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The paper deals with the key question for the prediction gain analysis, how 
much information about the future values of a process can be obtained 
from the past. A new criterion is introduced for the best wavelet shrinkage estima­
tor. The paper was motivated by three goals: find new valuable components 
for predictors, have a tool to characterize the de-noised signals received 
by wavelet shrinkage, apply the mutual information function to wavelets. 

The investigation has been performed at the Laboratory of Computing Tech­
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1. Introduction 

One of the striking problems in the time series analysis and signal processing is the 
question of prediction and its quality. If there is no a priori knowledge on the optimal 
predictor and the prediction gain is based on the error of the predicted signal, the 
achieved prediction gain will depend strongly on the prediction model chosen. There 
is another approach to assess the prediction gain, which is independent of a special 
predictor implementation. The paper [l] assesses the achievable maximum of the 
prediction gain using an information theoretic quantity, known as the mutual 
information. It proves that for stationary processes the upper bound of the achievable 
maximum of the prediction gain depends linearly on the mutual information function. 

In the eighties the main prediction tool was the Box-Jenkins methodology. Then one 
began to use the neural networks and afterwards came the wavelets. The wavelets are 
used for prediction very often in combination with neural networks. This work is on 
wavelets and mutual information function, it shows how one can assess the 
information gain of the de-noised signals and so select new components with high 
degree of information for predictor. 

The wavelet shrinkage, the theory and methodology for nonparametric regression and 
smoothing (4], (5], [7] refers to signal (function, curve) reconstruction from noisy 
data obtained by wavelet transformation, followed by shrinking the empirical wavelet 
coefficients towards zero, finished by inverse wavelet transformation. Shrinking noisy 
wavelet coefficients via thresholding offers very attractive alternatives to existing 
noise reduction methods, such as splines, linear filters, or kernel smoothers. Unlike 
these traditional methods of recovering signals from noisy data, which either suppress 
noise, but erase certain features or leave features sharp, but does not really suppress 
the noise, wavelets are able to achieve noise suppression by removing the noise from 
signal while preserving the features (spikes, discontinuities). The questions connected 
with the degree of smoothing by wavelet shrinkage are not completely answered by 
now. We offer to apply to this problem the mutual information function. 

The sections 2, 3 give the basic definitions and concepts of wavelet analysis and 
wavelet shrinkage. Section 4 is devoted to the short description of the mutual 
information function. Section 5 contains results of the application of the mutual 
information function to wavelet de-noising. 

2. Wavelet decomposition 

The main result of the one dimensional wavelet analysis is the (wavelet) 
decomposition of the signal y 

y(t),,,D1 +D2 + .. ·+DJ+S., (1) 

© Joint Institute for Nuclear Research. Dubna, 1999 

2 

at (multi-resolution) level Jon the base of the wavelet transformation 

cnxl = wnxnYnxl' 
(2) 

where 

S/f) = "'f,s1k¢/t), D/t) = "'f_d1krp/t),j = 1,J, 
k k 

the (wavelet) basis functions ¢Jk(t) and lf/Jk(t) are the scaled and translated versions of 
the father and mother wavelets </J(t) and 1/f(t) respectively 

I t , 1 t -
<pjk(t)= fi]<p(2j -k), f//Jk(t)= fi]f//(21-k),j=I,J, 

and the coefficients c= [ s1, d1, d1.1, ... , di] are given approximately by integrals ( if 
n=J:'+1, then in '4k the"shift index k changes from one to nli) 

SJk "'fy(t)<pJk(t)dt, djk"' fy(t)rpjk(t)dt,j=I,J. 

The wavelet decomposition (1) is achieved by two steps. In the first step one 
computes the wavelet coefficients c by the discrete wavelet transformation (DWT). In 
the second one the detail and smooth approximations Di, D2, ... , D1 and S1 are 
evaluated by the inverse discrete wavelet transformation (IDWT). The DWT (2) and 
IDWT are realized not by matrix multiplication, but by the fast forward and backward 
pyramidal algorithms, which use low-pass (for s) and high-pass (for d) filter 
convolutions along with down-sampling and up-sampling, respectively. The scheme 
of the forward pyramidal algorithm is shown in figure I. 

Lt q Lt 
So(=y) ~:: ~:: .................... SJ.1~~J 

Fig. 1 Forward pyramidal algorithm 

The result of the first step of wavelet analysis, the wavelet coefficients, may be 
visualized by stem plots, see figure 2, or as a time-scaled plot (see [3]). The 
coefficients d1, d2, ... , d6 in figure 2 are plotted on the same vertical scale. As we see, 
the DWT can compact the energy of a signal into a relatively small number of wavelet 
coefficients. 

For the approximations Di, D2, ... , D6 and S6 continuous plots are used, see figure 3. 
Mention must be made that in according with the pyramidal algorithm the smooth 
approximations S1, S2, ... , S5 may be viewed too, where ~-I = D1 + ~ ( =D1+ ... D1+S1), 
From the analysis of the wavelet coefficients and approximations by different wavelet 
families (or wavelet packet families) one can conclude which wavelet and multi­
resolution level give the most appropriate decomposition for a given signal. From 
figure 3 we can conclude, that for the given wavelet the multi-resolution level 4 is 
sufficient, for the detail approximations begin to behave from level five as a smooth 
one with negligible amount of noise. 
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Fig. 2 Smooth and detail coefficients 
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3. Wavelet de-noising 

For de-noising orthogonal wavelets are used, so from the orthonormal wavelet 
transformation 

c =Wy=W(f +c) =Wf +We, 

it follows that the white noise effects all wavelet coefficients. 

It was D. Donoho's idea ([4], [5]) to begin.the de-noising process not with the detail 
approximations D;, but with the detail coefficients d; and then compute the wavelet 
approximations by IDWT on the base of the new, de-noised coefficients. Wavelet de­
noising is performed by shrinking the wavelet coefficients towards zero. To carry out 
the wavelet de-noising one has to chose the shrinking rule (from soft, hard ... 
shrinkage functions), the values of threshold A. and scale of noise cr (they are needed 
for the shrinking function). 

It is shown (see [4], [7]), that for appropriate choices of A; the wavelet shrinkage 
gives nearly the best possible linear or non-linear estimate of j(t) for a board class of 
functions from the Besov space B in the sense 

i11f sup 11 J w - f II; , 
I feB 

i.e. we want the worst error to be as small as possible when cr tends to zero. 

Figures 4, 6 show several reconstructed de-noised signals computed by symlet 
wavelets at different levels for noisy (signal to noise ratio SNR=l) sin x and generated 
process with three periods (see fig.5). Wavelet de-noising can be tuned using different 
wavelets, levels and shrinking parameters. So far there is no clear-cut rule to say 
which one of the de-noised signals is the appropriate. We will characterize them by 
the mutual information function. 

4. Mutual information function 

Mutual information is a fundamental concept of information theory. It is defined as 
the relative entropy between the joint probability density 'and the product probability 
density ofrandom vectors x,y by ([1], [6]) 

/(- -) f f (- -)I p(x,y) d- d-x,y = ... p x,y n _ _ x y, 
p(x)p(y) 

or for discrete random vectors with probability mass functions p(.) by 

1" (x -) = "" (x -) In p(x, ji) . ,y L,L,P ,y (-) (-) -' v pxpy 
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The mutual information measures the information that one random vector contains 
about another one. The basic properties of the mutual information are the following. 
The mutual information is ([I]): 

• symmetricl(.x,ji) = J(ji,x); 

• nonnegative I(x,ji) ~ O; 

• J(x,ji) = 0 if and only if the vectors x and ji are statistically independent; 

• Jim 16 (.x, ji) = J(x,ji) if the continuous probability density functions are 
tl➔O 

Rieman-integrable. 

The auto-mutual information function was introduced for (strictly) stationary 
stochastic processes in [ 6] and generalized for any stochastic process in [I]. The 
mutual information function (MIF) is defined as 

M x,/t,L) = I(x(t),ji(t + L)), 

where x (t) and ji(t) are (in general) n-dimensional processes, e.g. 

ji(t) = {y,(t),y2(t),.,.,yn(t)}. 

The MIF measures the information contained in one signal about the other for every 
time lag L. The investigation of signals by MIF is similar to the correlation analysis. 
The main difference between them is that the MIF reflects both linear and nonlinear 
system properties. 

The main properties of the mutual information function and the auto-mutual 
information function Mf.i'(L) = I(ji(O),ji(L)) for stationary processes are: 

• M x,r(t,L) ~ O; 

• Mr.r(L)=Mr,r(-L); 

• for the prediction gain 

G (L) = IO log E(y
2
(t)) 

Y E(t:2(L)) 
it holds 

Gy(L):,; 6.02(My,r (L) +!ill), 

where !ill is the entropy difference between the entropy of a Gaussian random 
variable with variance equal to E(y(t)) and the entropy ofy(t). 

The last property implies that the information gain for stationary processes 
independently of the generating system (linear or nonlinear) underlying y(t) and the 
predictor type can not be greater than the linear combination of the MIF and the 
entropy difference. 
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In the next section we will be interested in M;,,y(LJ• where y, j, = .Yw,J stand for the 

one dimensional original signal and the de-noised one (its estimation by wavelet w at 
level j), respectively. M ;,.y(LJ, represents the amount of information that one can know 

about the future values of signal y that are separated by the time lag L from j,. On 

the computation of M;,,y(LJ see [2], [6]. 

5. Wavelet de-noising and the MIF 

In this section we apply the signal analysis method based on the MIF to the 
characterization of the de-noised signals received by wavelet shrinkage. 

To perform a wavelet shrinkage one has to choose first of all a wavelet, a multi­
resolution level and set the shrinking parameters. Different choices give different 
estimators. It is hard to conclude which de-noised version is better. Figure 4 shows 
that de-noising at a higher level results in a smoother estimation, but from the 
smoothest one some important information may be swept out. The situation in fig.6 is 
even more intricate. The de-noised signals copy two different periods. Which period 
carries more valuable information about the original signal, its future? We can 
conclude observing the corresponding MIF in figure 4 (the auto-MIF is at bottom) 
that more smoothing must not imply greater information gain, greater values of MIF 
(from the given three estimators the de-noised signal at· level 5 gives the maximal 
information gain 0.281). 

It would be desirable to have an analytical rule to say which wavelet shrinkage 
estimation is the best (in some sense). We offer to use the criterion (Ml criterion) 

L' 
~!Y ~ ~(MYw,j,y(L)(i)-My,y(L)(i)), (3) 

So if we want to use one of the de-noised versions of a signal as a predictor 
component, we have to choose the estimation, which gives the maximum average 

difference between M ;,,y(LJ and M y,y(LJ . 

Figures 7, 8 show the values of MI criterion (3) for noisy processes generated with 
two different SNR's. The wavelet shrinkage estimators were computed by DWT using 
default settings of wavelet shrinkage and orthogonal wavelets (5 coiflets, 7 symlets 
and 9 daublets) at every available level. We see, that the estimators received by the 
Haar wavelet (daublet 1) give in three from four cases the maximal difference (at 
levels 8, 8, 10). Figures 9, 10 show the original signals, their best MI estimators and 
the values of the corresponding MIFs. It is well known what role the zero ( constant) 
process plays in estimating the white noise. Figure 10 shows the best MI estimator in 
presence oflarge noise tends to a constant value. 
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For non-stationary signals the mutual information function Mj;,y(I,) = /(y(t),y(t,L)) 

depends on t. We analyzed My,y(L) with different lengths of y and the Haar wavelets 

gave in general the maximum average difference. 

6. Conclusion 

The paper analyzed the wavelet de-noising and mutual information. It offers a new 
way one can look at the wealthy world of de-noised signals obtained by wavelet 
shrinking due to the introduced criterion. The mutual information function, by which 
one can characterize the de-noised signals from the viewpoint of prediction gain, 
seems to be a promising new tool not only for choosing new predictor components, 
but also for the wavelet analysis itself. The study has to be extended to some other 
important aspects and techniques in wavelet analysis, as e.g. the use of wavelet packet 
transformation. 
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