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i. Introduction

The determination of the guantum characteristics of
spontaneously fissioning isomers is ouf great importance
for the deeper understanding of the fission barrier struc-
ture for transuranic elements. Since spontaneous fission
is as yet the only observable decay of these isomers,
this problem cannot presently be solvedusing conventional
methods based on ¢, B8 and 7y -spectroscopy. The
authors of ref./! made an attempt to study the aniso-
tropy of the angular distribution of spontaneous tfission
fragments from a nucleus oriented in rea-~tions with
charged particles. The theoretical analysis of ref. /2/ shows
that this method provides a real possibility of determining
the quanturn characteristics of isomeric states, inspite of
some uncertainties due to the choice of the level density
parameters in the second potential well and the evaluation
of the hyperfine interaction between nuclear momenta and
the electron shell.

Recently in a number of nuclei, e.g., in236 pu , 237py ,
238py, etc., a couple of s.f. isomers in each have been
observed in the second potential well/3:4/. The ratio of
the production cross sections for a nucleus in the first and
second isomeric states in the second poteatial well and the
dependence of this ratio on the momentum added to the
nucleus are functions of the spins of the isomeric states.
Therefore, the measurement of the isomerratio permits
the estimation of the s.f. isomer spin. However it is, as
a rule, difficult to obtain the exact spin values using this
method, especially in odd nuclei. For instance, the measu-
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rements of the isomerijratio for 237py (vef./3/ )in reactions
with deuterons and y -particles have led to a variety of
possible spin values for the two isomeric states.

It is natural to expect that a combination of the two
meihods (measurements of the isomer ratio and fission
fragment angular distribution) will permit a more un-
ambiguous spin assignment for isomeric states. This
combined method is expected to he especially efficient for
even-even lsotopes. In this case the spin of the low-lying
isomeric level is usually equal to zero (I =K.= 0) and the
fragment angular distribution corresponding to this parti-
cular level should be isotronic. The spir of the higher-lying
state should only be determined, which is a two-quasipar-
ticle excitrd state in the second potential well (1=K #0).In
the preseat paper the general scheme for calculating the
population for the two-quasiparticle isomer is developed.
This scheme may form the basis for calculating both the
isomer ratio and fission fragment angular distribution.
A numerical calculation has been performed for 238mpy o
comparison of the calculated results with experimental
data /45/ permitsboth spin assignment and determination
of the gamma to s.f. branching ratio for the two-quasipar-
ticle s.f. isomer.

2. A Model for the Population| of
a Two-Quasiparticle Spontaneously Fissioning
Isomer

We consider a reaction of the (a ,xn) type, leading to
the formation of a couple of s.f. isomers in the second
potential well of an even-even isotope. The problem
consists in calculating the relative probability By for

two-quasiparticle isomer formaticn and its spin orienta-
ticn relative to the incident beam directiom. The spin
orientation is described by some distribution function
fmfor the nucleus over the spin projection M (M == et D
The model of the population of isomeric states is shown
in Fig. 1. The dashed lines show the competing fission
processes. Another possibility of populating isemeric sta-
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Fig. 1. A model for the population of isomeric states in
the second potential well of an even-even nucleus.

tes, shown by a dot-dashed line, contributes very iittle
and therefore, is neglected in the calculation. The curve
© in Fig. 1shows the probability for the A nucleus produc-
tion in the second potential well, as a function of excitation
energy. The competing fission of this nucleus is tgken
into account by introducing some effective barrier E 1,6/
so that only the shaded part under this curve populates
the isomeric states. Since Ef¢ is typically noticeably
smaller than the first barrier height, the influence of the
transition from the second potential well back to the
first potential well after the A nucleus production can be
neglected. The part of the curve lying between EI and
E 1 populates only the lower isomer. A contribution from
this part is usually negligibly small. Thus, only the states
falling into the interval between E, and E; populate
both the high-lying and low-lying isomers.




It is noteworthy that this simplified model may prove
uncapable of describing well the population process of
isomeric states at incident particle energies too close to
the threshold of the re.ction leading to a quasiparticle
isomer. In this instant one can hardly neglect the contri-
bution from the E;+Ep part.

Prior to determining the relative probabilities for these
isomers:to be populated, we note thatthe effective barrier
Ef lies only 0.5 MeV above the upper limit of the region
of two-quasiparticle states in the second potential well.
Since it may be assumed that the spin projection onto the
symmetry axis of the nucleus Kj in the energy region
(Ep*  Eq) is a good quantum number, the selection rule
with respect to Kj is of great importance to the y -tran-
sitions populating the isomeric states. This selection
rule leads to the fact that among the states following
the evaporation of the last neutron, only those with large
Kjvalnes populate the two-quasiparticle isomer, while
the states with small Kj values disintegrate directly into
the ground state of the second poteniial well or via the
B-and y -bands lying somehow below the region of
two-quasiparticle states. Like in ref. /17 we assume
the isomer ‘ratio to be equal to the ratio of probabilities
for states with K;j2K and K ;< K to be formed inthe region
(Ey+ Ep).It should be noted that this assumption in the
isomer ratio calculation is in good agreement with the
experimental results on the two-quasiparticle isor-er
in 179§ (ref. /7/).

To calculate spin orientation for the two-quasipar-
ticle state, a more detailed description of the character
of y -transitions in the region of two-quasiparticle
states is required. The decay of states with J.K; >K to
a two-quasiparticle state proceeds either through the
intermediate quasiparticle bands (AJ&0,AKj#0)or the
rotational levels of one and the same band (A J#0, AKy=0).

On the basis of the results of an analysis made in
refs. /8:9/ one can describe the character of these
transitions in the following way:



1. Each of the (] ,KJ->(KJ->]() states produced following
neutron evaporation decays to a two-quasiparticie isomer
by the only cascade of y -transiticas.

2. The number of y -transitions in each cascade is
considered to be the minimum possible one.

3. As to character of these transitions, two variants
will be considered. a) Only El transitions with band
changes (AK;=1,AJ=1)occur in the first stage of the cascade.
This process lasts until the quantum number K jbecomes
equal to the projection of spin K of the two-quasiparticle
isomer. Afterwards the rotation E2 transitions (A K) =0,AJ=2)
within the band corresponding itv the isomer take place.
b) All the v -transitions are dipule (El and Mi). In this
case the order of sequence of El and Ml does not influence
the calculated resulis, which fellows from eq. (11).

3. Determination of Isomer Ratio and Spii
Orientation for a Two-Quasiparticle Isomer

Nuclear states in different stages of ‘he reaction are
defined by energy E, spin } and spin projection onto the
beam direction Mj. As has been mentioned above, states
in the second potential well of the nucleus A are also
characterized by spin projection onto the nuclear symmetry
axis Kj . For determining the isomer ratio and spin
orientation for a two-quasiparticle isomer one should
calculate successively production probabilities for dif-
ferent nuclear states after each of reaction stages. The
dependence of compound-nucieus production probabilities
on spin ] . and the spin projection onto the beam direction
Mj has the following form

. =Ca(]c)/(210+1), IMJGISIO
IM, , O
cMi,=0 , ‘MJc| >1g
where C is a normauzed factor, Ip is the target nucleus

spin. The compound nucleus cross section o, is deter-
mined by the formula
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Here % is the wave length of o -particles, T, (¢ )1s the
penetrability coefficient of « -particles wlth energy €q
through the target nucleus.

As is generally done in isomer ratio calculations /1¢/
in calculating the distribution of probabilities of compound
nucleus production after neutron evaporation, itisassumed
that each evaporated neutron carrvies off a certainaverage
amount of energy. Then the probability for a residual
nucleus to be formed in the [Eg, J5.M,> state after _
evaporation of a neutron fromthe | E,]J;, M, > state can be
calculated by the following formula
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Here N is some unessential factor, E, and E, are
the average excitation energies of the nucleus prior to
and after neutron evaporation (E =E_+¢ + B,., where
B is the neutron binding energy), ’fg (e_nﬁ _is the pene-
tration factor for a neutron with energy ¢, , C is the
Clebsch-Gordan . coefficient, Q(E,])is the nuclear level
density parameter, which is of the following form

Q(E,J) =Q(E) (2] +1) exp

-(J+l/l)2 (4)
2
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where o02= @), T/ h2 Tand el are the temperature and
moment of inertia of the nucleus with respect to the axis
parallel to the nuclear symmetry axis. The expression
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—— in eq. (3) tak t t i
( TR 7T )E'J q. (3) es into account the spin
dependence of the two competing processes, neutron
emission and fission. Like in ref./11/  the quantities
(Ty/L)ey are calculated using the Fermi gas model for
the nuciear levg} densityf

T [2a” (E-B; -ER)-11 % 4%

f L, peE TR ? B _ :
(Tn-—) E)y" E_B, “Ep exp{2a” ((E-Bn —ER)
(5)

-(E-B;-ER)™)1.

Here ¢ is a spin-independent factor, a is the level
density parameter of the Fermi gas model, Eg and
Eﬁ are the effective rotational energies of the nucleus
after neutron evaporation and at the saddle point, res-
pectlvely, B is the fission barrier height. For the case
where the nucleus is in the first potential well (the
A+2 nucleus) the first barrier height can be taken for
B;.The effective rotational energies are defined by the
equations

L2
E.= ..x 2 63
R 2’@:] (6
and
2 2
h T LT
El - ()2-KZ )+ — K )
R 2ef J f 204, f

where O, is the moment of inertia of the residual
nucleus, @f and @{ are the moments of inertia of the
nucleus at the saddlé point, K? is the root-mean-square
proje~tion of the nuclear spin at the saddle point at the
corresponding excitation energy E—B.The value of KZcan
be calculated using the known Gaussi':m distribution over
spin projection at tht?l saddle point
oz, -Kﬁ/ 2K 3
PR - (8
f -k3 /2K3
€

Ky=0




2
where—é—% = —1.-}—(%{! —é).The data on the parameterK2 can
be taken from measurements of the angular distribution
of prompt fission fragments (see, e.g., ref. /12/),

According to the model shown in fig. 1, the A +1 nucleus
is produced after evaporation of a neutron in the first
potential well. The transition of this nucleus through the
first barrier into the second potential well can be
described as follows. At the excitation energy typical
for the A+l nucleus, which is of the order of 10 MeV, the
states in the first and second potential wells are expected
to be mixed to a large extent. Therefore, it may be assumed
that the probability of locating the A+1 nucleus in one
or the other potential well after neutron evaporation will
be proportional to the appropriate level density.

As has been noted above, the quantum number K; plays
an Important role at the final stage of Isomer state
population following the formation of the A nucleus in
the energy interval (Eyy ,E ), and the isomer ratio is
determined as that of probabilities for the formation of
states with K; 2K andK;< Kin this energy interval, i.e.,

p P I = P
g o LEp2K SKy oK akkex 4K
5 P ~ 3 P, +3 3 P
LK<k I J<k IKjxx Ky JKp

where Pjgj is the probability for the nucleus to be
produced in the state |],K;> after evaporation of the last
neutron. Since the probability of neutron emissionaccom-
panied by the formation of the |],Kp state is independent
of the quantum number Kj . the value of Pjk (or
Pjkymy ) will be proportional to the density of the state
with spin projection Kj at a given spin ] . It may be
assumed that in the region En, Eg the Gaussian
distribution of the level density over Ky, analogous to the
distribution at the saddle point, also holds, i.e.,
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where the parameter Kﬁ has the same sense as the

parameter K§in formula (8).

The distribution FykyMm; is used to calculate the
nuclear spin orientation of the two-quasiparticle state.
A change in spin orientation by y -transitions from the
{] Ky> state to the {] “Ky’>state is described by the follow-
ing formula

fu, A ﬁ] CHYTLY My MymMy ey an
where A is a normalizing factor, L is the , -transi-
tion multipolarity. It is seen from eq. (11) that a change
in nuclear spin orientation does not dependonthe quantum
numbers Ky Kj* or transition type (electricalor mag-
netic). This substantially simplifies the calculation using
the model described in the previous section. On the basis
of the recurrence formula (11) one can calculate the func-
tion that describes spin orientation for a two-quasipar-
ticle isomer. Finally, the angular distribution of fission
fragments from this isomeric state can be calculated
by a formula from ref./2/

21
W (0) = :2_0 Agy, Py, (cos 0) (12)
where
9 Mf_ (’-1) fMC( I, ., M—~M) C (11, ,K-K), (13)

(K=1)

4. Numerical Results
The numerical calculations of the fission ratio and
the angular distribution of fission fragments have been

carried out for the two-quasiparticle isomer 238py, ,
produced in a reaction of the type (a ,20)/ %5/ In these



calculations the level density paramsters of the Fermi
gas model were taken from the systematics of Gilbert and
Cameron / 13/ while the fission barrier parameters
employed were taken from the paper of Britt et al. /14/,
The penetrability coefficients for « -particles and neut-
rons have been calculated using the optical potential /15,16/.
The data on the nuclear moments of inertia were taken
from the calculation of ref./17/ For the parameter K%
corresponding to the Kj distribution at the saddle point,
we used the experimental data listed in ref. 12/ The
parameter K (eq. (9)) is varied within reasonable
limits near the value of K§ corresponding to the region
of two-quasiparticle excitations (2K20=.25 ref. /lz/) at
the saddle point.

5. Calculated Results and Discussion

Figure 2 shows the calculated results for the 28 py
isomer ratio. The numerical results are in good agreement
with experimental data / 4/ it the two-quasiparticle isomer
spin is assumed to be equal to4 (1=K =4).The experimen-
tal results are lower than the calculated ones at the
e -particle energy (, = 24 MeV, which is -apparently
attributed to the inapplicability of this model to energies
close to the reaction threshold (see Section 2). As might
be expected, the calculated results are slightly sensitive
to the fission barrier parameters, since we deal here
with the ratio of cross sections for formation of two
isomeric states in the same potential well. The dashed
curves in fig. 2 show to what extent the calculated results
are sensitive to the parameters describing the nuclear
level density. The parameter K{j (eq.(10)), corresponding
to the distribution of the level density over Kj in the
region (Eq; , Ef), proves most crucial in this respect.
However it is seen from fig. 2 that an uncertainty in
the choice of values for this parameter doesnot influence
the results of spin assignment for the two-quasiparticle
isomer on the basis of the experimental data on isomer
ratio.
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Fig. 2. The energy dependence of the isomer ratio for
238 Py.Circles are experimental data taken from ref, "4/,

The energy dependence of the anisotropy of theangular
distribution of fission fragments from the two-quasi-
particle isomer is shown in fig. 7. It is seen from this
figure to what extent the calculated results are sensitive
to variations of the parameter KZI and to the nature of
the y -transitions populating the th-quasipartlcle 17(yner.

The anisotropy experimental values for 28mf Pu/5/¢cor-
respond to the very low spin of the two-quasiparticle
isomer, (I=K ~1,2),and contradict the results based on
isomer ratio measurements (I=K=4).Under the experimen-
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Fig. 3. The anisotropy of the angular distribution of
fission fragments from the two-quaslpax}i;:le isomer of
233py, Experimental values are from ref. /5/  Solid curves
correspond to calculation version b), dashed curves stand
for version a).
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tal conditions described in ref./5/, the effect of hyperfine
nuclear interactions on the angular distribution of fission
fragments does not seem to play an essential role. There-
fore, this discrepancy is most likely to be associated
with the probability for decay of the two-quasiparticle
isomer to the ground state of the second potential well,
which was neglected in the angular distribution calcula-
tion. This decay channel yields the isotropic angular
distribution of fission fragments. There is no difficulty
in estimating the relative probabilityI! /" of this decay
channel. If one assumes that the two-ansiparticle isomer
has spin 1=K=4, the experimental data on the angular
distribution /3/ suggest I, /T ~2/3.

In conclusion it should be noted that the calculated
results presented in figs. 2 and 3 may be helpful for
estimating the spins of other two-quasiparticle states
produced by reactions of the type (a,2n).

The author is deeply grateful to Academician G.N.Fle-
rov for his interest in the work and Yu.P.Gangrsky and
N.Vilcov for helpful discussions.

References

1. Yu.P.Gangrsky, Nguyen Kong Khan, D.D.Pulatov, Pham
Zuy Hien. JINR Communication, P7-6466, Dubna, 1972.
Pham Zuy Hien. Yad.Fiz., 17, 489 (1973).

P.A.Russo, R.Vandenbosch, M.Mehta, J.R.Tesmer,
K.L.Wolf. Phys.Rev., C3, 1595 (1971).

. S.Limkilde, G.Sletten. Nucl.Phys., Al99, 504 (1973).
. E.Konecny, C.Kozuharov, H.J.Specht, J.Weber.
Jahresbericht des Universitit Miinchen, 1972.
R.Vandenbosch. Phys.Rev., C5, 1428 (1972).

H.Ejiri, G.B.Hagemann, T.Hammer. Statistical Pro-
perties of Nuclei, Albany (1971).

T.Hammer, H.Ejiri, G.Hagemann. Nucl. Phys., A202,
321 (1973).

. f.(lldg.;‘ze)rguson, H.Ejiri, I.Halpern. Nucl.Phys., Al88,
. N.D.Dudey, T.T.Sugihara. Phys.Rev., B139, 896 (1965).
. G.R.Huizenga, R.Vandenbosch. Nuclear Reactions,
vol. II, Amsterdam (1962).

-y
—

15




12.
13.
14.

15.
16.

17.

D.L.Shpak, Yu.B.Ostapenko, G.N.Smirenkin. Yad. Fiz.,
13, 950 (1970).

(Alé(éti_’l)bert, A.Cameron. Can.J. of Phys., 43, 1460
H.C.Britt, S.G.Burnett, B.H.Erkkila, J.E.Lynn,
W.E.Stain. Phys.Rev., C4, 1444 (1971).

I.R.Huizenga, G.Igo. Nucl.Phys., 29, 462 (1962).
G.S.Mani, M.A.Melkanoff, I.Iori. Rapport CEA,

No. 2380 (1963).

J.Damgaard, H.C.Pauli, V.M.Strutinsky, C.Y.Wong,
M.Brack, A.Stenholm-Jensen. Phys. & Chem. of
Fission, Vienna (IAEA, Vienna, 1969).

Received by Publishing Department
on August 24, 1973.




