


1 Introduction. Notation. Formulation of
results

We consider the equation
—u" + f(uP)u = du, uw=u(z), z € (0,+00), < (1)
supplied with bbundary conditions of one of the following two kinds:
u(0) = p, w(0) =0, sup u(z)] < oo @)

u(0) = 0, «'(0) = p, sup |u(z)] < co. 3)

Hereafter all quantities are real, A € R is the spectral parameter, f is a
given function such that f(u?}u is continuously differentiable with respect
tou € R, and pis an arbitrary positive parameter fixed throughout the pa-
per. In view of our assumption on the function f, for the Cauchy problem -
for the equation (1) with arbitrary initial data standard local theorems of
existence, uniqueness and continuous dependence on the initial data and
the parameter A take place. We understand the condition (2) (resp. (3))
in the sense that the solution of the Cauchy problem for the equation (1)
with the initial data u(0) = p, «'(0) = 0 {resp. u(0) =0, ¢'(0) = p) can
be continued on the whole half-line z > 0 and that this continuation is
bounded on this half-line. Everywhere further under solutions of various
Cauchy problems we mean solutions continued on maximal intervals of
their existence. We also note that the case p < 0 can obviously be re-
duced to the considered one by the change of variables u(z) — —u(z) (if
p =0, then u(z) = 0 for all z € R and any A € R for each of the problems
under consideration; so this case is trivial). In addition, since each of the
boundary conditions (2} and (3) contains Cauchy data as a part, for each
value of the parameter A at most one function u(z) satisfying the problem
(1),(2) or (1),(3) can exists. If a pair (A, u), consisting of a real number A
and a twice continuously differentiable function u = u{z) of the argument
z > 0, satisfies the problem (1},(2) or (1),(3), then we call X the eigenvalue
and u{z) the corresponding eigenfunction of this problem. For each of the
problems (1),(2) and (1),(3) we call the set A of all its eigenvalues the
spectrum of this problem. We shall also denote by u(}, z) elgenfunctlons
indicating explicitly their dependence on A € A.



In the present paper, our assumption about the function f is the
following.

(f) Let f(s) be a real-valued continuvous monotonically nondecreasing
function of the argument s > 0 and let f(u?)u be a continuously differen-
tiable function of the argument u € R.

The assumption (f) is valid, for example, for f (s) = |s|* with a nonnega-
tive constant 4.

We introduce the following notation. By Ls{a,b), where —oo <

a < b £ +oco, we denote the usual Lebesque space, consisting of real-

valued functions of the argument z € (e,b), square integrable between a
b

and b, with the scalar product (v, v}, = [ u(z)v(z)dz and the norm

[t zatoy = (22, w3, 5y We st e(k,z) = peos % for the problem (1),(2)
so that —e?_(k,z) = z(k)e(k, z) e(k,0) = p, el(k,0) = 0 where z(k) =
(%)-2, and e(k,z) = v 'pksinZE in the case of the problem (1),(3), so
that again —e”_ = z(k)e(k,z), e(k,0) =0, e.(k,0) = p and z(k) = ()
in this case. Also, let I(z) = 2z+1 for the problem (1),(2) and I(z) = z+1
for the problem {1),(3). For any g¢(-} € L2(0,00) let §(-) € L2(0,00) be its
renormalized Fourier transform such that

R
Aim o)~ [aerree el o,
0 L2(0,0)

where g = 0 for the problem {1),{2) and ¢ = 1 for the problem (1)
Then, for g(k) = k"'g(k 1) we have

=]

lim g( )~ /fj(k)k_qe(k, -)dk =0

T=—t+0
T L2 (0,00)

By L we denote the set of all functions g(-) from L,(0,00) for each of
which §(-) is continuous on (0,00) and there exist a,b: 0<a<bd<
such that §(k) = 0 for k € (0,a) U (b,00). Let /; be the space consisting
of square summable sequences a = {4o, @1, .y @, -..) of real numbers a,

1
= _ @ab, and the norm [lall, = (a,a)f
n=0

with the scalar product (a,d),
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{here b = (bo,by,...,bp,...) € L3} and let, for a Banach space B with a
norm ||-||g, £{B; B) be the space of all bounded linear operators 4, D, ...
from B in B with the norm {|A||cs8 = sup  [|Au||p. Finally, by

vEB: |lul|lp=1

C, Cy,C, €7, CY, ... we shall denote positive constants.

Questions of expansions on a segment of functions from spaces, con-
taining as a part the set of all continuous functions, over eigenfunctions
of nonlinear boundary-value problems with denumerable spectra are con-
sidered in a number of papers (see, for example, [1-7]). In the monograph
(1], some interesting results in this direction are established. In the first
author’s paper {2], in which the following eigenvalue problem is considered

¥+ f(" =My, y=y(z), z€(0,1),

¥(0) = y(1) =0,

1

/ Y (o)dz = 1

with a function f satisfying the hypothesis (f), there was obtained a re-
sult on the possibility of such an expansion of an arbitrary function from
L3(0,1). This result is also reestablished (without proofs) in [3]. However,
we have to note that the paper [2] contains some errors which fortunately
can be corrected. We carry out these corrections in Appendix of the
present paper. Also, problems similar to that mentioned were considered
by the author in [4-6]; in these articles the property of being a basis in the
space Ly (the property of being a Riesz basis in some cases) for systems
of eigenfunctions of these problems is proved (we especially mention the
paper [5] were an independent proof of the above-indicated result from [2]

. is presented). In [7], also the following boundary-value problem (without

a spectral parameter) is considered:
u’+g(uP)u =0, u=u(z), u(0)=u(l)=0

with
9(0) <0 and lir+n g(r) =

It 1s proved in this paper that there exists sgp < 0 such that an arbitrary
system of solutions of this problem, which for any integer n > 0 possesses



a unique solution with precisely n zeros in the interval (0,1), is a basis in
the Sobolev space H” if 5 < 3.
In the present paper, our main result is the following.

Theorem Under the hypothesis (f}
(a) A = [f(p?), +00) for the problem (1),(2) (we denote X = f(p?) in this
case) and in the case of the problem (1),(3) there exists X > f(0) such that
either A = [A, +00) or A = (A, +o0);
(b) for each A € (A, +oo) there exists a minimal positive zero k = k()
of u{A,z) as a function of the argument z € (0, +o0); the function k :
(X, +o0) — (0,+00) is continuously differentiable, K'(A\) < 0 for any A €
(A, +o0), and Ali&nok(A) = +00, AliI_]ZEl k(A) = 0. By A = A(k) we denote

— —+co

the function with the domain (0, +o0) inverse to the function k(A);
(¢) for any function g(-) € L continuous on (0,c0) there exists a unique
function (k) of the argument k > 0, continuous on the half-line {0,400},
for some b > 0 satisfying the estimale

G(k)| < Ck3, ke (0,8, (4)

with a constant C > 0 independent of k € (0, 5] and the condition g(k) =0
for k > b, such that for any point = > ( the following equality takes place:

b

o(z) = ] g(k)k~Tu(A(k), 2)dk. (5)

o

Remark 1. As it is proved further (see Lemma 1), for any k > 0 there

exists C' > 0 such that sup Ju(A(k),z)| < Ck? for all k € (0, %]}, so that
TE(0,00)
the right-hand side in (5) is well-defined.

Remark 2. The expansion (5) stated by the Theorem is obviously an
analog for our nonlinear case of the expansion in the Fourier integral which
is associated with a linear self-adjoint eigenvalue problem. We also note
that, with our Theorem, we do not strive to obtain a maximally strong
result, but we want only to demonstrate a possibility of the expansion of
an arbitrary function” in an integral over eigenfunctions of each of our
nonlinear- problemis. ' S

Remark 3. The author does not know nontrivial examples of the
function f for eigenfunctions of the problem (1),(2) or (1),(3) being rep-
resentable as superpositions of elementary functions.

Remark 4. Since the Fourier transform is a linear one-to-one map-
ping from L,(0, co) on L2(0, 00} continuous with the inverse one, the set
L is dense in L3(0, c0). Therefore, our Theorem yields a property in the
space L2(0,00) of the systems of eigenfunctions {u(A(k),%)}e>0 of the
problems (1),(2) and (1),(3) analogous to the completeness.

Remark 5. Concerning applications of our results, we believe that,
with possible further developments of this direction, eigenfunction expan-
sions associated with nonlinear differential equations can be useful, for
example, in the Fourier and Galerkin methods for solving various non-
linear equations, in particular, nonlinear Schrédinger, wave and diffusion
equations. ‘

In Section 2, auxiliary results used for proving the Theorem are
presented. Section 3 contains the proof of our Theorem. In Appendix, as
we already noted, we present corrections to the paper [2].

Everywhere in the next sections except Appendix it is accepted that
the assumption (f) is valid. '

2 Auxiliary results
Consider two Cauchy problems for the equation

-+ Yy =My, y=y(z), >0 (6}

with the initial conditions
y(0) =p, ¥'(0)=0 (N
or o
y(0) =0, ¥'(0) =p. (8)

The following result is proved in [4,6] for the problem (6}),(7) and in [6]
for the problem (6),(8).



Proposition 1. There ezists A > f(p?) (precisely X = f(p*) for the
problem (6),(7)) such that
(2) for any XA > A the corresponding solution of the problem (6),{7) (or
(6),(8)) can be continued on the whole real line and there exists a contin-
uously differentiable function zo(A) > 0 of the argument A > X such that
zh{)) < 0 for all X > X, the solution y(z) of the problem (6),(7) (resp.
(6),(8)) is positive on (0,20(A)) and y(zo(X)) = 0;
(b) if A = X, then y(z) = p for the problem (6),(7) and if A < X, then
the solution y(z) of the problem (6).(7) (or (6),(8)) is unbounded in the
magzimal interval of its ezistence from (0, +00); _
(c) for any a,b: X < a < b for the corresponding solutions y,(z) and y(zx)
of the problem (6),(7). (or (6),(8)) taken with A = a end A = b, respectively,
forallz € [0, k(b)) the following inequality takes place: y.(z) > y(z). In
addition, in the case of the problem (6),(7) |y(z)| < p for all X > X and
all z € R;
(d) any solution y(z) of the equation (6) is odd with respect to an arbitrary
its zero T and is even with respect to any point T such that y'(Z) =0, i
eeyt—z)=y(E+z)andy(T—2)=—y(T+z) forallz € R;
(e) )Iim z0{A) =0 and lim =zo(A) = +o0;

—Foo R W )

(g) for any A > X the zeros of the corresponding solution y(z) of the
problem (6),(7) {resp. (6),(8)) are precisely the poinis I(m)zo(A) where
m=0,+1,+2, ..

Remark 6. Proposition 1 immediately implies statements (a) and (b)
of our Theorem with k() = zo(A).

In what follows, for the simplicity of the notation we rename by
u(k, z) the eigenfunction u(A(k), z). Further, in view of Proposition 1, for

any k> 0 .
)\(m) <"'<’\(l(in)) <.

are all values of the parameter A which are greater than X and for which
the corresponding solutions y,(k,z) of the problem (6},(7) {or (6),(8)) be-
come zero at £ = k. In addition, for any n = 0,1,2,... and a fixed & > 0
the function y,(k, z) has precisely n zeros in the interval (0, %). The fol-
lowing statement is proved in [4,6] for the problem (6),(7) and in [6] for
the problem (6),(8).

Proposition 2. For any fized k > 0 the system of functions
{ya(k, ) Jamo1,2.... 15 @ basis in the space L2(0,k), 1. e. foranyg € L2(0, k)
there exists o unique sequence {a,}n=01.2,... of real numbers a, such that

g(-) = i anyn(k,-) in the sense of the space Ly(0, k). In addition, clearly
n=0

ya(k,z) =u (l-(k;), x).
In what follows, we exploit some ideas used earlier for proving this state-
ment in the above-indicated papers. For this reason, though in further
considerations we do not prove Proposition 2, we believe that these con-

siderations clarify the main idea of its prool.
According to Proposition 2, for any k > 0 there exists a unique

sequence of real numbers {dn(k)}n=0,2,.. such that

(k) = gdn(k)u (I(in) ) (9)

in the space L2(0,k). Further, since e(k,z} as a function of the argu-
ment = with a fixed k& > 0 is odd with respect to any its zero and is
even with respect to any zero of its first derivative and for the functions
u (T’:a)" z) this property is valid due to Proposition 1 and since in addition
in view of Proposition 1 each zero of the function ek, z) is also a zero of
each function u (E‘%,m), the equality (9) holds in each space La(z1,72)
where £, < z, are two arbitrary nearest zeros of the function e(k, z).
Thus, the equality (9) is also valid in the space La(a, b} with arbitrary
g,b: —oo<a<b<+oo.

Lemma 1. For any k > 0 there exists C > 0 such that for all k €

(0, %] one has
ie(ks .'L‘) - u(k, I)l <Ck, z€ R,

for the problem (1),(2) and
le(k,2) — u(k,2)| < CF, z€R,

for the problem (1),(3)- :

Proof. The proof of Lemma 1 in fact repeats the proof of an analogous
statement for a linear problem from [8] (see Lemma 1.7 from [8]). We
sketch this proof for the convenience of readers.



Take an arbitrary k > 0. The uniform boundedness of the family of
functions {u(k, z)} (7 With respect to = € R following from Proposition
1 and the standard comparison theorem imply the existence of D > 0 such
that .

|A(k) —2(R)| < D : (10)

for all k£ € .(0,%]. We consider only the problem (1),(3) because for the
problem (1),(2) the proof can be made by analogy. So, one can easily
verify that any solution u(k,z) of the problem (1),(3) with a sufficiently
small &£ > @ for any = = 0 satisfies the equation

u(k,z) = pA~F (k) sin(AF(k)zx)+

FATE(E) f sin{ AR (k) (z — £)} F(u?(k, )k, t)dt (11)

(since due to Proposition 1 kliTO A(k) = 400, the right-hand side of (11) is

well-defined for all sufficiently small &£ > 0). Therefore, due to the uniform
boundedness of the family of functions {u(k,z)}yqox we get from (11)
for all sufficiently small k£ > 0 and all z € [0, k]:

[u(k, @) — pA~2 (k) sin(A} (E)z)| < C1A™2 (k)

with a constant C; > 0 independent of the above = and k. Applying this
estimate to the integrand from the right-hand side of (11), we obtain

lu(k, z) — pA~% (k) sin(A5 (E)z)| < CpA7 (k)
with a constant C» > 0 independent of sufficiently small £ > 0 and z €

[0, k). In addition, since for the problem (1),(3) due to (10) A(k) > Cak~?
for all sufficiently small &k > 0 and

le(k,2) — pA3 (k) sin (M (R)a)] < CA~(B)

with positive constants (3 and C4 independent of sufficiently small k > 0
and z € [0, k], we get

le(k, ) — u(k,z)] < Csk?

with a constant (5 > 0 independent of suﬂicientiy; small £ > 0 and
z € [0,k]. Finally, in view of Proposition 1 the latier estimate holds
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for all £ € R. Thus, Lemma 1 is proven.l

One can easily see that for arbitrary k > 0 and integer n > 0 the

form an orthogonal basis in the space

functions {e( _-_I(n;;(m) , :xz}mz0 o

L2 (0, ﬁ) Hence, we have

() - Lo (i)

in the sense of the space L (0, T’;)-) Also, as in the case of the expansion

(9), the latter expansion holds in the space Ly(a,b) with arbitrary —0 <
a < b < +oo. Therefore, for any k > 0 we have the sequence of expansions

u (7(%) = gbn,,,;(k)e (1%)  n=0,1,2,..,  (12)

held in the sense of the spaces L2(0, k) and Ly(a,b) with arbitrary a,b:
—00 < a < b < oo where by (k) = ¥, (k) if [(m} = I(n)l(r) for some
r=90,1,2, ... and by (k) = 0 otherwise. Thus B(k) = (b (§) Jnm=0,12,...
is an upper triangular matrix and, for any n,

(5 o )+ (7)) ™

becaunse the functions u (z{—ij,z) and e (%, :z:) are of the same sign. So,

in (12)

bun(k) =

bpm(k) =0 if i(m) # l{n)l(s) for all s = 0,1,2,...

and b, .(k) > 0foralln=0,1,2,.. (13}
We also remark that generally speaking the properties (13) do not yleld
the completeness of the system of functions u z_(kﬁ’ . }n—Ol , in the

space L2(0, k) (see a counterexample in [7]).
Let for any k > 0 and numbers n >0 and m > 0

(<) =+ (=) (o)
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-1

G b

(75 M e (5)
Then, due to (12)-(14)

a(l—(’;—) ) = S (ke (l(im) ) =012 (15

m=0

-1

and Enrm(k) = by (14)

Ly (0,k) 'L:(o.k)

in the spaces L2(0, k) and Ly(a, b) with arbitrary a,b: —c0 < a < b< +oo
where

bam(E) =0 (n>m) and B,a(k) >0 (R=0,1,2,...).  (16)

Lemma 2. For each k > 0 u(k,z) as a function of the argument
z € [0,%] is concave. For any k > 0 m{g.)ilﬁ(k,:c) € {k'%,x/gk"%] and for
z€|0,

any & > 0 there ezist ¢,C : 0 < ¢ < C such that ck#+9 < |Julk, )|ro00 <
Ck=*e for all k € (0,%]. In addition, by ,(k) > b for all k > 0 where
b= 4272 '

Proof. First of all, obviously B, (k) = boo [ 5 ). We state that for
== ’ Y\ Hn)

any k> 0 u(k,z) as a function of the argument z € [0, k] is concave. To
prove this fact, it suffices to show that u/ (k,z}) < 0 for all z € [0,%]. In
the case of the problem (1),(2) the latter fact follows from the equation
(1) because due to Proposition 1 A > f(p?) and u(k,z) > 0 for z € [0, k).
Let us show this inequality for the problem (1),(3). Suppose this is not
right and there exist £ > 0 and zp € (0, k) such that u_(k, zo) > 0. Since
due to Proposition 1 u (k +x) = u (k z —x) for a]l z € R, we can
accept that zo € (0, %) But then, we ha,ve u(k,zp) > 0, ul{k,z0) > 0
and ul_(k,zo) > 0, therefore, in view of the equation (1) and due to the
fact that f(s) is a nondecreasing function of the argument s > 0, we
immediately derive that u(k, z) > u(k, z0), u(k,z) > 0 and v (k,z) > 0
for all £ > =z¢ for which this solution exists. Thus, we get the contra.dlctlon
and the concavity of the function u(k, z) for z € [0, k] is proved.

The second and third statements of Lemma 2 easily follow from this
concavity. Indeed, consider, for example, the problem (1),(3). Then, we
have for R(k,z) = 2k~12% (k, %) (here, due to Proposition 1, z = £ is the
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unique point of the maximum of the function u(k, z) on [0, £]):

k
k_. k _ . k
4 5) =2 [ Bk, )iz < fa(h, oy = 1 < 4 (k, -2—)
0

and therefore T (k,%) = m{g.x]u(k ,Z) € [k“%,\/gk‘%’]. The estimate
T€

for {lu(k,-)||z.(0.%) can be obtained by analogy with the use of Lemma 1
and the uniform boundedness of the family of functions {u(k,z}},cop
following from Proposition 1. Finally,

bD,O(k) 2 Q(R(k?m)vg(ksz))Lé(O,g) 2 B

for all k£ > 0. For the problem (1),{2) the second and third statements of
Lemma 2 can be proved by analogy. Lemma 2 is proven.D

For a matrix 4 = (ai;)ij=01.2,.. we set t{A) =< > af’j . Also,

1,7=0
for two infinite matrices Ay = (af;)ij=012,. and A* = (a?;);j=012.. we
define their sum A; + Az and product A;A; in the usual way, so that
for example, (A1 A42)i;- E aj aZ ; assuming these infinite sums to be

m=0

converging {otherwise the product A;A; is not determined).
Let 6ppn = 1 and 6,n = 0 for m # n.We introduce the following
matrices:

Bo(k) = (Bn,m(k)6n,m)n,m=0.l,2,...a A= (én,m)n,mzﬂ,l,z,...;

Bi(k) = (1 = 8am ) (Ban (k) " bnim (k) )nym=0,1 2,..
Then, B(k) = (bam (k))nm=0,1.2.... = Bo(k}(A + Bi(k)).

Lemma 3. For two arbitrary mairices An = (a:-’l‘j ij=01.2,.., M =
1,2, satisfying the condition t(An) < co, m = 1,2, the product A1A; is
determined, 1(A1As) < 1(A1)t(A2) and t(A; + Az) < 1{A;) + t{A,).
Proof. Let us take arbitrary numbers z and 5. Then,

N N
IENERD o )} {s (am,f}
m=M m=M m=M

i1



as M, N — oo, therefore the matrix A; A, is determined. Further,

1
s 2) 2

t(AlAg { E ( E afm mj) } S
1,7=0 \m=0 )

< {z (Z(az.mf) (men.,f)} (A,

i,j=0 \m=0 m=0

The inequality t(A; + Az) < t(A1) + t(A2) can be obtained by analogy
with the use of the Minkowski’s inequality. Thus, Lemma 3 is proven.O

Lemma 4. Let A= (a;,j),-‘j.;o,llg,_,_ and f(A) < 0. Then, Ac E(Ig; 12)
and {|Al| gy < tHA)-

Proof. For an arbitrary u = (uo, u1y..eyUn,...) € I In view of the .

Holder’s inequality the product Au is determined and we have

(1A, = {i (iu) } <
< {Zﬂ (ZG ’1?.5) (Z; ”:2)} = [jull5,t(A),

and Lemma 4 is proven.D

Remark 7. One can prove by analogy with Lemmas 3 and 4 that
for any two matrices A and B, satisfying the conditions ¢{(A) < oo and
t(B) < o0, and a vector u € I; one has A(Bu) = (AB)u. This implies in
particular that for any two operators A and B from £(lz;;), being ma-
trices which satisfy the conditions #(A} < oo and ¢(B) < oo, the product
of these matrices corresponds to the preduct of operators.

Lemma 5. There exists ky > 0 such that the matriz B(k) with an
arbitrary k € (0, k1] belongs to L(l; 1), ¢(Bi(k)) < X and, as an operator
from L(ly;15), B(k) has an inverse operator T(k) = [B(k)]™* € L{Iz; 1),
which can be represented as an infinite upper triangular matriz T(k) =
(tnm(k))nimm0:2,... With tnn(k) = b, (k) such that {(T(k)—[Bo(k)]™1) < 1
(here [Bo(k)|™! is the diagonal matriz with ([By(k)] ™ )pmn = _;;(k))-
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Proof. By Proposition 1 and Lemmas 1 and 2, for any 8 € (0,1)
there exists £ = E(8) > 0 such that ¢(Bi(k)) < B for all k£ € (0,k].
Hence, in view of Lemma 4, as it is well-known, for each of those £ and
an arbitrary k € (0, k] there exists an operator T{k) inverse to B(k) in
the space L{lz;13),

T(k) = (A + i(—l)mB{" (k)) [Bo(k)I™*

m=1

Further, by Lemmas 2 and 3

-t((i(—l)mBI"(k)) [Bo(k)]-l) Y-

m=1 m=1

and by analogy

M . : .

¢ (( 3 (—1)mB;’=(k)) [Bo(k)]-i) 0 as My, My — co.
m=My

Therefore, the operator T'(k) can be written as a.n mﬁmte upper triangu-

lar matrix and, taking 8 € (0,%) so small that 2 (1—3-)- 1 and choosing

ky = k(B), we get the statement of Lemma 5.0

Lemma 6. For any k > 0 there exists C > 0 such that in (15),(16)
(B ()| < CEHE(n)I™* (m)
for any s = 1,23, all k € (0,k] and all numbers n and m. Thus in

particular for any E > 0 there ezists C > 0 such that [bo,(k)| < Ci~3(n)
for all k € (0,k] and n=0,1,2,.

Proof. Take an a.rbitrary E > 0. In some places of this proof we use
the uniform boundedness of the family of functions {u{k,z)};eg With
respect to z € R, following from Proposition 1, and the estimate (10). At

first, let us show the existence of U} > 0 such that

d*u(k,z)

< —s=% =1,2 :
d:}:s _C1k , 8 3 ,3, (17)

for all k € (0,%] and z > 0. We first consider the problem (1),(2). Due to
Lemnma 2 we have in this case

Cy k% < [fulk, )lzaon < Cok? (18)

13



for a constant Cy > 1 independent of k € (0, £]. Multiplying the equation
(1), written for u(k, z}, by 2u,(k, =) and integrating from 0 to z, in view
of {2} we get the identity

[k, )+ P, I).) — F(p%) = Mk)u*(k,2) — ME)p®, z € R,

where F(z) = [ f(r)dr, which together with (18) due to (10) implies (17)
with s = 1. Tlfen, from the equation (1), written for u(k,z), and (18) we
derive (17} with s = 2. Finally, differentiating the equation (1), written
for u(k, z), over z, due to (18) and (17) with s = 1 we get (17) with s = 3.

Consider now the case of the problem (1),(3). Multiplying the equa-
tion (1), written for u(k, ), by 2ul(k,z) and integrating between § and
z, in view of (3} we get

—[ul(k, 2)]* + p* + F(u*(k,z)) = Mk?(k,z), z€R. (19)

Then, due to Lemmas 1 and 2, there exists C3 > 1 such that C7'k <
lu(k, z)| < Csk and C5 k3 < |Julk,-)||Laox < Csk? for all k € (0,%) and
z € R in this case. Hence, multiplying (19) by k3, due to Lemma 1 and
(10) we derive the estimate

[, (k,z)| < Cuk™2

with a constant Cy > 0 independent of k& € {0,%] and of z € R. By
analogy, we derive from the equation (1)

[, (k,z)] < Csk™%

forall k € (0,k] and z € R. These estimates yield (17) with s = 1,2 for the
problem (1),(3). The estimate (17) with s = 3 in the case of the problem

(1),(3) can be obtained by analogy with the use of the differentiation of the -

equation (1), written for u(k, z), over z. So, the estimate (17) is proved.

Now, we recall that b, (k) = 0 if I{m) # I(n)l(d) for all d =
0,1,2,....Let numbers n,m and d be such that {{m) = I(n)i(d). Con-
sider for the definiteness the problem (1),(2) and s = 3. Using {17) and
the integration by parts, we get

|8 (B)| = jﬁ (%,x) € (R%z) dz| <

14

k
5. d3 _ k . wl(m T 7 _
< kazl S(m) d—ﬁu (I(_‘nj, l') sin ( Qk) ) dz _<_ 01112(’&)1 3(m)
0

with positive constants Cyp and Cy; independent of k > 0 and of numbers
n and m. For other values of s and for the problem (1),(3) proofs are
completely analogous. Lemma 6 is proven.O

Now, for arbitrary £ > k; and integer M > 0 consider the matrices
Bug(k) = (bum (k) iz a0d Taa(k) = [Baa(R) = (¢4 (B)),cmr
The trivial observations are that the matrices Ty (k) are upper trian-
gular and that for any fixed indices n and m the element t}! (k) does
not depend on the number M > M; = max{n;m} and we rename it
simply by t,m(k). So, for any k£ > k; we can construct an infinite
matrix T'(k) = (tnm{k))nm=012... Further, one can observe that, com-
pletely as in the proof of Lemma 5, for any & > k, there exists a num-
ber N, independent of k& € (ki,k| such that for the matrix BN (k) =
(bn,m (K))nm=nNy41.M,42... there is an upper triangular matrix T™ (k) =

(tnm (B} nm=m, +1.,42,., Where ¢, (k) = 5,::1(14:), for all k£ € (ky, k] satis-

[==] Q —_— —
fying the condition 3, 3 (#,,.(k))* < T with a constant T > 0 de-
n=MN;+1 m=nit}

pending only on & > k; and such that T (k) B (k) = BM (kYT™ (k) = A
(since the matrices 7™ (k) and B (k) are upper triangular, expressions
for elements of their products contain only finite sums). In addition, one
can easily verify that ], , (k) = tn,m(k) for all n,m > N,.

Lemma 7. For any k > k, there ezists C > 0 such that for any

k € (0, k] the following estimates take place:
lam(k)| < CE@R)3(m), n,m=0,1,2, ..

Thus in particular for any k > 0 there ezists C > O such that |ty (k)| <
Cl-3(n) for all k € (0,%) and alln =0,1,2, ...

Proof. For arbitrary nonnegative integer n and m let N = max{n;m}
and B, .(k) be the matrix obtained from Bx(k) by taking away the mth
row and the nth column of the latter. Then,

tam(k) = (—1)™""det[Bnn(k)] X det[Ty(k)], n,m=0,N. (20)
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Clearly det[Bn (k)] = 0 if m < n. For m > n we obviously have

—1

det[Bum (k)] —H””(’“ H B () xdet{ S (2D)

=0 r=m+l
where
bn,n.—i—l bn,n-i—2 ------- _bn.m-l _bn,m
: bn+1.n+1 Eﬂ+1,n+2 ------- §n+1,m—1 é’n+l,m
B:nn(k) = 0 bn+2,n+2 ....... bn+2,m_1 bn+2,m
0 0 bm—l,m—-l bm—l.m

- qe -1 T
In this matrix, let us subtract the first column, multiplied by b, 11 115n41,m5

from the last column, the second column, multiplied by 3,::_2‘“ +23n+2'm,
from the last column, and so on. At the last step of this process me
subtract from the last column the next to the last column multiplied by
3;1 Lme1Pm—1,m- Then, we get the matrix all elements of the last column
of which, except the element in the first row are equal to zero and the

element in the first row is equal to dnm — Z b,?,b,,mbnlr- Hence,
r=n+l

m—1
H brr x ]: M Z b br,m.gn,r]
r=n+1l r=n41

Thus, taking also into account Lemmas 2 and 6 with s = 3, (20) and (21),
we get the existence of C; > 0 and C > 0 such that

|det( B, o (k)]| =

() < BB |3 {‘ mzf b,.,b,mbm] <
<G [I%(n)l‘?’(m) + Ti (I%(r)z"f*(m)z%(n)z—3(r))] < CylE (n)l "3 (m)

for all k € (0, %] and numbers n and m, and Lemma 7 is proven.C

Remark 8. Let £ > k; and let Ny > 0 be the number defined be-
fore Lemma 7. According to Lemma 7 there exists T > 0 such that

16

14

E 2 (k) < T for all n = 0, Iv;. Hence, Z E t2 (k) < oo, therefore

m=0 n=0 m=n+1

T(k) € L(ly;1;) and also, since T(k)B(k) = B(k)T(k) = A by construc-
tton, T'(k) is an inverse operator to B(k) in the space l,. Further, due to
Proposition 2 and the arguments after it

5 (ﬁ—) ) = g du (k)T (,‘(%v ) » n=0,1,2,..

for some real coefficients d...(k), such that d..(k) = 0if I(r) # I(n)I(d)
for all d = 0,1,2, ..., in the spaces L;(0,k) and Ly(a,b) with arbitrary
a,b: —0o < a < b < co. Multiplying step by step these equalities by

a(ﬁ) . m = 0,1,2,..., we easily derive that dy,(k) = t.(k) for all
n,r and k; in particular, toln(k) =dp{k), n=0,1,2,...

Lemma 8. For any k > O the series from the righi- hand side of {9)
converges uniformly with respect to k € (0,%] and z € R. Coefficients
ton(k) = dn{k) in (9) are continuous functions of the argument k > 0.

Proof easily follows from Lemma 7 and the fact, presented with
Proposition 2, that for any & > 0 the system of functions

{ﬁ (1-(-%, )} ons is a basis in the space [2(0,%).0
Lemma 9. Let g(-) € L. Then, for any point x > 0 of the continuiiy
of the function g{-) the following equality takes place:

b

g(z) = / GRYe %e(k, z)dk.

24

Proof is obvious.Od

Lemma 10. For any k > 0 there ezists C > 0 such that

Q). Nraoamnr e, I osayey < CH()

and
Hu(l(n)k: ')[;h(o,l(n)k)”e(k’ ')”I_J:}(O,I(n)k) < Clq('n,)

for all k € (0,%] and all numbersn = 0,1,2, ...
Proof easily follows from Proposition 1 and Lemma 2.0
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3 Proof of the Theorem

Let us take an arbitrary continuous function g(-) € L where g(k) = 0 if
k € (0,a) U (b, c0) for some a,b: 0 < a < b < 0. Due to Lemmas 8 and

9 we have for any point = > 0:

]

2= S et Mo
(7" i59)]

o(z) = Z/ (B ek, Mlzatoryx

n=0

(),

k
tom{k)u (—,I) dk =
Lok (n)
oo I~ (n)b

=3 ] 1=9(n)§(1(n)k)e|le(U(n)k; -)|lLa0ami) X
7=0-1(n)a

x|k, Mpaosmymytonll(n)k)ulk, z)dk. (22)

o0
X
n=0

Therefore,

Further, for
an(k) = P (m)3((n))to n (U YEN e(U(m), Niraoempm | 6(Es M 2 oue
we get by Lemmas 7 and 10 and the finiteness of g(-)
' |ga(R)] < CI3(n) (23)

for a constant C > 0 independent of k € (0,5] and of n. Using (23), we
get the existence of C; > 0 such that

Ylgn <o S rEmcok (24)

n==0 n: ak—1<I{n)<bk=1
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for all & € (0, #); also, obviously

> lga(k) =0 (25)

n=0

for k£ > b.
We set

gk) = ga(k)

n=0
Then, it is clear in view of (24) and (25) that g(-) is 2 continuous function
obeying the estimate (4) and that §(k) = 0 if £ > b. Hence, in view of
(22) for any z > 0: :

g(z) = f G(EYE~"u(k, <) dk.

Thus, the first part of our Theorem (the existence of the expansion (5))
is proved.

Let us prove the last statement of our Theorem, i. e. the uniqueness
of the expansion (5). Suppose the existence of a continuous function
g(-) € L such that for all z > 0

o@) = [TRk k), i=12
o

where §,{k) # g,(k) (k > 0) are two finite continuous functions obeying
the estimate (4). Then, for g(k) = g,(k) — g,(k) we have

f@(k)k'”u(k,x)dk =0, z>0, (26)
0

and g(k) is continuous, obeys the estimate (4), is not equal to zero iden-
tically on the half-line k > 0, and g(k) = 0 if & > b, for some b > 0.
Now, due to (15), (26) and Lemma 6 for any z > 0

b
= /g(k)k‘qHU(ka')lle(o.k)x
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( I(n)’ ) :(u.k)e <_l(%m)} *

where the infinite sum in the integrand converges to %(k, =) uniformly with
tespect to k € (0,5} and z € R. Hence, for any z >.0

2l

n=0

" =1 {n)b
0=%" ] B3 (n)g(H(n) k) [u(l(n)k, )] a0, 10m8) X

x||e{k, ')l{E:(o,g(n)k)&.n(l(n)k)k—qe(k: z)dk.

Let

ga(k) = P (n)G(H(n)E) | [u(I(r)k, )| oo timiy 1€(R NI Taio sgmyry d0n (H()E).
In view of Lemmas 6 with s = 3 and 10 we have

lgn(k)| < CI73(n)k™%
for a constant C > 0 independent of £ € (0,b] and of n = 0,1,2,...
and g.(k) = 0 for £ > b. Therefore, the function g(k) = 3 gn(k) is
=0

determined, is continuous on the half-line £ > 0 and equal to zero for
k > b, and obeys the estimate (4). Also, as earlier

b o0
]f (k)k %e(k,z)dk = /r'zf(r"l)r"e(r'l,:c)dr =0, z>0.
0 -1

Hence, since §(r) = r=2g(r~') € L,(0, c0), we have that §(-) is a (renor-
ahzed) Ly Fourier transform of the identical zero, and therefore §(r) =

0, 7> 0. But letting P = {k > 0: g(k) # 0} and & = sup P and taking

ko € (0,F) N P so close to k that I(1)ky > &, we get g(ko) = go(ko) # 0, i.

e. we get the contradiction because §(-) is a continuous function. Thus,

our Theorem is completely proven.O

4 Appendix

Here I briefly consider corrections to my paper [2]. In what follows, the
numeration of formulas and the notation from that paper is used. First
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of all, in the paper [2] we confuse several times with the concepts of the
completeness and the linear independence of a denumerable system of
functions in L3{0,1) on the one hand and the property of being a basis
for such a system of functions in L;{0,1} on the other hand. Of course,
generally these properties are not equivalent. Further, in [2] there are
several errors in the proof of Theorem 1. Arguments of this paper are
sufficient for proving the completeness and linear independence in L,(0, 1)
of the system of functions (6) with n > N;. However, in general this does
not imply the completeness in L(0,1) of the system {un{An, ) }n=012....
in the case when this system is linearly independent, as far as in general
it is not right that the codimension of the closure L™ of the linear span of
the functions :

{ue(Aks ) Hemnmtr,ne 2,0 (*)

where n > Nj, is equal to n. Here we correct these mistakes for which we
first show that the system of functions (%) is a basis of the subspace L™ if
the number n > N is sufficiently large.

Lemma. There exist N > N; and constants ¢,C : 0§ < ¢ < U such
that for any real coefficients a = (an,an+1,0N42....) € Iy the following
inequalities take place

N\ || |
C(Zak} S!!Eakuk\)\k,-)l

E=N i1La(0,1} Nk=

Proof is completely analogous to the proof of Lemma 4 from the
paper [2].

Let n > N be aroitrary. The above Lemma easily yieids thas the
system of functions (%) is a basis of the space L” and that the infinite sum
> .
3 ague(Ae, ) converges in Ly(0,1) if and only if @ = (an, @1, @ntz, ) €
k-'n.
2. {The formal proof of these facis i is very simple. On this subject, see
also J9-11]. Bases {ui} C L2(0,1) for which the infinite sum } azux with

k
real coefficients aj converges in L2(0,1) if and only if {a;x} € L are also
called the Riesz bases, see [9-11].)
Let us now prove that for » > N the system of functions (6) is a
basis in L2(0,1). By P, we denote the orthogonal projector in Lz(0,1)
on the subspace L". Set uf = P,ui(A,,-) and ve = uz(Aa,-) — uj where
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k =0,n — L. Then, the functions vz, £ = 0,7 — 1, are orthogonal to the
subspace L™; in addition, using the fact that the system of functions (x)
is a basis of the space L™, we easily get that these functions are linearly
mdependent (if we assume the linear dependence of these functions, then
we immediately get the linear dependence of the system (6)). But then,
since the system of functions (6) is complete in L3(0,1), the system of
functions vy, ..., ¥n—1, Un{An, ), Unt1{Ant1,-), --- is complete in L2(0, 1), too,
therefore the functions wvg,...,vn_1 form a basis of the orthocomplement
L% of the subspace L™ (in particular, the codimension of the subspace
L™ of the space L(0,1) is equal to n). In addition, since the system of

functions () is a basis in L™, the functions ui are representable in the

form uf = 5. 65 up(Am,-) where k = 0,n — 1 and the series converge in

M=T
L,(0,1). Take an arbitrary g € L2(0,1). Then, we get

n—1 o0 00 n—} ]
g = z akvk+z akuk()\k, ) = Z akuk(A;(k}, -)—z aj Z bium(Am, ) =
k=0 k=n k=0 k=0 m=n

= Z drug( Mgy, - )s
k=0

where l(F) = nifk < nand (k) = kfor k > n, dp = a3 for k =
n—1

0,n—1, dp =ar~ Y. ax,b] for £ > n and the convergence of all series is
m=0

understood in the sense of the space L,(0,1). Thus, in view of the linear

independence of the system of functions (6) with n > N, we have proved
that this system is a basis of the space Ly(0,1) if n > N.

In complete analogy, assuming the linear independence of the system
of functions {#(An, ) }a=01,2,.. and using the facts that for n > N the sys-
tem of functions (%) is a basis of the subspace L™ and that the codimension
of this subspace is equal to 7, one can show that the system of functions
{tn{An; ) }n=0.12... is a basis in L5(0,1). We also remark that, since as it

oo
is proved earlier, if n > N, then the infinite sum ) arur{)g,-) converges
. k=n

o0 o0
in L5(0,1) when and only when 3 af < oo, the series Y a,u.(Mn,-) con-
f=n =0

oo
verges in L;(0,1) when and only when Y a2 < o0, i. e. in this case the

=0

systemn of functions {tu.(As,)}n=01,2,... is 2 Riesz basis in L,(0,1).
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If the system of functions {u,(As,)}n=0,12... is linearly dependent in
L3(0,1), then using similar arguments one can prove that it is incomplete
in L3(0,1) (for this aim one should use the facts that, first, for n > N the
system of functions (%) is a basis in L™ and that the codimension of this
subspace is equal to n and, second, that from the linear dependence of the
system of functions under consideration we get the linear dependence of
the functions vy, ..., va—1 introduced earlier).

In my opinion, the above-described arguments make complete the
proof of Theorem 1 and the proofs of all other results from my paper [2).
In addition, in view of the above-written, Theorem 1 and the statement
{b) of Theorem 2 can be formulated as follows.

Theorem 1. Let the assumption (V) be valid. Then, for a standard
system of functions {un(As, ) }n=o,,2... to be complete in the space Lo(0,1)
it is sufficient and necessary for this system of functions to be linearly
independent in L,(0,1). Further, if the indicated system of functions is
linearly independent, then it is a Riesz basis in L2(0,1).

(b) the system of eigenfunctions {un(z)}nz012. . of the nonlinear
problem (3)-(5) is a Riesz basts in [,(0,1).

The investigation is supported partially by RFFI, grant No 98-01-
00190
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