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1 Introduction. Notation. Formulation of 
results 

We consider the equation 

-u" + f(u2)u = >.u, u = u(x), x E (O,+oo), (1) 

supplied with boundary conditions of one of the following two kinds: 

u(O) = p, u'(O) = 0, sup [u(x)[ < oo (2) 
x>O 

or 
u(O) = 0, u'(O) = p, sup [u(x)[ < oo. (3) 

x>O 

Hereafter all quantities are real, >. E R is the spectral parameter, f is a 
given function such that f( u2 )u is continuously differentiable with respect 
to u E R, and pis an arbitrary positive parameter fixed throughout the pa
per. In view of our assumption on the function f, for the Cauchy problem 
for the equation (1) with arbitrary initial data standard local theorems of 
existence, uniqueness and continuous dependence on the initial data and 
the parameter>. take place. We understand the condition (2) (resp. (3)) 
in the sense that the solution of the Cauchy problem for the equation (1) 
with the initial data u(O) = p, u'(O) = 0 (resp. u(O) = 0, u'(O) = p) can 
be continued on the whole half-line x > 0 and that this continuation is 
bounded on this half-line. Everywhere further under solutions of various 
Cauchy problems we mean solutions continued on maximal intervals of 
their existence. We also note that the case p < 0 can obviously be re
duced to the considered one by the change of variables u( x) -> -u( x) (if 
p = 0, then u( x) = 0 for all x E R and any >. E R for each ofthe problems 
under consideration; so this case is trivial). In addition, since each of the 
boundary conditions (2) and (3) contains Cauchy data as a part, for each 
value of the parameter >. at most one function u( x) satisfying the problem 
(1),(2) or (1),(3) can exists. H a pair (>.,u), consisting of a real number). 
and a twice continuously differentiable function u = u( x) of the argument 
x ~ 0, satisfies the problem (1),(2) or (1),(3), then we call>. the eigenvalue 
and u( x) the corresponding eigenfunction of this problem. For each of the 
problems (1),(2) and (1),(3) we call the set A of all its eigenvalues the 
spectrum of this problem. We shall also denote by u( >., x) eigenfunctions 
indicating explicitly their dependence on >. E A. 
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In the present paper, our assumption about the function f is the 
following. 

(f) Let f(s) be a real-valued continuous monotonically nondecreasing 
function of the arguments :2: 0 and let f(u 2 )u be a continuously differen
tiable function of the argument u E R. 
The assumption (f) is valid, for example, for f(s) = lsi' with a nonnega
tive constant q. 

We introduce the following notation. By L2 (a, b), where -oo ~ 
a < b ~ +oo, we denote the usual Lebesque space, consisting of real
valued functions of the argument x E (a, b), square integrable between a 

b 

and b, with the scalar product (u,v)L,(a,b) = J u(x)v(x)dx and the norm 
a 

l 
lluiiL,(a,b) = (u, u)£.(a,b)' We set e(k,x) = pcos ;~ for the problem {1),{2) 
so that -e;,(k,x) = z(k)e(k,x), e(k,O) = p, e~(k,O) = 0 where z(k) = 
(:;;J 2

, and e(k,x) = ,.-'pksin ~; in the case of the problem {1),(3), so 

that again -e~. = z(k)e(k,x), e(k,O) = 0, e~(k,O) = p and z(k) = (I) 2 

in this case. Also, let l(x) = 2x+1 for the problem (1),(2) and l(x) = x+ 1 
for the problem (1),{3). For any g(·) E L2 (0,oo) let.§(·) E L2 {0,oo) be its 
renormalized Fourier transform such that 

R 

R~'i'oo llg(·)- j g(r)r'e(r-
1
,·)drll = 0, 

0 L,(O,oo) 

where q = 0 for the problem (1),{2) and q = 1 for the problem {1),{3). 
Then, for g(k) = k-2g(k-1 ) we have 

00 

lim llg(·)~Jg(kW'e{k,·)dkll =0. 
r-+O 

r IIL,(O,oo) 

By L we denote the set of all functions g(·) from L2(0, oo) for each of 
which g(-) is continuous on {0, oo) and there exist a, b : 0 < a < b < oo 
such that g(k) = 0 fork E (O,a) U (b,oo). Let 12 be the space consisting 
of square summable sequences a = (a0 , a1, ... ,an, ... ) of real numbers an 

00 ' 

with the scalar product (a,b)1, = 2: anbn and the norm llalh, =(a, a)~ 
n=O 

2 

l~i 

{here b = (bo,b, ... ,bn, ... ) E l2) and let, for a Banach space B with a 
norm ll·lla, .C(B; B) be the space of all bounded linear operators A, D, ... 
from B in B with the norm IIAiic(B;B) = sup IIAuiiB· Finally, by 

uEB• ll•lls=l 
C, C, C2, C', C", ... we shall denote positive constants. 

Questions of expansions on a segment of functions from spaces, con
taining as a part the set of all continuous functions, over eigenfunctions 
of nonlinear boundary-value problems with denumerable spectra are con
sidered in a number of papers {see, for example, [1-7]). In the monograph 
[1], some interesting results in this direction are established. In the first 
author's paper [2], in which the following eigenvalue problem is considered 

-y" + f(y 2 )y = J.y, y = y(x), x E {0, 1), 

y(O) = y(1) = 0, 

1 

j Y2 (x)dx = 1 

0 

with a function f satisfying the hypothesis {f), there was obtained a re
sult on the possibility of such an expansion of an arbitrary function from 
L2(0, 1). This result is also reestablished (without proofs) in [3]. However, 
we have to note that the paper [2] contains some errors which fortunately 
can be corrected. We carry out these corrections in Appendix of the 
present paper. Also, problems similar to that mentioned were considered 
by the author in [4-6]; in these articles the property of being a basis in the 
space L2 {the property of being a Riesz basis in some cases) for systems 
of eigenfunctions of these problems is proved (we especially mention the 
paper [5] were an independent proof of the above-indicated result from [2] 
is presented). In [7], also the following boundary-value problem (without 
a spectral parameter) is considered: 

u" + g(u2)u = 0, u = u(x), u(O) = u(1) = 0 

with 
g(O) ~ 0 and lim g(r) = +oo. 

r-+oo 

It is proved in this paper that there exists s0 < 0 such that an arbitrary 
system of solutions of this problem, which for any integer n :2: 0 possesses 
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a unique solution with precisely n zeros in the interval (0, 1 ), is a basis in 

the Sobolev space gs if s < s0 • 

In the present paper, our main result is the following. 

Theorem Under the hypothesis (f) 

(a) A= [f(p2),+oo) for the problem (1),(2) (we denote X= f(p2 ) in this 

case) and in the case of the problem (1),(3) there exists I?: f(O) such that 

either A = [X, +oo) or A = (I, +oo ); 

(b) for each >. E (I, +oo) there exists a minimal positive zero k = k().) 

ofu(>.,x) as a function of the argument x E (O,+oo); the function k: 

(I,+oo)--+ (O,+oo) is continuously differentiable, k'(>.) < 0 for any>. E 

(I, +oo), and li!!J. k( >.) = +oo, lim k( >.) = 0. By >. = .>.( k) we denote 
>.-.A+O .A-+oo 

the function with the domain (0, +oo) inverse to the function k(>.); 

(c) for any function g(·) E L continuous on (0, oo) there exists a unique 

function g(k) of the argument k > 0, continuous on the half-line (0, +oo), 

for some b > 0 satisfying the estimate 

1 

jg(k)i :':: CP, k E (O,b], (4) 

with a constant C > 0 independent of k E (0, b] and the condition g(k) = 0 

fork > b, such that for any point x > 0 the following equality takes place: 

b 

g(x) = J g(kW'u(>.(k),x)dk. (5) 

0 

Remark 1. As it is proved further (see Lemma 1), for any k > 0 there 

exists C > 0 such that sup ju(>.(k),x)i :':: Ck• for all k E (O,k], so that 
xE(O,oo) 

the right-hand side in (5) is well-defined. 

Remark 2. The expansion (5) stated by the Theorem is obviously an 

analog for our nonlinear case of the expansion in the Fourier integral which 

is associated with a linear self-adjoint eigenvalue problem. We also note 

that, with our Theorem, we do not strive to obtain a maximally strong 

result, but we want only to demonstrate a possibility of the expansion of 

an "arbitrary function" in an integral over eigenfunctions of each of our 

nonlinear problems. 
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Remark 3. The author does not know nontrivial examples of the 

function f for eigenfunctions of the problem (1),(2) or (1),(3) being rep

resentable as superpositions of elementary functions. 

Remark 4. Since the Fourier transform is a linear one-to-one map

ping from L2 (0,oo) on L2 (0,oo) continuous with the inverse one, the set 

L is dense in L 2 (0, oo ). Therefore, our Theorem yields a property in the 

space L2(0, oo) of the systems of eigenfunctions {u(>.(k),x)}k>o of the 

problems (1),(2) and (1),(3) analogous to the completeness. 

Remark 5. Concerning applications of our results, we believe that, 

with possible further developments of this direction, eigenfunction expan

sions associated with nonlinear differential equations can be useful, for 

example, in the Fourier and Galerkin methods for solving various non

linear equations, in particular, noulinear Schrodinger, wave and diffusion 

equations. 

In Section 2, auxiliary results used for proving the Theorem are 

presented. Section 3 contains the proof of our Theorem. In Appendix, as 

we already noted, we present corrections to the paper [2]. 
Everywhere in the next sections except Appendix it is accepted that 

the assumption (f) is valid. 

2 Auxiliary results 

Consider two Cauchy problems for the equation 

-y" + f(y 2 )y = >.y, y = y(x), x > 0 (6) 

with the initial conditions 

y(O) = p, y'(O) = 0 (7) 

or 
y(O) = 0, y'(O) = p. (8) 

The following result is proved in [4,6] for the problem ( 6),(7) and in [6r 
for the problem (6),(8). 
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Proposition 1. There exists X ~ f(p2) (precisely X = f(p2) for the 
problem (6),(7)) such that 
(a) for any A > X the corresponding solution of the problem (6),(7) (or 
(6),(8)) can be continued on the whole rea/line and there exists a contin
uously differentiable function x 0( A) > 0 of the argument A > 3: such that 
x~(A) < 0 for all A > 3:, the solution y(x) of the problem (6),(7) (resp. 
(6),(8)) is positive on (0, xo(A)) and y(xo(A)) = 0; 
(b) if A = 3:, then y(x) = p for the problem (6),(7) and if A < 3:, then 
the solution y(x) of the problem (6),(7) (or (6),(8)) is unbounded in the 
maximal interval of its existence from (0, +oo ); 
(c) for any a, b: 3: <a< b for the corresponding solutions y.(x) and y,(x) 
of the problem (6),(7) (or (6),(8)) taken with A= a and A= b, respectively, 
for all x E [0, k(b)J the following inequality takes place: y.(x)?: y,(x). In 
addition, in the case of the problem (6),(7) jy(x)l ::::; p for all A > 3: and 
allxER; 
(d) any solution y(x) of the equation (6) is odd with respect to an arbitrary 
its zero x and is even with respect to any point x such that y'(x) = 0, i. 
e. y(x- x) = y(x + x) and y(x- x) = -y(x + x) for all x E R; 
(e) lim xo(A) = 0 and lig1 xo(A) = +oo; 

A-++co J.-+).+0 

(g) for any A > 3: the zeros of the corresponding solution y(x) of the 
problem (6),(7) ( resp. (6),(8)) are precisely the points I( m )xo(A) where 
m = 0,±1,±2, .... 

Remark 6. Proposition 1 immediately implies statements (a) and (b) 
of our Theorem with k(A) = x0 (A). 

In what follows, for the simplicity of the notation we rename by 
u(k, x) the eigenfunction u(A(k ), x ). Further, in view of Proposition 1, for 
any k > 0 

A c(~J < ... <A c(:J < ... 

are all values of the parameter A which are greater than X and for which 
the corresponding solutions Yn(k,x) ofthe problem (6),(7) (or (6),(8)) be
come zero at x = k. In addition, for any n = 0, 1, 2, ... and a fixed k > 0 
the function Yn(k, x) has precisely n zeros in the interval (0, k). The fol
lowing statement is proved in [4,6] for the problem (6),(7) and in [6] for 
the problem (6),(8). 
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Proposition 2. For any fixed k > 0 the system of functions 
{Yn( k, x )}n=O,l,2, ... is a basis in the space L2(0, k), i. e. for any g E L2(0, k) 
there exists a unique sequence { an}n=O,I,2, ... of real numbers an such that 

00 

g(·) =I; anYn(k,·) in the sense of the space L2(0,k). In addition, clearly 
n=O 

Yn(k,x) = u c(:),x). 
In what follows, we exploit some ideas used earlier for proving this state- . 
ment in the above-indicated papers. For this reason, though in further 
considerations we do not prove Proposition 2, we believe that these con
siderations clarify the main idea of its proof. 

According to Proposition 2, for any k > 0 there exists a unique 
sequence of real numbers {dn(k)}n=O,l,2, ... such that 

e(k, ·) = f dn(k)u c:)' ·) 
n=O 

(9) 

in the space L2 (0, k). Further, since e(k,x) as a function of the argu
ment x with a fixed k > 0 is odd with respect to any its zero and is 
even with respect to any zero of its first derivative and for the functions 

u ( !(:), x) this property is valid due to Proposition 1 and since in addition 

in view of Proposition 1 each zero of the function e( k, x) is also a zero of 

each function u (r(:)' x), the equality (9) holds in each space L2(x, x2) 

where x1 < x 2 are two arbitrary nearest zeros of the function e(k,x). 
Thus, the equality (9) is also valid in the space L2 (a, b) with arbitrary 

a, b: -oo < a < b < +oo. 

Lemma 1. For any k > 0 there exists C > 0 such that for all k E 
(0, k] one has 

ie(k,x)- u(k,x)i::::; Ck, x E R, 

for the problem (1),(2) and 

le(k,x) -u(k,x)i::::; Ck2, x E R, 

for the problem (1),(3). 
Proof. The proof of Lemma 1 in fact repeats the proof of an analogous 

statement for a linear problem from [8] (see Lemma 1. 7 from [8]). We 
sketch this proof for the convenience of readers. 
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Take an arbitrary k > 0. The uniform boundedness of the family of 
functions { u( k, x)} ke(o,k) with respect to x E R following from Proposition 
1 and the standard comparison theorem imply the existence of D > 0 such 
that 

l>•(k)- z(k)l :$ D (10) 

for all k E (0, k]. We consider only the problem (1 ),(3) because for the 
problem (1),(2) the proof can be made by analogy. So, one can easily 
verify that any solution u(k,x) of the problem (1),(3) with a sufficiently 
small k > 0 for any x 2: 0 satisfies the equation 

l l 
u(k, x) = p,\->(k) sin(-\>(k)x)+ 

X 

+-\-~(k) j sin{A~(k)(x- t)}f(u2(k,t))u(k,t)dt (11) 
0 

(since due to Proposition 1 lim -\(k) = +oo, the right-hand side of (11) is 
k-+O 

well-defined for all sufficiently small k > 0). Therefore, due to the uniform 
boundedness of the family of functions {u(k,x)he(o.Il we get from (ll) 
for all sufficiently small k > 0 and all x E [0, k]: 

l l ' iu(k,x)- p,\->(k)sin(-\>(k)x)l :$ Cl,\->(k) 

with a constant C1 > 0 independent of the above x and k. Applying this 
estimate to the integrand from the right-hand side of (ll), we obtain 

iu(k, x)- p,\-~(k) sin(,\~(k)x)l :$ C2-\-1 (k) 

with a constant C2 > 0 independent of sufficiently small k > 0 and x E 
[0, k]. In addition, since for the problem (1),(3) due to (10) -\(k) 2: C3 k-2 

for all sufficiently small k > 0 and 

l l 1 
ie(k,x)- p,\->(k)sin(-\>(k)x)l:::; c.-\- (k) 

with positive constants C3 and C4 independent of sufficiently small k > 0 
and x E [0, k], we get 

ie(k,x)- u(k,x)l :$ C5k2 

with a constant C5 > 0 independent of sufficiently small k > 0 and 
x E [0, k]. Finally, in view of Proposition 1 the latter estimate holds 
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for all x E R. Thus, Lemma 1 is proven.D 

One can easily see that for arbitrary k > 0 and integer n ;:>: 0 the 

functions { eC(n)~(m), x} _ form an orthogonal basis in the space 
. m-0,1,2, ... 

L2 ( 0, I(:)). Hence, we have 

u C~)' ·) = ~ b~.m(k)e (z(n)~(m)' -) 

in the sense of the space L 2 ( 0, I(:)). Also, as in the case of the expansion 

(9), the latter expansion holds in the space L2(a, b) with arbitrary -oo < 
a < b < +oo. Therefore, for any k > 0 we have the sequence of expansions 

uC~)'-)=~bn,m(k)e(z(~)'-). n=0,1,2, ... , (12) 

held in the sense of the spaces L2(0,k) and L2(a,b) with arbitrary a,b: 
-oo < a < b < oo where bn,m(k) = b~,T(k) if l(m) = l(n)l(r) for some 
T = 0, 1, 2, ... and bn,m(k) = 0 otherwise. Thns B(k) = (bn,m(k))n,m=D,I,2, ... 
is an upper triangular matrix and, for any n, 

bn,n(k) = lie c(~)' ·) [(O,k) ( U (z(~)' ·) 'e (z(~)'-) t(O,k) > O 

because the functions u (I(:), x) and e (I(:), x) are of the same sign. So, 

in (12) 
bn,m(k) = 0 if l(m) =f.l(n)l(s) for all s = 0,1,2, ... 

and bn,n(k) > 0 for all n = 0,1,2, ... (13) 

We also remark that generally speaking the properties (13) do not yield 

the completeness of the system of functions {u (,(:), ·)} _ in the 
n-0,1,2, ... 

space L2 (0, k) (see a counterexample in [7]). 
Let for any k > 0 and numbers n 2: 0 and m 2: 0 

U c(: )'X) = U c(: )'X) IIU c(: )'-) [(O,k)' 
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e ( i(:)' x) = e (z(:)' x) lie (z(:)'-) [(O,k) 

and bn,m(k) = bn,m(k) llu c:r-) [(O,k) lie c:)' ·) t(O,k). (14) 

Then, due to (12)-(14) 

uc:)'-) = ~bn,m(k)e(z(:)'} n=0,1,2,... (15) 

in the spaces Lz(O, k) and £ 2 ( a, b) with arbitrary a, b: -oo < a < b < +oo 
where 

bn,m(k) = 0 (n > m) and bn,n(k) > 0 (n = 0, 1, 2, ... ). (16) 

Lemma 2. For each k > 0 u(k,x) as a function of the argument 
x E [O,k] is concave. For any k > 0 max u(k,x) E [k-~,v'3k-~J and for 

zE[O,k] 

anyk> 0 there existc,C: 0 < c< C suchthatck!+• :0: llu(k,·)IIL,(O,k) :0: 
Ck~+q for all k E (0, k]. In addition, bn,n(k) 2: b for all k > 0 where 
b = 4v'27r-2 . 

Proof. First of all, obviously bn,n(k) = bo,o Ctn)). We state that for 

any k > 0 u(k,x) as a function of the argument x E [O,k] is concave. To 
prove this fact, it suffices to show that u~z(k,x)::; 0 for all x E [O,k]. In 
the case of the problem (1),(2) the latter fact follows from the equation 
(1) because due to Proposition 1 >. > f(p2) and u(k,x) > 0 for x E [O,k). 
Let us show this inequality for the problem (1 ),(3). Suppose this is not 
right and there exist k > 0 and x0 E (O,k) such that u~x(k,x0) > 0. Since 
due to Proposition 1 u(k,~+x) = u(k,~-x) for all x E R, we can 
accept that xo E (0, ~)- But then, we have u(k,xo) > 0, u~(k,x0) > 0 
and u~x( k, x 0 ) > 0, therefore, in view of the equation (1) and due to the 
fact that f(s) is a nondecreasing function of the argument s 2: 0, we 
immediately derive that u( k, x) > u( k, x0), u~( k, x) > 0 and u~x( k, x) > 0 
for all x > x0 for which this solution exists. Thus, we get the contradiction, 
and the concavity of the function u(k, x) for x E [0, k] is proved. 

The second and third statements of Lemma 2 easily follow from this 
concavity. Indeed, consider, for example, the problem (1),(3). Then, we 
have for R( k, x) = 2k-1 xu (k, ~) (here, due to Proposition 1, x = ~ is the 
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unique point of the max] mum of the function u(k, x) on [0, k]): 

' " ~u2 (k,D =2 j R2(k,x)dx:::; iiu(k,·)iil,(o,k) = 1:::; ku2 (k,D 
0 

and therefore u(k,~) = max u(k,x) E [k-!,y'3k-~]- The estimate 
xE[O,k] 

for iiu(k, ·)IIL,(O,k) can be obtained by analogy with the use of Lemma 1 
and the uniform boundedness of the family of functions { u( k, x) he(o,I] 
following from Proposition I. Finally, 

b0,0(k) 2: 2(R(k,x),e(k,x))L,(o.~) 2: b 

for all k > 0. For the problem (1),(2) the second and third statements of 
Lemma 2 can be proved by analogy. Lemma 2 is proven.D 

, 

For a matrix A= (a,,1 ),,;=o,1,2, ... we set t(A) = { f; a;,,}" Also, 
t,J=O 

for two infinite matrices A1 = (atj)i,j=D,1,2, ... and A2 = (aLki=0,1,2, ... we 
define their sum A1 + Az and product A,Az in the usual way, so that, 

00 

for example, (AtA2)i,j- = L al,ma~.i assuming these infinite sums to be 
m=O 

converging (otherwise the product A1Az is not determined). 
Let Dn,n = 1 and Dn,m = 0 for m # n.We introduce the following 

matrices: 

Bo(k) = (bn,m(k)6n,m)n,m=0,1,2, ... , A= (6n,m)n,m=0,1,2, ... , 

B,(k) = ((1- Dn,m)(bn,n(kW1bn,m(k))n,m=0,1,2, ... · 

Then, B(k) = (bn,m(k))n,m=0,1,2, ... = Bo(k)(A + B,(k)). 

Lemma 3. For two arbitrary matrices Am = ( af,j)i,j=D,t,2, ... 1 m = 
1, 2, satisfying the condition t(Am) < oo, m = 1, 2, the product A1A2 is 
determined, t(A1A2) :::; t(A1)t(Az) and t(A, + Az) :0: t(A,) + t(Az). 

Proof. Let us take arbitrary numbers i and j. Then, 

, 1 

::::: {t (a!,=), r Lt (a;._;)2 r ~ 0 

N 
~ 1 2 
L._.; ai,m am,j 

m=M 
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as M, N __,. oo, therefore the matrix A1 A2 is determined. Further, 

t(A1A2) = {f (fa!,ma~.i)'}~ :'0 
l,J=O m=D . 

:'0 tt (~(a!,ml') (~(a~.;)')}~= t(A1)t(A,). 

The inequality t(A1 + A2) :'0 t(A1) + t(A2) can be obtained by analogy 
with the use of the Minkowski's inequality. Thus, Lemma 3 is proven.D 

Lemma 4. Let A= (a;,;)i,j=0,1,2, ... and t(A) < oo. Then, A E £(1,; I,) 
and IIAIIL:u,;t,) :'0 t(A). 

Proof.. For an arbitrary u = ( uo, u1 , •.• , un, ... ) E !2 in view of the 
Holder's inequality the product Au is determined and we have 

{ 
= ( = )'}~ IIAullt, = t; ~ a;,;u; :'0 

:'0 { ~ (~a~.;) (~ uj)} ~ = llullt,t(A), 

and Lemma 4 is proven.D 

Remark 7. One can prove by analogy with Lemmas 3 and 4 that 
for any two matrices A and B, satisfying the conditions t(A) < oo and 
t(B) < oo, and a vector u E 12 one has A(Bu) = (AB)u. This implies in 
particular that for any two operators A and B from £(12; 12), being ma
trices which satisfy the conditions t(A) < oo and t(B) < oo, the product 
of these matrices corresponds to the product of operators. 

Lemma 5. There exists k1 > 0 such that the matrix B(k) with an 
arbitrary k E (0, k1] belongs to £(12 ; 12), t(B1(k)) <~and, as an operator 
from £(12; 12), B(k) has an inverse operator T(k) = [B(k)J-1 E £(12 ; 12), 

which can be represented as an infinite upper triangular matrix T(k) = 
. --1 -1 1 

(tn,m(k))n,m=0,1,2, ... wzth tn,n(k) = bn,n(k) such that t(T(k)-[Bo(k)] ) < 4 

(here [B0 (k)]-1 is the diagonal matrix with ([B0 (k)]-1 )n,n = b:.~(k)). 

12 

f. 

} 

Proof. By Proposition 1 and Lemmas 1 and 2, for any f3 E (0, 1) 
there exists k = k(f3) > 0 such that t(B1 (k)) < f3 for all k E (O,k]. 
Hence, in view of Lemma 4, as it is well-known, for each of those f3 and 
an arbitrary k E (0, k] there exists an operator T(k) inverse to B(k) in 
the space £(12 ; 12 ), 

T(k) = (A+ ,t,(-1)m B;"(k)) [Bo(kJr1
• 

Further, by Lemmas 2 and 3 

t ((f(-1)mB;"(k)) [B0(kJr1
) :'0 b-1 

f{Jm = ;:~ 
m=1 m=1 ( ) 

and by analogy 

t ( (J~,(-1)mB;"(k)) [Bo(k)t1)-> 0 as M,M,-> oo. 

Therefore, the operator T(k) can be written as an infinite upper triangu

lar matrix and, taking f3 E (0, D so small that l;~!_ff) < ~ and choosing 

k1 = k(f3), we get the statement of Lemma 5.0 

Lemma 6. For any k > 0 there exists C > 0 such that in (15),(16) 

lbn,m(k)l :'0 Cls+~(n)rs(m) 

for any s = 1, 2, 3, all k E (0, k] and all numbers n and m. Thus in 
particular for any k > 0 there exists c > 0 such that lbo,n(k)l :'0 Cl-3 (n) 
for all k E (0, k] and n = 0, 1, 2, .... 

Proof. Take an arbitrary k > 0. In some places of this proof we use 
the uniform boundedness of the family of functions { u( k, x) he(o,I] with 
respect to x E R, following from Proposition 1, and the estimate (10). At 
first, let us show the existence of C1 > 0 such that 

l
dsu(k,x)l < C k-s-~ s = 1 2 3 

dxs _1' ''' 
(17) 

for all k E (0, k] and x > 0. We first consider the problem (1),(2). Due to 
Lemma 2 we have in this case 

C:!1 k~ :'0 iiu(k, ·)IIL,(o,k) :'0 C,k~ (18) 
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for a constant C2 > 1 independent of k E (0, k]. Multiplying the equation 
(1), written for u(k,x), by 2u~(k,x) and integrating from 0 to x, in view 
of (2) we get the identity 

-[u~(k, x )]2 + F( u2(k, x )) - F(p') = .\( k )u2( k, x) - .\( k )p2
, x E R, 

z 

where F(z) = J f(r)dr, which together with (18) due to (10) implies (17) 
0 

with s = 1. Then, from the equation (1), written for u(k,x), and (18) we 
derive (17) with s = 2. Finally, differentiating the equation (1 ), written 
for u(k,x), over x, due to (18) and (17) with s = 1 we get (17) with s = 3. 

Consider now the case of the problem (1 ),(3). Multiplying the equa
tion (1 ), written for u( k, x ), by 2u~( k, x) and integrating between 0 and 
x, in view of (3) we get 

-[u~(k,x)] 2 + p2 + F(u2(k,x)) = .\(k)u2(k,x), x E R. (19) 

Then, due to Lemmas 1 and 2, there exists C3 > 1 such that C31 k :<::; 

lu(k,x)l :<::; C3k and C3'k~ :S llu(k,·)IIL,(o,k) :<::; C3k~ for all k E (O,k] and 
x E R in this case. Hence, multiplying (19) by k-3

, due to Lemma 1 and 
(10) we derive the estimate 

IU:,(k,x)J :S C4k-~ 

with a constant C4 > 0 independent of k E (0, k] and of x E R. By 
analogy, we derive from the equation (1) 

l~x(k, X )I :S c.k-~ 

for all k E (0, k] and x E R. These estimates yield (17) with s = 1, 2 for the 
problem (1),(3). The estimate (17) with s = 3 in the case of the problem 
(1 ),(3) can be obtained by analogy with the use of the differentiation of the 
equation (1), written for u(k,x), over x. So, the estimate (17) is proved. 

Now, we recall that bn,m(k) = 0 if l(m) #- l(n)l(d) for all d = 
0,1,2, .... Let numbers n,m and d be such that l(m) = l(n)l(d). Con
sider for the definiteness the problem (1 ),(2) and s = 3. Using (17) and 
the integration by parts, we get 

k 

lbn,m(kJI = lj, (z(:J'x) -e c:rx) dxl < 
0 
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' 

, Jjk d
3 ( k ) (,..z(m)x) 

:<::; C10k2/-
3

( m) dx3 u I( n )' x sin 
2

k dx :S Cllli(nW3 (m) 

0 

with positive constants C10 and C11 independent of k > 0 and of numbers 
n and m. For other values of s and for the problem (1 ),(3) proofs are 
completely analogous. Lemma 6 is proven. D 

Now, for arbitrary k > k1 and integer M > 0 consider the matrices 
BM(k) = (bn,m(k))n,m=O,M and TM(k) = [BM(k)]-1 = (t;;;m(k))n,m=O,M· 
The trivial observations are that the matrices TM(k) are upper trian
gular and that for any fixed indices n and m the element t;:'m(k) does 
not depend on the number M :2: M 0 = max{ n; m} and we' rename it 
simply by tn,m ( k ). So, for any k > k1 we can construct an infinite 
matrix T(k) = (tn,m(k))n,m=0,1,2, ... · Further, one can observe that, com
pletely as in the proof of Lemma 5, for any k > k1 there exists a num
ber N1 independent of k E ( k, k] such that for the matrix BN, ( k) = 
(bn,m ( k) )n,m=N, +I.N, +2,... there is an upper triangular matrix TN, ( k) = 

--1 -
(t~,m(k))n,m=N,+I.N,+2, ... , where t~,n(k) = bn,n(k), for all k E (k,k] satis-

= = 
fying the condition I; I; (t~.m(k))2 :S T with a constant T > 0 de-

n=N1 +1 m=n+l 

pending only on k > k1 and such that TN, (k)BN•(k) = BN•(k)TN, (k) =A 
(since the matrices TN•(k) and BN•(k) are upper triangular, expressions 
for elements of their products contain only finite sums). In addition, one 
can easily verify that t~,m ( k) = tn,m ( k) for all n, m ). N1. 

Lemma 7. For any k > k, there exists C > 0 such that for any 
k E (0, k] the following estimates take place: 

' 3 ltn,m(k)l :S C/'F(n)P(m), n,m=0,1,2, ... 

Thus in particular for any k > 0 there exists C > 0 such that lto,n( k) I :<::; 

cz-~(n) for all k E (0, k] and all n = 0, 1,2, .... 
Proof. For arbitrary nonnegative integer nand m let N = max{ n; m} 

and Bm,n( k) be the matrix obtained from BN( k) by taking away the mth 
row and the nth column of the latter. Then, 

t,,m(k) = (-1)m+ndet[B,,n(k)] X det[TN(k)], n,m = O,N. (20) 
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Clearly det[Bm,n(k)] = 0 if m < n. Form> n we obviously have 

where 

n-1 N 

det[Bm,n(k)] = rrb,Ak) X II 

s;,,n(k) = 

r=O r=m+l 

bn,n+1 

bn+l,n+1 

0 

0 

bn,n+2 

bn+1,n+2 

bn+2,n+2 

0 

b,,,(k) X det[B;,,n(k)] 

bn,m-1 

bn+1,m-1 

bn+2,m-1 

bn,m 

bn+1,m 

bn+2,m 

bm-1,m-1 bm-1,m 

(21) 

In this matrix, let us subtract the first column, multiplied by b~!1 .n+I bn+1,m, 
--1 -

from the last column, the second column, multiplied by bn+2,n+2 bn+2,m• 
from the last column, and so on. At the last step of this process me 
subtract from the last column the next to the last column multiplied by 
--1 -bm-

1
,m_

1 
bm-1,m· Then, we get the matrix all elements of the last column 

of which, except the element in the first row, are equal to zero and the 
_ m-1 __ 

1
_ _ 

element in the first row is equal to bn,m - L:; b,,,b,,mbn,,· Hence, 
r=n+1 

idet[B;,,n(k)Ji = I IT b,,T X [bn,m- I: b;,:b,,mbn,,] 
r=n+1 r=n+I 

Thus, taking also into account Lemmas 2 and 6 with s = 3, (20) and (21), 
we get the existence of C1 > 0 and C2 > 0 such that 

[ 

m-1 ] 
jtn,m(k)j ::0 lbn,~b;;.~m bn,m- L b,,:b,,mbn,, I ::0 

r=n+1 

s: c, [zf(nW'(m) + ,~, (zf(r)l-3 (m)lf(nW'(rl)] :::; c2lf(n)z-~(m) 
for all k E (0, k] and numbers n and m, and Lemma 7 is proven.D 

Remark 8. Let k > k1 and let N1 ::0: 0 be the number defined be
fore Lemma 7. According to Lemma 7 there exists T > 0 such that 
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00 - 0000 

L:; t!,m(k) ::0 T for all n = 0, N1. Hence, L:; L:; t;,,m(k) < oo, therefore 
m=O n=O m=n+1 

T(k) E £(/2 ; 12 ) and also, since T(k)B(k) = B(k)T(k) = A by construc
tion, T(k) is an inverse operator to B(k) in the space 1,. Further, due to 
Proposition 2 and the arguments after it 

e (z(~)' ·) = ~ dn,,(k)u (z(:)'} n = 0, 1,2, ... 

for some real coefficients dn,,(k), such that dn,,(k) = 0 if l(r) # l(n)l(d) 
for all d = 0, 1, 2, ... , in the spaces L2 (0, k) and L2 (a, b) with arbitrary 
a, b : -oo < a < b < oo. Multiplying step by step these equalities by 
e ec:)' ·) ' m = 0, 1, 2, ... , we easily derive that dn,,(k) = tn,,(k) for all 
n,r and k; in particular, to,n(k) = do,n(k), n = 0,1,2, .... 

Lemma 8. For any k > 0 the series from the right-hand side of (9) 
converges uniformly with. respect to k E (0, k] and x E R. Coefficients 
to,n(k) = dn(k) in (9) are continuous functions of the argument k > 0. 

Proof easily follows from Lemma 7 and the fact, presented with 
Proposition 2, that for any k > 0 the system of functions 

{uCtn)··)} _ is a basis in the space L2 (0,k).D 
n-0,1,2,... . 

Lemma 9. Let g(·) E L. Then, for any point x ::0::0 of the continuity 
of the function g( ·) the following equality takes place: 

b 

g(x) = j g(k)k-•e(k,x)dk. 

" 
Proof is obvious.D 

Lemma 10. For any k > 0 there exists C > 0 such that 

lle(l(n)k, ·lllr.,(o,l(n)k)llu(k, ·liiZ:(o,l(n)k) s: cz•(n) 

and 
jju(l(n)k, ·)llr.,(o,l(n)kJIJe(k, ·JII'i:;(o,l(n)k) S: CZ•(n) 

for all k E (0, k] and all numbers n = 0, 1, 2, .... 
Proof easily follows from Proposition 1 'lJ!d Lemma 2. 0 
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3 Proof of the Theorem 

Let us take an arbitrary continuous function g(·) E L where g(k) = 0 if 
k E (O,a) U (b, oo) for some a, b: 0 <a< b < oo. Due to Lemmas 8 and 
9 we have for any point x > 0: 

b 

g(x) = j g(k)k-'lle(k, ·)llr,(o,k)x 
a 

X [fto,n(k)llu(z(~)'-)11-l u(z(~)'x)] dk. n=O L2 (0,k) 
Therefore, 

= b 

g(x) = L j g(k)k-'lle(k,·)IIL,(O,k)X 
n=D a 

X llu (z(~)'-) I[O,k) to,n(k)u c~)'x) dk = 

1-'(n)b 

= f J z•-•(n)g(l(n)k)k-'lle(l(n)k, ·)llr,(o,l(n)k)x 
n=Dl-l(n)a 

X llu(k, ·)II£;(O,I(n)k)to,n(l(n )k)u( k, x )dk. (22) 

Further, for 

9n ( k) = zt-q ( n )g( l( n )k )to,n( l( n )k) lle(l( n )k, . ) IIL,(O,I(n)k) llu( k, . ) 11£:(0,/(n)k) 

we get by Lemmas 7 and 10 and the finiteness of g(-) 

lgn(k)l ~ cd(n) (23) 

for a constant C > 0 independent of k E (0, b] and of n. Using (23), we 
get the existence of C1 > 0 suclt that 

= 
d(n) ~ C,k-~ (24) "LI9n(k)l ~ c 2::: 

n=O n: ak-1 :$l(n):$bk-l 
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for all k E (0, b); also, obviously 

= 
L l9n(k)l = 0 (25) 
n=O 

fork> b. 
We set 

= 
g(k) = L9n(k). 

n=O 

Then, it is clear in view of (24) and (25) that g(·) is a continuous function 
obeying the estimate ( 4) and that g( k) = 0 if k > b. Hence, in view of 
(22) for any x > 0: 

= 
g(x) = jg(k)k-•u(k,x)dk. 

0 

Thus, the first part of our Theorem (the existence of the expansion (5)) 
is proved. 

Let us prove the last statement of our Theorem, i. e. the uniqueness 
of the expansion (5). Suppose the existence of a continuous function 
g(·) E L such that for all x > 0 

= 
g(x) = j g,(k)k-•u(k,x)dk, i = 1,2, 

0 

where g1(k) "# g2(k) (k > 0) are two finite continuous functions obeying 
the estimate (4). Then, forg(k) =g1(k) -g2 (k) we have 

= 
j g(k)k-'u(k,x)dk = 0, x > 0, 

0 

(26) 

and g( k) is continuous, obeys the estimate ( 4 ), is not equal to zero iden
tically on the half-line k > 0, and g(k) = 0 if k > b, for some b > 0. 

Now, due to {15), (26) and Lemma 6 for any x > 0 

b 

0 = j g(k)k-'llu(k,·)llr,(o,k)x 
0 
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.1 

x f [bo,.(k) jje C~r·) ,,-, e (z(~)'x )] dk 
n=O l.,(O,k) 

where the infinite sum in the integrand converges to u( k, x) uniformly with 
respect to k E (0, b] and x E R. Hence, for any x > 0 

1-1 (n)b 

0 = f J /1-
0(n)g(l(n)k)iiu(/(n)k,·)llz.,(O,l(n)k)X 

n=O 0 

X lle(k, · )llr::(o,l(n)k)bo .• (l( n )k )k-• e(k, x )dk. 

Let 

g.( k) = 11-'(n )g(l(n)k) llu(l(n)k, · )IIL,(O,I(n)k) lle(k, · )III::(O,I(n)k)bo,n(l(n)k). 

In view of Lemmas 6 with s = 3 and 10 we have 

lg.(k)l :<:; Cd(nW~ 

for a constant C > 0 independent of k E (0, b] and of n = 0, 1, 2, ... 
"' and 9n ( k) = 0 for k > b. Therefore, the function g( k) = L; 9n ( k) is 

=0 
determined, is continuous on the half-line k > 0 and equal to zero for 
k > b, and obeys the estimate ( 4). Also, as earlier 

b "' 

j g(k)k-'e(k,x)dk = j r-2g(r-1 )r'e(r-',x)dr = 0, x > 0. 

0 b-1 

Hence, since g(r) = r-2g(r-1 ) E L2 (0,oo), we have that§(·) is a (renor
malized) L2- Fourier transform of the identical zero, and therefore g(r) = 
0, r > 0. But Jetting P = {k > 0: g(k) # 0} and k =sup P and taking 
ko E (0, k) n P so close to k that 1(1)ko > k, we get g(ko) = go(ko) # 0, i. 
e. we get the contradiction because §(-) is a continuous function. Thus, 
our Theorem is completely proven.D 

4 Appendix 

.Here I briefly consider corrections to my paper [2]. In what follows, the 
numeration of formulas and the notation from that paper is used. First 
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of all, in the paper [2] we confuse several times with the concepts of the 
completeness and the linear independence of a denumerable system of 
functions in L2 (0, 1) on the one hand and the property of being a basis 
for such a system of functions in L2 (0, 1) on the other hand. Of course, 
generally these properties are not equivalent. Further, in [2] there are 
several errors in the proof of Theorem 1. Arguments of this paper are 
sufficient for proving the completeness and linear independence in L2(0, 1) 
of the system of functions (6) with n :0: N3 • However, in general this does 
not imply the completeness in L2(0, 1) of the system {u.(.A., ·)}n=O,l,2, ••• 

in the case when this system is linearly independent, as far as in general 
it is not right that the codimension of the closure L• of the linear span of 
the functions 

{uk(Ak, ·)h=n,n+J,n+2, ... , {*) 

where n :0: N3 , is equal to n. Here we correct these mistakes for which we 
first show that the system of functions (*) is a basis of the subspace L• if 
the number n :0: N3 is sufficiently large. 

Lemma. There exist N :0: N3 and constants c, C : 0 < c < C such 
that for any real coefficients a = (aN, aN+!• aN+2, ... ) E 1, the following 
inequalities take place: 

("' \~.,1., II r~ \' 
c ~. az; ::; ! ,b akuk(Ak, ·) I '::; c I b . .:; : 

i<t=Jv I,~_,, I £2(0,1/ \~;:_, • 

Proof is completely analogous to the proof of Le!r!m?. 4 from tb::; 
paper [2]. 

Let n 2::: _N be arOitrary. The above Lemma easily yit;>:is that the 
system of functions ( *) is a basis of the space L" and that the infinite sum 

"' L; akuk(Ak, ·) converges in L2(0, 1) if and only if a = (a., an+!> an+2> ... ) E 
k=n 
l2 • (The formal proof of these facts is very simple. On this subject, see 
also [9-11]. Bases {uk} C L2(0, 1)for which the infinite sum L; akuk with 

k 

real coefficients ak converges in L2(0, 1) if and only if {ak} E /2 are also 
called the Riesz bases, see [9-11].) 

Let us now prove that for n :0: N the system of functions (6) is a 
basis in £ 2 (0, 1). By Pn we denote the orthogonal projector iri £ 2 (0, 1) 
on the subspace £•. Set ut = P.uk(A.,·) and Vk = uk(.A.,·)- ut where 
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k = 0, n - L Then, the functions Vk, k = 0, n - 1, are orthogonal to the 
subspace L"; in addition, using the fact that the system of functions ( *) 
is a basis of the space L", we easily get that these functions are linearly 
independent (if we assume the linear dependence of these functions, then 
we immediately get the linear dependence of the system (6)). But then, 
since the system of functions (6) is complete in L2 (0, 1), the system of 
functions Vo, ... , Vn-1, un(An, · ), Un+l (An+l, · ), ... is complete in L2(0, 1 ), too, 
therefore the functions vo, ... , Vn_ 1 form a basis of the orthocomplement 
L'!_ of the subspace L" (in particular, the codimension of the subspace 
L" of the space L2 (0, 1) is equal ton). In addition, since the system of 
functions(*) is a basis in Ln, the functions ut are representable in the 

= 
form ut = I; b!:,um(>.m, ·)where k = 0, n 1 and the series converge in 

m=n 
L2 (0, 1 ). Take an arbitrary g E L2 (0, 1 ). Then, we get 

n-1 oo oo n-1 oo 

g = L akvk+ L akuk(>.k, ·) = L akuk(Az(k), ·)-L ak L b!:,um(Am, ·) = 
k=O k=n k=O k=O m=n 

= 
= L dkuk(Az(k), ·), 

k=O 

where l(k) = n if k < n and l(k) = k for k 2: n, dk = ak for k = 
n-1 

0, n 1, dk = ak- I; ambf: fork 2: nand the convergence of all series is 
m=O 

understood in the sense of the space L2 (0, 1 ). Thus, in view of the linear 
independence of the system of functions (6) with n 2: N, we have proved 
that this system is a basis of the space L2 (0, 1) if n 2: N. 

In complete analogy, assuming the linear independence of the system 
of functions { un(>.n, ·) }n=D,1,2, ... and using the facts that for n 2: N the sys
tem of functions(*) is a basis of the subspace L" and that the codimension 
of this subspace is equal to n, one can show that the system of functions 
{un(An,·Hn=0,1,2, ... is a b...;is in L2(0,1). We also remark that, since as it 

= 
is proved earlier, if n 2: N, then the infinite sum I; akuk(>.k, ·)converges 

k=n 
= = 

in L2(0, 1) when and only when I; a%< oo, the series I; anun(An, ·)con-
k=n n=O 

=· 
verges in L2 (0, 1) when and only when I; a~ < oo, i. e. in this case the 

n=O 
system of functions {un(>.n, ·)}n=D,1,2, ... is a Riesz basis in L2(0, 1). 
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If the system of functions { un(>.n, ·)}n=o,1,2, ... is linearly dependent in 
Lz(O, !), then using similar arguments one can prove that it is incomplete 
in L2 (0, 1) (for this aim one should use the facts that, first, for n 2: N the 
system of functions (*)is a basis in L" and that the codimension of this 
subspace is equal ton and, second, that from the linear dependence of the 
system of functions under consideration we get the linear dependence of 
the functions vo, ... , Vn-l introduced earlier). 

In my opinion, the above-described arguments make complete the 
proof of Theorem I and the proofs of all other results from my paper [2]. 
In addition, in view of the above-written, Theorem 1 and the statement 
(b) of Theorem 2 can be formulated as follows.· 

Theorem 1. Let the assumption (V) be valid. Then, for a standard 
system of functions {un(An, ·)}n=0,1,2, ... to be complete in the space L2(0, 1) 
it is sufficient and necessary for this system of functions to be linearly 
independent in L2(0, 1). Further, if the indicated system of functions is 
linearly independent, then it is a Riesz basis in L2(0, 1 ). 

(b) the system of eigenfunctions {un(x)}n=0,1,2, ... of the nonlinear 
problem (3)-(5) is a Riesz basis in Lz(O, 1). 

The investigation is supported partially by RFFI, grant No 98-01-
00190 
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Pa3nO;.KeHH5i no co6crseHHbiM clJyHKUH5IM, cssnaHHbre c HeJIHHeiiHbiM 

ypaBHeHHeM WpenHHrepa Ha nonynpaMoii 

PaccMarpHsarorcSI )lBe Ja,naqH Ha co6crseHHbie 3HalJeHH51, BKmoqarowHe HenH
HeHHoe ypasHeHHe lllpe.UHHrepa Ha nonynp5iMOii H rpaHWIHbie yc.noBIDI .usyx. BH
llOB. CneKrp Ka)l(lloH H3 Hax Jano.rmS!eT HeKoropyro no.nynpSIM)'lO. Kax.noH TOlJKe 
crreKrpa coorsercrsyer e}lHHCTBCHHIDI co6crseHHa51 ¢YHKUIDI. B CJiyqae mo6oH H3 
Jauat.J .LIJI51 mo6oli ¢YHKUYIH H3 HeKoroporo KJiaccca, scro.uy IIJIOTHOro s L2 , .UOKa3a

Ha B03M0)KH0CTb C)UiHCTBCHHOfO ee pa3.llOJKCHIBI B HHTerpan flO C06CTBCHHblM 

ci:JYHKUJUIM, no.uo6Horo npe.acTaBJiemno ¢YHKUHH qepe3 HHTerpa.JI $ypbe (nocne.u
Hee, ot.JeBHAHO, accowmposa.Ho c m-me:fi:Hoii caMoconps)KeHHOH 3a,uaqeft Ha co6-
cTBCHHbie 3Hat.tCHIDI). 

Pa6oTa BbinOJIHCHa B Jia6opaTopm-:~ TeopCTHl.JCCKQft qnBHKH HM.H.H.boroJU0-
6oBa OIDI11. 

npenpHHT 06belli!HeHHOfO riHCTII1)'Ta SUI.epHhiX UCC.'le1lOBaHHfi.lly6Ha., 1999 

Zhidkov P.E. 
Eigenfunction Expansions Associated with a Nonlinear Schr6dinger 
Equation on a Half-Line 

ES-99-144 

We consider t\\iO eigenvalue problems including a nonlinear Schr6dinger 
equation on a half-line and boundary conditions of two kinds. The spectrum of 
each of these pcoblems fills a half-line. To each point of the spectrum there corre
sponds a unique eigenfunction. In each of our two problems for an arbitrary func
tion from a class dense in L'2 we prove a possibility of its unique expansion in the 
integral over eigenfunctions which is analogous to the representation of functions 
by the Fourier integral (the latter is obviously associated with a linear self-adjoint 
eigenvalue problem). 

The investigation has been performed at the Bogoliubov Laboratory of Theo
retical Physics, JINR. 
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