H-15 **ОБЪЕДИНЕННЫЙ** ţ ИНСТИТУТ ядерных ИССЛЕДОВАНИЙ Дубна <u>C341.25</u>

E6-5379

. 3º/x1 - +

U. Hagemann, W. Neubert, W. Schulze

A (h_{9/2})² TWO-QUASIPARTICLE ISOMERIC STATE IN ²⁰² Po

E6-5379

3

£

U. Hagemann, W. Neubert, W. Schulze

A (h_{9/2})2 TWO-QUASIPARTICLE ISOMERIC STATE IN ²⁰² Po

Submitted to Nuclear Physics

1. Introduction

The two proton multiplet $(h_{9/2})^2$ with the spin sequence 2⁺, 4^+ , 6^+ , 8^+ appears with surprising regularity in the even-even 210,208,206,204 Po $^{1/}$ and performs isomeric polonium isotopes states with nanosecond half-lives. These states were observed when targets of enriched lead isotopes were bomarded with a -K -capture of the neutron-deficiparticles. A recent study of the 206, 204, 202 At shows, that the $(h_{a/2})^2$ band ent astatine isotopes in the polonium daughter nuclei is strongly populated $\frac{2}{2}$. Furthermore these studies suggest the possible existence of an isomeric in analogy to the other isomers in the even-even state in ²⁰²Po polonium isotopes.

2. Experimental Method

In order to study the neutron-deficient nucleus ²⁰² Po a nanosecond equipment was arranged at the U-300 Heavy Ion Cyclotron of the Laboratory for Nuclear Reactions, JINR Dubna. The extracted 82 MeV ¹²C -beam was collimated by a vertical slit in front of the last bending magnet and a graphit collimator of 10mm

diameter, placed in a distance of 4 m from the target position. The used target was a metallic foil of natural platinum (10.8 mgcm⁻²), which gave the interesting reactions ¹⁹⁵ Pt(¹²C, 5n) ²⁰² Po and ¹⁹⁴ Pt(¹²C, 4n) ²⁰² Po

The γ -spectra were measured with a 2.8 cm² x 11mm thin-window planar Ge(Li) detector. The fast output signal of the Ge(Li) detector was used to operate the start input of a time-topulse height converter and the r.f. signal induced by the cyclotron dees was used to generate the stop signal. The energy and the time signal were analysed by a two-dimensional pulse height analyzer. The 2048 channel memory was split into 256 channels for energy analysis times 8 channels for time analysis. The low frequency of the U-300 cyclotron allows time measurements up to several hundred nanoseconds. For ¹²C the time interval between two beam bursts amounts to r = 237 ns, and the beam bunch has a width of about 8 ns FWHM. Details of the experimental arrangement will be discussed in a forthcoming paper.

3. Results and Discussion

Fig.1 shows a part of the two-dimensional γ -ray spectrum. Three strong γ -ray transitions with energies 443, 571 and 677 keV and of nearly equal intensities were observed. Just these energies coincide with the strongest transitions in the ²⁰² At \rightarrow ²⁰² Po decay^{/2/}. Each of these γ -transitions follows a half-life of T χ = =165 ± 20 ns (Fig.2). The weak 526 keV γ -transition decays with T χ = 25 ± 10 ns. From the level systematics^{/1/}, the γ intensities of the prompt spectrum and results of the investigation of the radioactive decay^{/2/} we propose the level scheme shown in fig. 3. The transition energy is unknown, for the 8⁺ \rightarrow 6⁺ isomeric transition is missing in our spectrum. At first sight it seems impossible to deduce B(E2) values from the measured half-lives. It can, however, be shown that for a given half-life and the energy region between the L_2 and K electron binding energies (region I) and between the M_2 and L_3 binding energies (region II) the B(E2) value is energy independent $^{1/2}$. Thus we obtain the following B(E2) values (table 1).

With the method of delayed coincidences we also measured the half-life of the $I = 8^+$ state in 204 Po . A gold target was bombarded with 12 C ions in order to produce 204 At . The X -rays from the K -capture decay were detected with a NaJ(Tl) scintillator cemented to a FEU-36 photomultiplier tube. The fast pulses from the photomultiplier anode started the time-to-pulse-height converter. One of the prominent y -transitions²/² was selected in the stop-branch. A time spectrum obtained in this way is shown in fig.4. It was found that the 427, 517 and 686 keV cascade y =transitions have a delayed component with a half-life of T $\frac{1}{12}$ = = 140 + 5 ns.

The B(E2) values and the level spacings of the three nuclei $^{206, 204, 202}$ Po are very similar. Contrary to the pure two-quasiparticle spectrum in 210 Po in the neutron-deficient nuclei

^{206, 204, 202} Po the increased coupling of the two protons to the vibrating core causes a downward shift of the lower lying levels of the multiplet, and the spectrum gets a more vibrational like character. The upper high spin levels, however, remain nearly unchanged relative to the ²¹⁰Po levels. This indicates that the highly excited levels with high spin and seniority quantum members are predominantly pure configurations.

4

The authors wish to thank academician G.N. Flerov for his kind interest in this work and the staff of the U-300 cyclotron for the good cooperation. We are indebted to Mrs. I. Schulze for her help in data handlings.

6

References

1. T. Yamazaki. Phys.Rev., <u>C1</u>, 290 (1970).

2. T. Morek et al. JINR preprint, P6-4868, Dubna (1969).

Received by Publishing Department on September 25, 1970.

Table 1

Half-lives and B(E2) values for the $(h_{9/2})^2$ isomeric states in even-even polonium nuclei.

Nucleus	$T_{1/2} (8 + \rightarrow 6 +)$ ns	$B(E2)[e^{2} fm^{4}]$		Ref.
		Region I	Region II	
^{2 10} Po	110 <u>+</u> 10	90		1.
²⁰⁸ Po	380 <u>+</u> 10	25	100	1.
²⁰⁶ Po	160 <u>+</u> 40	63	250	1.
²⁰⁴ Po	140 <u>+</u> 5	72	286	p re sent work
²⁰² Po	165 <u>+</u> 20	61	242	presen t work

Fig.1. Part of the two-dimensional y-ray spectrum of a Pt + ${}^{12}C$ bombardment.

Fig.4. Time spectrum of the 517 keV y -transition in ²⁰⁴ Po obtained with delayed KX - y-coincidences of the ²⁰⁴At decay.

- 11