + rotor" model with inclusion of the Coriolis coupling 17

·8/, In order to take into account the Coriolis coupling an energy matrix is const­ructed and diagonalized. The procedure is similar to that described in ref. 19 / for odd nuclei. 
The total Hamiltonian for a deformed odd-odd nucleus can be written in the frame of adiabatic approximation: 

H"" Hint +H 
rot ( I ) 

where Hintis the intrinsic part of the Hamiltonian and Hrot is the rotational Hamiltonian. 

3 1,2 2 3 t2 2 H ~ :i: -R. ~ :i: -(1. -j.), rot i=1 2J- 1 i=t 2J- 1 1 

' ' 
(2) 

where t, R , j are the total, rotational and intrinsic an­gular momentum operators, respectively. 
In case the shape of the deformed core is axially synunet.-ric the inertial parameters fulfil 
t2 t2 t2 t2 -- ~ -- ~ --, and --- 0 2J1 2J2 2J 2J3 

so that equation (2) can be rewritten in the form: 

H ~H(O) +H,.+H rot rot cor (3) 

where 

H(O) 
rot (4) 

is the pure rotational term, 

H h2 1 ( . . ) j ~ 2J 2 J+ l_ + J J + (5) 

is the recoil term, and 
tz 

H ~--(I j +I J ) cor 2J + - + (6) 

is the Coriolis coupling term. 
Hamiltonian (1) is used for the construction of the energy matrix in ~ .TJK ¢ ka) basis for a given value of I, where 8; ~K are the Wigner functions (the eigenfunctions of H\OJt ) and 
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¢K (a) is the intrinsic wave function - the solution of the 

SchrOdinger equation: 

(a) E _,_ (a) 
H In I ¢ K ~ K,. '+' K ( 7) 

~ 

where K is the projection of the intrinsic angular momentum j 

into the syrmnetry axis of the odd-·odd nucleus. The intrinsic 

wave function ¢ Yf) can be written as a product of the wave 

functions characterising the intrinsic states of the odd 

neutron and odd proton (see re£. 1101
): 

_,_(a)~ (pn) (pp) n 

"'K X n xn K=On+" p 
n p 

(8a) 

K~tn -n 1 
n p 

for K,IO and 

(8b) 

(p) (p) 
for K=O. In (8) xgn and x 0 P are the odd-proton and odd-neut-

P n 

ron wave functions, respectively, a =(pn ,p P) denotes the quan­

tum numbers, which together with projection K determine enti­

rely the intrinsic state of given odd-odd nucleus. 

The diagonal elements of the energy matrix of Hamiltonian 

(I) are as follows: 

1i 2 t• . 2 

. H (I) =E + -II(l+I)-K 21+-};<<f; (a)\j i¢K(a 1)> (9) 

KaKaKa2J 2JaK +1 
a a i 

and the nondiagonal elements: 

I 1i2 b2 . 
H (I) ~--(- +-l!y(I+K 2)(1-K2+1)8K K f</JK (a 2)\J+\1);.(af>+ 

K1 a! ~ a 2 2 2J 1 2J2 
t• 2"" 1 

( 10) 
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The matrix elements <¢K 1(a 1)1i+I¢K 2 (a 2 )> can be 
means of the matrix elements of intrinsic wave 
for odd neutrons and protons: 

expressed by 
functions X U(p) 

(a
1 ) (a2 ) 

<¢ li I¢ > ~ Kt + K2 

+ 
( I I ) 

>li (p) I x{l (p >~# 8 
t P2 p~ Ppt •f'p2 Pn f-ln' 

A similar expression can be obtained if one from K 1 anJ K:.! is equal to zero. The attenuation parameters {jp P are introdu-
1' 2 

ced to adjust the coupling strength when it is necessary from the point of view of the applied model. These parameters can be considered as free parameters in the program. The intrin­sic Coriolis matrix elements <x 01 ~j+lxu 2 > can be calculated 
in the frame of _various nuclear models, for instance, the Nils­son single-particle moder'- 111, or the independent quasipar­ticle model /7,101, or the quasiparticle + phonon model 17 '. The intrinsic Coriolis matrix elements are a part of the input data in the program. Since all the presently used intrinsic nuclear models are not precise enough to give the values uf intrinsic energies EKu with sufficient accuracy, the prog­ram enables to fit them. It is also a reason for treating the inertial parameters as free parameters for each rotational band. Since this assumption is not theoretically clear, a pos­sibility is given in the program to keep all inertial parame­ters equal to each other and to fit only the one common to every rotational band. 

The energy matrix is constructed by the program from the elements given by equations (9) and (10). In order to obtain the perturbed rotational energy levels this matrix is repeated­ly diagonalized -for all the spin values I included. The prog­ram simultaneously adjusts the values of free parameters: 
h2 E (3 for all included rotational bands until Ka ' 2Ja ' Pt•P2 

a least square fit to the experimental energy levels is made. The minimized value is: 

(12) 

* The energy range can be chosen so that all the energies are referred to the lowest level of the ground rotational band. 



where n is the number of experimental levels, E ~hand EfxPde­

note the calculated and experimental energy levels, respecti­

vely, and w 1 'is the weighting factor which is' assumed to be 

an inverse square of the experimental error. 

The program gives perturbed energy levels as well as the 

finaL set of parameters. This mixed amplitudes of the wave 

functions are printed for the final fit. 

The program is written in FORTRAN. Instructions for use 

are given in section 2. 

2. Input Data Cards 

The pr'"ogram is writ ten as an FCN subroutine for the HINUIT 

minimization program. The program and the input data cards 

required are described in ref .' 12.'. The remaining input cards 

are read by the FCN subroutine (see the table). The input 

parameter cards read by the MINIUT programffiust preserve the 

same order in which the band head asymptotic quantum number 

cards are read by the FCN subroutine, and at the same time 

the intrinsic energy levels must be read first; the inertial 

parameters, second; and at the end of the free parameter card 

string, the attenuation factors. 
The number of attem..Lation factor cards must be equal to 

the number of different intrinsic Coriolis matrix e:!.ements. 

The FCN subroutine links the attenuation factors with tha in­

trinsic Coriolis matrix elements in the order of their appea­

rance in the fourth card group (see the table). 

2.1. The Program Options 

In addition to the calculation mode (ISW1=0) when all iner­

tial parameters can be treated as free ones, independently of 

each other, there exists a possibility of adjusting only one 

inertial parameter corrnnon for all rotational bands (ISWl~O). In 

this case the FCN subroutine takes the X (NBAND+ 1) parameter 

as a corrnnon one and the rest of the inertial parameters on the 

MINUIT input cards must be fixed. 

3. Output Prints 

The input data are reproduced for the value of the FCN pa­

rameter IFLAG=3, final tables are printed as well~Self-expla­

natory descriptions of the tables are also printed. In addition 

to it, if MATDIA~O.the energy matrix before diagonalization 
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Number of 
card group_ 

2 

Table 
Data cards read by the ODDODDCORI subprogram 

Colunm Format 

2 3 

512 
1-2 

3-4 

5-6 

7-8 

9-10 

1013 

1-3 

4-6 

Variable name 

4 

NBAND 

IMAX 

MATDIA 

NUMITR 

ISWI 

KNNZLA(I ,I) 

KNNZLA(I,2) 

Cormnents 

5 

The number of interacting bands. NBAND must be less than 21. 
The maximum spin value for which the energy 
matrix is still diagonalized. !MAX must be 
less than 20. 
If not zero, the energy matrix before dia­
gonalization is printed if simultaneously 
IFLAG=3. 
If not zero, the number of diagonalizing 
steps is printed if simultaneously IFLAG=3. 
If not zero, one common inertial parameter 
is fitted for all bands (that X(NBAND+I)). 
This card group contains one card. 

The asymptotic quantum numbers of the band 
heads: Kyflp(Nn,A]pfl 0 (Nn,A]

0
.! is the band head serial riumber. 

K - the value of the angular momentum com­
ponent along the nuclear symmetry axis. 
y- this value is +I or -1 only for the band 
with K~o. If Kf 0 then y must be zero. 
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Table (continued) 

2 3 4 

7-9 KNNZLA(I,3) 

10-12 KNNZLA(I,4) 
13-15 KNNZLA (I, 5) 

16-18 KNNZLA (I, 6) 
19-21 KNNZLA(I, 7) 

22-24 KNNZLA(I,8) 
25-27 KNNZLA(l,9) 

1-2 12 KORDER 

2FI0.2, 
1-10 12 EEXP (KORDER, 

J) 
11-20 EEXP(KORDER, 

(J+ I) 

5 

20P- the doubled value of the angular momentum 
component of the proton state along the nuclear 
synunetry axis. 

~' ! The asymptotic quantum numbers of the proton 
state 

" 2nn- the doubled value of the angular momentum 
component of the neutron state along the 
nuclear- symmetry axis 

~z t the asymptotic quantum numbers of the 

" neutron state 

The np must be always positive. The cards must 
be in the order of increasing K. 
This card group contains NBAND cards. 

The experimental energy levels. 
The serial number of the band corresponding to 
the asymptotic quantum numbers' serial number of 
the band head, adopted in the previous item. 

The experimental energy level. 

Its error. 



co 

4 

5 

2 

21-22 

1-10 

11-12 
13-14 

1-10 
11-12 
13-14 

3 

F10,4, 
2I2 

F10.4, 
2I2 

Table (continued) 

4 

IEXP(KORDER, 
J+2) 

AMATPR(I,J) 

I 
J 

AMATNT(I,J) 
I 
J 

5 

Its spin value. 

The number of the experimental energy levels 
for concrete KORDER value must not exceed 10. 
Every card group corresponding to one band must 
be finished by a card containing an arbitrary 
negative real at the first ten columns. A blank 
card signals the end of this card group. 
The whole card number of this group: twice 
number a·£ the bands with known experimental le­
vels + the number of all known experimental le­
vels + I 

Intrinsic Coriolis matrix elements among the 
proton states. 
The value of the matrix element between the I 
and JI states. 
The serial numbers of states, in accordance with 
the order adopted in the quantum numbers of the 
band heads. 
One blank card signals the _:_nd of thi_s card group. 
Intrinsic Coriolis matrix elements among the 
neutron states. 
The description of this card group is analogous 
to that of the previous one. 

A blank card again signals the end of this card 
group. 



is printed when IFLAG=J and if NUMITR#O, the number of diago­

nalization steps performed bY the KUI subroutine to reach a 

defined zero (put into the DISTAN variable) in non-diagonal 

matrix element is printed, too. By changing the DISTAN value 

one affects the running time. The FCN subroutine prints neither 

the input values oE the parameters nor the resulting ones.They 

are printed only by the tUNUIT Program. 
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