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MU ANg BEBIIETOB.
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Wavelet Shrinkage and Mutual Information

The paper deals with the key question for the prediction gain analysis, how
much information about the future values of a process can be obtained
from the past. A new criterion is introduced for the best wavelet shrinkage estima-
tor. The paper was motivated by three goals: find new valuable components
for predictors, have a tool to characterize the de-noised signals received
by wavelet shrinkage, apply the mutual information function to wavelets.

The investigation has been performed at the Laboratory of Computing Tech-
niques and Automation, JINR.
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1. Introduction

One of the striking problems in the time series analysis and signal processing is the
question of prediction and its quality. If there is no a priori knowledge on the optimal
predictor and the prediction gain is based on the error of the predicted signal, the
achieved prediction gain will depend strongly on the prediction model chosen. There
is another approach to assess the prediction gain, which is independent of a special
predictor implementation. The paper [1] assesses the achievable maximum of the
prediction gain using an information theoretic quantity, known as the mutual
information. It proves that for stationary processes the upper bound of the achievable
maximum of the prediction gain depends linearly on the mutual information function.

In the eighties the main prediction tool was the Box-Jenkins methodology. Then one
began to use the neural networks and afterwards came the wavelets. The wavelets are
used for prediction very often in combination with neural networks. This work is on
wavelets and mutual information function, it shows how one can assess the
information gain of the de-noised signals and so select new components with high
degree of information for predictor.

The wavelet shrinkage, the theory and methodology for nonparametric regression and
smoothing [4], [5], [7] refers to signal (function, curve) reconstruction from noisy
data obtained by wavelet transformation, followed by shrinking the empirical wavelet
coefficients towards zero, finished by inverse wavelet transformation. Shrinking noisy
wavelet coefficients via thresholding offers very attractive alternatives to existing
noise reduction methods, such as splines, linear filters, or kernel smoothers. Unlike
these traditional methods of recovering signals from noisy data, which either suppress
noise, but erase certain features or leave features sharp, but does not really suppress
the noise, wavelets are able to achieve noise suppression by removing the noise from
signal while preserving the features (spikes, discontinuities). The questions connected
with the degree of smoothing by wavelet shrinkage are not completely answered by
now. We offer to apply to this problem the mutual information function.

The sections 2, 3 give the basic definitions and concepts of wavelet analysis and
wavelet shrinkage. Section 4 is devoted to the short description of the mutual
information function. Section 5 contains results of the application of the mutual
information function to wavelet de-noising.

2. Wavelet decomposition

The main result of the one dimensional wavelet analysis is the (wavelef)
decomposition of the signal y
yty=D +D,+---+D, +8, ¢))
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at (multi-resolution) level J on the base of the wavelet transformation
c =W pxn y nxl1 2 (2)

nxl1

where

S, =2 5,8, Dy()=duw,0,)=1J,

the (wavelet) basis functions gi(r) and wj(f) are the scaled and translated versions of
the father and mother wavelets §(f) and yAt) respectively

1t NS Y L
(0,/,(’)‘—'F(0('27—k), ij(t)=—;'//(?-k)’.] =1,J,

and the coefficients ¢= [ s; dj, dy.;, ..., dj] are given approximately by integrals ( if
n=2""! thenin dj the' shift index & changes from one to w?)

sy~ [YOpudt, dy~ [y, dnj=17.

The wavelet decomposition (1) is achieved by two steps. In the first step one
computes the wavelet coefficients ¢ by the discrete wavelet transformation (DWT). In
the second one the detail and smooth approximations D, D, .., D; and S; are
evaluated by the inverse discrete wavelet transformation (IDWT). The DWT (2) and
IDWT are realized not by matrix multiplication, but by the fast forward and backward
pyramidal algorithms, which use low-pass (for s) and high-pass (for ) filter
convolutions along with down-sampling and up-sampling, respectively. The scheme
of the forward pyramidal algorithm is shown in figure 1.

L s Ly s LY S5
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H{ ; d H d, H d

Fig. 1 Forward pyramidal algorithm

The result of the first step of wavelet analysis, the wavelet coefficients, may be
visualized by stem plots, see figure 2, or as a time-scaled plot (see {3]). The
coefficients dy, d», ..., ds in figure 2 are plotted on the same vertical scale. As we see,
the DWT can compact the energy of a signal into a relatively small number of wavelet
coefficients.

For the approximations Dy, D;, ..., Ds and Ss continuous plots are used, see figure 3.
Mention must be made that in according with the pyramidal algorithm the smooth
approximations Sy, S, ..., Ss may be viewed too, where Si.; = D; + S; (=D;+...D,+S)).
From the analysis of the wavelet coefficients and approximations by different wavelet
families (or wavelet packet families) one can conclude which wavelet and multi-
resolution level give the most appropriate decomposition for a given signal. From
figure 3 we can conclude, that for the given wavelet the multi-resolution level 4 is
sufficient, for the detail approximations begin to behave from level five as a smooth
one with negligible amount of noise.
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Fig. 2 Smooth and detail coefficients
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Fig. 3 Smooth and detail approximations
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3. Wavelet de-noising

For de-noising orthogonal wavelets are used, so from the orthonormal wavelet
transformation

c=Wy=W(f+¢e)=Wf +We,
it follows that the white noise effects all wavelet coefficients.

It was D. Donoho's idea ([4], [5]) to begin the de-noising process not with the detail
approximations D;, but with the detail coefficients d; and then compute the wavelet
approximations by IDWT on the base of the new, de-noised coefficients. Wavelet de-
noising is performed by shrinking the wavelet coefficients towards zero. To carry out
the wavelet de-noising one has to chose the shrinking rule (from soft, hard ...
shrinkage functions), the values of threshold . and scale of noise o (they are needed
for the shrinking function).

It is shown (see [4], [7]) that for appropriate choices of 4; the wavelet shrinkage
gives nearly the best possible linear or non-linear estimate of f{f) for a board class of
functions from the Besov space B in the sense

. . 2
infsup|l £, - f 2,
7 feB
i.e. we want the worst error to be as small as possible when o tends to zero.

Figures 4, 6 show several reconstructed de-noised signals computed by symlet
wavelets at different levels for noisy (signal to noise ratio SNR=1) sin x and generated
process with three periods (see fig.5). Wavelet de-noising can be tuned using different
wavelets, levels and shrinking parameters. So far there is no clear-cut rule to say
which one of the de-noised signals is the appropriate. We will characterize them by
the mutual information function.

4. Mutual information function

Mutual information is a fundamental concept of information theory. It is defined as
the relative entropy between the joint probability density and the product probability
density of random vectors %, y by ([1], {6])

1G,5)= [ [pEHnLED g5 45

p(X)p(y)

or for discrete random vectors with probability mass functions p(.) by

I 5y P
@)=L PENh o



The mutual information measures the information that one random vector contains
about another one. The basic properties of the mutual information are the following.
The mutual information is ([1]):

o symmetric /(X,y) = I(y,X);

e nonnegative /(X,y)20;

o /(X%,y)=0 if and only if the vectors ¥ and ¥ are statistically independent;

. lAl_rg I°(%,y) = I(%, ) if the continuous probability density functions are

Rieman-integrable.

The auto-mutual information function was introduced for (strictly) stationary
stochastic processes in [6] and generalized for any stochastic process in [1]. The
mutual information function (MIF) is defined as

Mo (L) =1(Z(0), y(t+ 1)),

where ¥(f)and y(¢) are (in general) n-dimensional processes, e.g.
ORI AOSAORNEAGH

The MIF measures the information contained in one signal about the other for every
time lag L. The investigation of signals by MIF is similar to the correlation analysis.
The main difference between them is that the MIF reflects both linear and nonlinear
system properties. :

The main properties of the mutual information function and the auto-mutual
information function M 7.7 (L) = 1(y(0), y(L)) for stationary processes are:

* Mg,(1,L)20;
d Mf,f €)= Mf,f (-L);
o for the prediction gain

_ EQ®)
G,(L)=10log EG (L)
it holds

G,(L)<6.02(M ,(L)+AH),

where AH is the entropy difference between the entropy of a Gaussian random
variable with variance equal to £(*(f)) and the entropy of y(r).

The last property implies that the information gain for stationary processes
independently of the generating system (linear or nonlinear) underlying y(f) and the
predictor type can not be greater than the linear combination of the MIF and the
entropy difference.
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In the next section we will be interested in M ), Where y, y=J,, stand for the

one dimensional original signal and the de-noised one (its estimation by wavelet w at
level j), respectively. M ., represents the amount of information that one can know

about the future values of signal y that are separated by the time lag L from y. On
the computation of M, see [2], [6].

5. Wavelet de-noising and the MIF

In this section we apply the signal analysis method based on-the MIF to the
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characterization of the de-noised signals received by wavelet shrinkage.

sin3 sind
To perform a wavelet shrinkage one has to choose first of all a wavelet, a multi- 03 Ottt il ‘ l
resolution level and set the shrinking parameters. Different choices give different 0.25 l il
estimators. It is hard to conclude which de-noised version is better. Figure 4 shows ’ 005 } ' ’
that de-noising at a higher level results in a smoother estimation, but from the 02 j ‘ l : ! |
smoothest one some important information may be swept out. The situation in fig.6 is 0.1 ’ i
even more intricate. The de-noised signals copy two different periods. Which period 0.15 i ,
carries more valuable information about the original signal, its future? We can TR 0.18 i
conclude observing the corresponding MIF in figure 4 (the auto-MIF is at bottom) o1 oy e bl | fi b § i o l
that more smoothing must not imply greater information gain, greater values of MIF oos I “ s ,} i ,_ p ;sl b ni | l i
(from the given three estimators the de-noised signal at'level 5 gives the maximal AAEAELEEL e l il i , 028

information gain 0.281).

It would be desirable to have an analytical rule to say which wavelet shrinkage
estimation is the best (in some sense). We offer to use the criterion (M/ criterion)

1S . .
n,}‘j‘.‘z Z(M 9,,,,y(L)(‘)_ M, 0y(D)- 3
’ i=1

So if we want to use one of the de-noised versions of a signal as a predictor
component, we have to choose the estimation, which gives the maximum average

difference between M, and M, ., .

Figures 7, 8 show the values of Ml criterion (3) for noisy processes generated with
two different SNR's. The wavelet shrinkage estimators were computed by DWT using
default settings of wavelet shrinkage and orthogonal wavelets (5 coiflets, 7 symlets
and 9 daublets) at every available level. We see, that the estimators received by the
Haar wavelet (daublet 1) give in three from four cases the maximal difference (at
levels 8, 8, 10). Figures 9, 10 show the original signals, their best MI estimators and
the values of the corresponding MIFs. It is well known what role the zero (constant)
process plays in estimating the white noise. Figure 10 shows the best MI estimator in
presence of large noise tends to a constant value.
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For non-stationary signals the mutual information function M; ., = I(3(#),y(t,L))
depends on 1. We analyzed M ,,, with different lengths of y and the Haar wavelets

gave in general the maximum average difference.

6. Conclusion

The paper analyzed the wavelet de-noising and mutual information. It offers a new
way one can look at the wealthy world of de-noised signals obtained by wavelet
shrinking due to the introduced criterion. The mutual information function, by which
one can characterize the de-noised signals from the viewpoint of prediction gain,
seems to be a promising new tool not only for choosing new predictor components,
but also for the wavelet analysis itself. The study has to be extended to some other
important aspects and techniques in wavelet analysis, as e.g. the use of wavelet packet
transformation.
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