5197

СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна

Экз. ЧИТ. ЗАЛА

E6 - 5197

40-41

R. Broda, S. Chojnacki, Ch. Droste, T. Morek, W. Walus

> LONG LIVED STATES IN ²⁰⁴ Po AND ²⁰⁶ Po

E6 - 5197

R. Broda, S. Chojnacki, Ch. Droste, T. Morek, W. Walus

LONG LIVED STATES IN ²⁰⁴ Po AND ²⁰⁶ Po

1. Introduction

The purpose of this work was to study the level scheme of ²⁰⁴Po ²⁰⁶Po nuclei, which are of some theoretical interest. Po has and two protons outside the closed shell of 82 and this feature gives interesting scheme of the energetic states in even-even neutron-deficient isotopes. One might hope to understand their level structure in the first approximation, starting from the well known level schemes of ²¹⁰Po and ²⁰⁸Po. The irregularities we can see is the information about the interaction of the neutron-hole states with the two-proton states $(h9/2)^2$. In the previous paper $^{1/2}$ we have reported the level scheme of light Po isotopes as the result of EC-decay studies of neutron-deficient isotopes of At. We listed there many γ -lines which were not placed in schemes and the problem of evidence of 8+ state, as the one high-spin member of the band of levels resulting from the proton configuration $(h9/2)^2$, was open $\frac{5}{5}$. In this paper we give the additional information obtained by delayedcoincidence experiments. A general problem was to investigate the possible occurence of delayed transitions in the decay of $^{-204}$ At and 208 At . Lately T.Yamazaki/4/found short-lived isomers in these isotopes of polonium by in-beam studies. Yamazaki established the half-lives of this isomers as 190+20 nsec in $^{204}P_0$ and 160+40 nsec in $^{206}P_0$. This values differ from our results obtained from studies in the decays of 204 At and 206 At, however one can not say about rough disagreement (143+5, nsec for 204 Po and 212+5 nsec for 206 Po).

2. Experimental Method

The radioactive sources were obtained by irradiations of golden target on the external beam of the heavy-ion cyclotron U-300 in Dubna. Nuclei of At were produced in the reactions ¹⁹⁷Au(¹²C, xn)^{209-x}At as described in 1/1. The energies of ¹² C were 65 MeV (for ²⁰⁶At obtained) and 82 MeV (for ²⁰⁴At obtained). After the irradiation the samples without chemical separation were transported to the coincidence apparatus $\frac{7}{1}$. In the y - y coincidence measurement $1.5^{\prime\prime} \times 1.5^{\prime\prime}$ NaI(TI) scintillator coupled to RCA 6810A photomultiplier was used as the gate detector and 13 cm^3 Ge (Li) crystal was the analyser detector. As the fast coincidence circuit we used a time-to-amplitude converter (TAC) with time base set at 100 nsec, together with a pulse height descriminator. In order to investigate the γ -transitions connected with an isomeric state and populating the levels just below it, the delay of 170 nsec was put in the Na(TI) scintillation counter fast branch, and the energy of KX - rays was selected from its energy spectrum. Putting this delay in the Ge(Li) fast branch and analysing by scintillation counter the energy of any transition seen in above described delayed coincidence spectrum, we obtained on resulting analysed coincidence spectrum, the γ transitions connecting an isomeric state with excited states lying above it in energy. The obtained delayed coincidence spectra are shown in fig. 1 for 204 Po and in fig. 2 for 206 Po .

Life-time measurements were performed with NaI(TI)scintillators: 2.5''x 2.5" and 0.75"x1.25", coupled to RCA 6810 photomultipliers and a time-to-amplitude converter. The TAC was calibrated with delay cables which delays were known to an accuracy of 2%. The output from the TAC was linear against a delay in the interval from 10 nsec to 400 nsec and all the apparatus was checked many times in previous measurements of the life-times $\frac{6}{}$.

3. Results and Decay Scheme

Tables 1 and 2 show the experimental information on the strongest transitions in the 204 At and 206 At decays respectively in the energy range up to 1200 keV. They were previously reported in/1/ but now we give exact energies of the transitions and in the last column results of delayed coincidence are reported. Word "from" stands by transitions which are going from an isomeric level and word " on" means that the transition feeds an isomeric level. Some of the transitions are not observed in coincidence spectra but they can be placed in the scheme on the basis of the energy sums.

The time spectrum is shown in fig. 3. The presence of a "long-lived" component in this time spectrum proves that some unidentified level lying above strong cascade is populated at least partially by At decay. In 206 At decay was observed 212 ± 5 nsec component and in 204 At decay 143±5 nsec component. The placement of the "long-lived" states is based on the consideration that any level : 2+, 4+, 6+ can not have so long life-time. We have not observed any transition above 80 keV which can be "isomeric". By a comparison of the similar scheme in 210 Po and 208 Po (2,3) we proposed for this level spin 8+. Theory in this case/ 5/ predicts 0+, 2+, 4+, 6+, 8+ sequence for the lowest lying levels formed from the (h 9/2)² proton configuration. If this is correct the missing γ -ray transition would be of E2 multipolarity. The observed half-life of 200 nsec is quite reasonable for an E2 transition of less than 80 keV.

The decay schemes for 204At and 206At established on the basis of the coincidence spectra/ 1/, delay coincidence spectra and energy sums are shown in fig. 4. Since the energy of an isomeric level is undetermined we do not give the energies of any level built on it.

The authors are grateful to Professor G.N. Flerov for permanent interest and to the group of cyclotron U-300 for good work of accelerator.

References

1. T. Morek et al. JINR Preprint, P6-4868, Dubna (1969).

2. W. Treytl, E.K. Hyde, Y. Yamazaki. Nucl. Phys., A117, 481 (1968).

- 3. T. Yamazaki, G.T. Ewan. Phys.Lett., 24B, 278 (1967).
- 4. T. Yamazaki, Talk at International Conference on "Radioactivity in Nuclear Spectroscopy" Nashwill, August, 1969. Phys. Rev. C1, 290 (1970).

5. Y.E. Kim, J.O. Rasmussen, Nucl. Phys., <u>47</u>, 184 (1963).

6. A.J. Akhmadzhanov et al, JINR Preprint, E6-3905, Dubna (1969). 7. T. Walczak at al, JINR Preprint, 13-4025, Dubna (1968).

Received by Publishing Department on June 22, 1970.

TABLE 1

Transitions in ²⁰⁴Po

	distant second second second		
E _y	I _y	Multipolarity	Delay
327	5 1 1		
336	6∓1		and the second second
426,0	66 ∓ 5	· E2	from
516,3	95 ∓9	E2	from
490 , 0	5 ∓1 ·		
588 , 4	9 ∓1		on
609,5	21 ∓ 2	M1	on
684 , 5	100	E2	from
761,9	5∓1		
842	9.72		

. 6

TABLE 2

Transitions in ²⁰⁶Po

Ε _γ	Iγ	Multipolarity	Delay
231,2	weak		
255,4	5 ∓1	M1+E2	
277,6	471		
386,0	471		
395,5	42 ∓ 4	E2	from
416	weak		
443	3 ∓1	· · · · ·	n
476,9	82 7 8	E2	from
526,7	weak		
615,1	7 7 2	м1	ΠO
700,3	100	E2	from
733,3	1172		
922,7	6∓2		
956	weak		
961,5	weak		
1013	weak	· · ·	on
1058	weak		on

Fig. 1. Results of $\gamma - \gamma$ -delay coincidence measurement of 204At radiations. Curve A shows γ -rays delayed of 170 nsec in respect to KX-rays. Curve B shows transitions feeding the "isomeric" state.

8

Fig. 2. Results of $\gamma-\gamma$ - delay coincidence measurements of ²⁰⁶At radiations. Curve A shows γ - rays delayed of 170 nsec in respect to KX-rays, Curve B shows 'transitions feeding the "isomeric" state.

Fig. 4. Level schemes of P_0 isotopes.