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1 Introduction 

In considering problems of mathematical physics with definite spatial and/or 
dynamical symmetries, one commonly uses various decompositions of vector 
fie1ds over scalar potentials. These decompositions supplement the famous 
Helmholtz theorem and reduce its "gauge freedoms". 

Let 3 V : r E R3 -+ V(r) E R3 with all "good" properties. We may 
represent the given field V in different ways 

V -+.{Vro V,, V,}-+ {<;>,A}divA=o-> {<;>,1/>,;x}. 

In any case, it is necessary to constrain superfluous components, if they take 
place, by introducing conditions similar to divA;::: 0. 

The last variant, diffeomorphic scalarization of a vector field, is the most 
economical and convenient approach to vector boundary-value prob\('ms of 
mathematical physics. But to usc this approach, we have to be able to invert 
decomposition formulas, i.e. to deduce the integral representations of scalar 
pot:Cntials through the original vector field. 

Approach. To obtain a vector function from a (pseudo)scalar funct.ion set. 
<;>(r), ,P(r) and x(r), one must act on them by some vector operator F(r, V). 
Besides r and V themselves, we may from them construct three simplest op­
erators: L ::::: -r x V, N ::::: V x Land M ;:::: -r x L. One can SC'f! their 
symplectic nature because of their correspondence to the frames of reference 
in<". phase space: r, k, r x k, r x (r x k) and k x {k x r). Thf' trio of vectors 
k, L, Nand r, L, N, being immersed into the spaces Rf and ll~. respectively, 
form orthogonal bases in them, which are important for different applications. 

One may verify the following projection and commutation properties of f.': 

[L, r 2] = [L, p2
] = 0 

if,',r] = i[r x L]- i[L x r] 
[L',k] = i[k XL]- i[L X k] 
r·L= VL=r·N = L·N = L·M = M·L = O,curlN = -LLI; 
[L,LI] = 0, [N,LI] = 0, [M,6] = -6V, etc. 
{r;, V~;J;::: -Oik. [r·;, /....~;] ;= -{;~;p·j, {'V;, L~;]:::: -(iki\?i, 
['V;, N,] = 'V;'V,- 6J.,, [r;, AI,]= r;r,- 1·2 J., 
{L;,i\tfk] = (iki,.i- r 2

(ikj\7j. 

It is taken into account that 

N = -r6 + V(rV) + V, 
r x N = -(1 + rV)L = -L(l + rV), 

cur!N;::: -L6., etc. 

Note that in the space/?~. Land N form the following algebra of difrc·rcut.ial 
operators 

[L,, L,] = ,,,,!.,, [!._, ,y,] = <,;,S, [X,. N,] = -<,,,r,L.. 

2 

After the rescaling of N --+ N f J?5. over a supporting function space, we acquire 
the 0(3,1) Lie algebra representation in terms of the fr(r, V) operators in R~. 
They act in the 0(3) x 0(3) function space suitable for arranging the multipole 
phenomenology in electromagnetic theory (see e.g. [2], [3], [6]). The operators 
L and M obey the same algebra in the space of wave vectors Rk_ that is 
Fourier-conjugate to R').. In the preceding paper [7] the emphasis has been 
made on the inversion of different formulas for decomposition of vector fields 
in the mathematical aspect. 

In the physical aspect, two vector-potential formulations of the theory of 
continuous media with taking into account both magnetic and electric toroid 
polarizations [8], (see also [9], part II) are published for the first time. Here 
we consider the mathematical underlying reason of uniqueness of division of 
the transverse electric distribution density E1m(k2

, t) int9 two independent 
multi pole specimen [3]: 

Elm(k2
, f)= Qlm(O, I)+ k2 Tim(k2

, !), (1) 

where Q,m(O, t) are the time-derivative of the Coulomb (charge) multipole 
/-moment and 1im(k2

, t) are the toroid multi pole form factor of /-order. Note 
that a secularized relation when neglecting toroid contributions and known as 
the Siegert theorem may be correct for low-symmetric electromagnetic systems 
only. The mathematical question of condition responsible for the possibility of 
identification of multipole moments (the leading ones for each given l) in the 
transverse and longitudinal parts of current raised in [1] will be t:ied to clear 
in this paper. From our representation theorem (see also remark II) it follows 
that definitions of mu!tipole moments are unique. 

Recall that the procedme of multipole decomposition of the current and 
field densities in electrodynamics in fact corresponds to the description of prop­
erties of a system by a set of numerical characteristics which are assigned to 
a point, 11Center" of the density distribution of the system considered. In this 
case, for the peloidal and potential parts of the curren~ an additional con­
nection arises bctweer-.. its longitudir:.?.l a:1d transverse co::n.ponents [3] due to 
degeneracy of boundary conditions of longitudinality and transversality in r­
space at the self-similar shrinkage of the de"finition domain of current to the 
chosen center. To prove this statement, we could probably use the transfer 
technique of boundary conditions [4], [5]. It might have lead to the separation 
of 'multi pole moments called in [3] the toroid ones 1 . But ways of this kind is 
very difficult in the general frame\vork of the distribution theory. Here we use 
the simple concrete approach. 

The main feature of the multi pole expansion procedure is a special choice 
of basis functions, which in actual ptactice ensues the rapid convergence of 
multi pole series. This circumstance forces us to weaken requirements of the 
usual Helmholtz theorem and, respectively, to take account of a gauge freedom 
extension. In sections 1 and 2, \ve discuss gauge freedoms in the Helmholtz 
and i\eumann-Debye decomposition. In section 3, we turn to their realizations 
within the multi pole-expansion of the electromagnetic current. 

1 In fact, theit exact title should be the poloidal moments, see [6], (9]. 
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2 The enlarged Helmholtz theorem 

We begin our consideration with the Helmholtz Decomposition: 
<l W with properties of single-valuedness, continuity, boundedness or con­
vergence 

k 
lVI < r'+<, ' > 0 at r --> oo 

in the space may be represented in the form [see e.g. [12JI: 

V = V<p +curiA with divA= 0. 

Indeed, the theorem requirements are proved to be sufficient in order to reex­
press tautologically the given vector field V through its divergence and vor­
ticity. The.explicit realization of the theorem could be attained due to the 
following operations 

divVII = 6<p,<p= 6-1divV, 

where 6-l .- [ <f'r' 
ln£R'f{O) 4rrfr- r'f' 

curlVl = curl curiA = -6A, A = -6 -'curlY. 

So we have 

V '= yll + v~ = V 6 - 1divV- curl6 -•curlY. 0 (2) 

Form (1) often produces misunderstanding (e.g. [13]) that the representation 
of divV and curlY is equivalent to the representation of V itself. We discuss 
here to what extent single-valued is this representation. In fact (1) contains 
the evident "gauge freedom": 

<p=<p+w, (6w=O), A=A+Vw. 

If we remove the demands of topological triviality 0. or/and the boundedness of 
functions w and w, then as an example important for physical application, we 
may represent the gauge freedoms in the form of special additional functions 
to V: 

( 
r

1 
) _ (-(I+ 1)Vr

1Yim) 
0 oF VN = cur!L 1/r'+' Yim = IVr-1-1 Yim , 

·which have a nonzero finite value all over the space except r -+ oo and r -+ 0, 
respectively, as far as 

divVN=curlVN=O, in If/5;_,00 and If/{0}. 
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Therefore these functions 2 cannot be represented by the usual Helmholtz 
decomposition, and manifest the gauge freedom of its enlarged formulation. 

Remark I. i\'ote that functions VN are longitudinal and transverse simulta­
neously, since they represent the vector solutions of the Laplace equation (.6. = 
graddiv- curl curl). ~lorcover, in our context it is important to emphsize that they 
are topologically equivalent to the peloidal (meridional) harmonics on the toruslikt' 
surface covering the whole space of R3 except one deleted axis. • 

Thus, under this gauge freedom th€' Heltnholtz decomposition takes the 
follo\\"ing alternative forms 

V=VII +V~ = 

= V (6 -'divV- (I+ 1) 2.::[C1,.,-' + c;,.,.-'-'Jri,.) + curl6- 1curlV = 
lm 

(3) 

= V 6 -'divV +curl (6 -'curlY+ L L[C1,.r
1 + c;,.,.-1-'jt;.,). 

lm 

3 The Neumann-Debye decomposition 

The well-knm.,.·n mathematical physicist \V.M.Elsasser in [l5J has already 
observed that every vector field of the form V x V x r\ + V x n\ whf'"re v 
and ,\ are any scttlars, is solenoidal. In papN [16] it has been shown t.hal if 
divV = 0 in R3 , then for evNy choice of the origin there E'xist uniquC' scalars 1..' 

and\ such that Y = L~·+N\ while 1/-· and\ average to zero on ('\·cry sp!H'rical 
surface concentric with the origin. ThE:' complete theorem of the possibility of 
decomposition of Y(r) in terms of scalar funct.ions reads as follows: 

Representation Theorem. Given a regiou 0. <;; 113 \{0}. with. a r<'gular 
boundary and R3 -vector field, Y: r E fl """"* V(r) E /f'. The11. t.h<'rf' exist 
three scalar functions <p(r), 4·(r) and \(r) 011 n which dc?fine this. v [ll] .• 

The most used decompo:;ition, whic-h we call t.hf' NC'umann-lkbyt> on<'. has 
the form 

" V(r) :=VI'(·)+ curlrt'·(·) +curl curlr\(·) =VI'+ U• + N\. ( I) 

Here U• and \are the so-call<?d Dcbyc potent.ials and c..p is t.h(' usual (elect.rir) 
sndar one. VVc found funda.mC'ntal solutions of the inv<'rsion prohh-111 of (I) in 
the form [7] 

divV = 61' --; I' = 6 - 1divV, 

LV= 1. 2 \·, --> lJ'.. = -L-2LV := L - 1 r curlY. 

rV = (rV)I' + 1.\ --> \ = /.-·2(rV)6- 1di,·V- /.-'(rV). 

2 Not.<' ~hat. similn.r funct.ious may h(' gem .. 'ra!ed using !.he commtm rC'Iali\)lt 

c:url(r x V),·"}i,, = -(,..· + I)V'I·"}i,.',+ (H -[)(,..· +l + l)rl·"'-:!)i!"" 
aJ)(I !.akiug into acCOllllf 1 hat 

" = l and ,.. = -1 - I 

(:we [11]. AppC'udix A). 
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where [18] 

1 dw' 
L-' :; -In( I- r · r'). • 

(1 4r. 
Remark II. Eigenfunctions of the square of the operator angular mome11tum 

iL: (iL) 2 = -L2 are usual spherical functions satisfying the equation 

L2 Ytm(i'); -1(1 + l)}im(r'), 

The corresponding Green function for this equation can be found with the help of 
the known Mercer theorem ([18], v.l) which in the given case yields 

1 "'Y,:;,(r)Yim(r') -- L ~P,(r. r'); I -ln2 +In(!-,, ·•'') . • 4rr L- -1(1 + 1) -
1 

1(1 + 1) l,m 

Remark III. It is well~ known that the gauge freedom of (5) is the following: 

I'--> I'+ C, 1/J--> 1/J + p.(r), X--> X+ v(r·). 

Requiring r.p to vanish on the boundary, and 1/;, x not to contain spherically sym­
metric components 

fs, dw 1/J = JS' dw X ; 0; 

we put these functions in one-to-one correspondence to V. • 
Uniqueness Theorem. If a vector field V (with the properties deter­

mined in the theorem (I) ) is defined on every S'; in some range r0 < r < r 1 
and in that range v,_ = 0 while V,(r,O,cp) and V~(r,O,<p) are bounded for each 
fixed r and are continuously differentiable except possibly at 0 = 0 and 0 == 1r 
and further divV = 0 and curlY= 0, then V = 0. 

Our inversion formulas (3) demonstrate that immediately (cp. with [16], 
p.383, where the condition LV= 0 has been used instead of our curlY= 0). • 

Now we have to reconstruct the representation of X such that it depends on 
curlY and divV only. Really, the latter quantities have the physical meaning 
but not the radial component of V. Moreover, we may expect X not to depend 
on divV generally because this potential defines the transverse part of the 
vector fieJd V. Nevertheless, because of gauge freedom, the situation is not so. 
simple as it seems to be. 

Indeed, we may substitute the Helmholtz decomposition (the last expres­
sion in (3)) into the term with rV and see that X takes the form 

X = r'L6 -•cu01VL L-2 [C1m 'Vr1 + Cfm 'Vr-1-']Yim· (6) 
lm 

Further our vector field correspondjng to the gauge freedom may be trans­
formed as 

curlLL-2 (r'V)r1Ytm =(I+ !)curlr1LL-'Ytm = 

I 2 L' 1 I I+ I I ( ; (I+ l)curlr LL- l(l + !) Ytm = 1cur1Lr Yim = --
1
-Vr Yim· 7) 
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So, we found fundamental solutions of the inversion problem of (5) in the 
form [7] 

divV = 6<p --> I' = 6-1divV, 
LV= L2,P --> .p = -L-2LV: L-2r curlY, 

rV = (rV)<p + L'x --> X = r'(rV)6-1divV- £-2 (rV), 

= L-2L6 -•curlY 

+ L L-'[Cim 'Vr1 + Cfm 'Vr_1_1]Ytm 
lm 

with taking into account the gauge freedom in (3). • 

4 The multipole expansion of the 
electromagnetic current 

(8) 

Now we compare our abstract exercises and the procedure of multi pole ex­
pansion of electromagnetic current on the basis of the vector Helmholtz equa­
tion solutions constructed through the Neumann-Debye decomposition (8). 
The multipole representation of current J(r) by (5) may be obtained by the 
standard expansion of three scalar densities into series: 

4>- L it(kr)YtmQim(k2
, !); 

lmk 
l/J- Lil(kr)YimMim(k2 ,t); (9) 

lmk 
X- Lil(kr)YimEim(k2 ,!). 

lmk 

Therefore the multi pole representations of the transverse part of current 
(divJ = 0) are determined by the magnetic form factors Mlm(k2

, t), and 
the transverse electric contributions Etm(k2

,. t), and the scalar part of current 
(curiJ = 0) are expressed due to the 4-current conservation law (divJ = -p) 
through the Coulomb (charge) multipole moments Qlm(O t) and their mean 
2n:-power radii 

oo k2n 
Qlm(k', t) = Qlm(O, t) + L -

1 
Qj!"l(o, t). 

n=l n. 

As a result, J may be represented as [3] 

J(r, t) 
roo . /4rr(2( + 1) . • = (2rrt3 LJo dk(-•k)1 l( I .. )II {-zkLfl(kr)Yim(r)M1m(k2

, t) 
l,m 0 2 + l " 

-ikcur1Lft(kr)Ytm(r)Eim(k2 , t) +IV fl(kr)Yim(r)Qim(k 2
, t)}. (10) 
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We repeat here the procedure used firstly in [3] for the ascertainment of 
the exact structure of transverse electric contributions Elm(P, t). To this 
end, it one should rewrite explicitly our basis functions in terms of the vector 
harmonics 

cur1Lf1(kr)Yim(r) = (21 + l)-'i'{f1_1(kr)v'T+!Yu-•m(r) + 

+ ft+> (kr)v'iYu+lm(r) }; 

Vf1(kr)Yim(r) = (21 + W'i'{f,_ 1(kr)v'iYu-•m(r)­

- ft+> (kr )v'T+!Yu+lm(r)), 

where Yu-tm(f) is a harmonic polynomial functi?n defined as 

1-ly (') 1 ~ ty, r 11-lm r = v r lm· 

-/1(21 + 1) 

As is obvious, in the wave-length approximation, the leading contributions in 
the latter expressions are delivered by the vector harmonic functions /1-1 Yi1-tm 

from which it follows that 

curlLj,(kr)Yim(r) "'•_,o ,j(l + 1)/IV ft(kr)Yim(r) = 
4r.(ikr)1

-
1 fl+T 1 • 1+1 

= (2l + 1)!! V ~-1-Vr Yim(r) + O[(kr) ] , (11) 

It is the relation that permits us to identify the leading term in Eim(k2
, t) 

with time-derivatives of Q,m(O, t). However all functually independent contri­
butions in Elm(k2 , t) give the so-called toroid moments and their 2n-po\ver 
radii 

y(2n)( ) _ J,Ci j 1+2n+l [ • ( 2Vl/(l + 1) • ( ] ( 3 
lm O,t --21+1 r y/1-lmr)+ 21+3 yll+lmrJ Jr,t)dr. 

As the toroid moments have a distinct geometrical meaning (diverse details 
and representations are given in [3], [4], [9], [10] and see also [ll]), the re­
jection of Ttm(t) is generally invalid like it was done in the Siegert theorem 
Etm(k2 , t) -+k--;0 Otm(O, t).·, Neglect of Ttm(t) in comparison with Qtm(t) is 

·analogous to the neglect of a higher multi pole moment (contributions of high­
est symmetries of a given system) in comparison with the lower ones, which is 
of course permissible only when the lower moments (low symmetries) of this 
system do exist. So, the strict theorem determining the electric part struc­
ture has the form (1) E,,(k, t) = Q1m(O, t) + k2T,,(k, t), and its validity 
and uniqueness rely on the gauge freedom which has been obtained for the 
enlarged Helmholtz-theorem and transferred to Debye potentials (compare (S) 
and (11)). 
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Moreover. by using the exact relation ( 1 ), it is not so hard to find an expres­
sion for tht· complete parametri?.at.ion of the (·urrent in terms of generalized 
fuuctions 3 [9] 

= m=l = (21 + 1 )II &ft" (2") " 
J(r, t) = L L L .,,. 'l('>l + ., + 1)11 .,1 + 1 {tH1m (l)(r x V)~ J,,,(r) 

l=l m=-ln=O.., H. - ..,n ·· -

( 12) 

+[Q,,( t)J,.,o6 _, - r,\~"\t)]curl(r X V)6 "J,,(r) -I Oi!")(l )V-" n-•s,,(r)}. 

Remark IV. However, the expansion via of spherical harmonics emerges rapidly 
convergent. VVe remind (see e.g. [2J. p.$06) that if the field decreases for large 
distances very slowly, slower than ,.- 2 , the divergence and curl of the \'f'Ctor field 
considered are assigned arbitrary ind<'pendent values. Conversely, if we kno\\' that 
J vanishes identically outside some source radius 1?, VJ and V x J <HE.' no longN 
indrpendent of each other. As far as the expansion via.sphrrical harmonics is. rapidly 
couvergent, it is realized in the latter rcpresent.atiou immrdiatC'Iy. 

Thus, we strictly demonstrated that. the gauge freedom in division of the 
electromagnetic current into the transverse and longitudinal parts leads to the 
fact that the multi pole contributions to the transverse part. of cutTent. f'tm (~·2 , I) 
are represented in the form (1) and its leading t.C'nns may be idC'ntifi<'d with 
Q1m(Ot) from the longitudinal part of current. for all{, T\ot.C' t.hat-. sinC'C' the 
coefficient Ct does not depend on the wave number k, we can use hereaft-er the 
Lorentz gauge condition in the calculation of the vector potential. 

5 Conclusion 

Th{" representation of x in the Neumann-Debye scalarization already as­
sumes that the prohibition of the electric type of radiation impo~H'S some con­
ditions both on cur!J and divJ. But we could not rC'veal thC' ont's duC' to 
their non-division in the scalarization mentioned. Exploitation of the C'nlargt·d 
Helmholtz theot·em for this operation has inserted the extended gang<' fr<'('­
dom (let us recall that the Neumann-Debye representation t.he gaug(' frC'cdom 
reduce to functions of the scalar argument lrl only). It. is ju~t t.hi~ frC'crlom. 
consideration of which made it possible to identify t.hf' nH'fficiC'nt~ of lead·· 
ing. order of the expansion of transvcrsP and longitudinal elcct.rir part.s oft he 
current! 

The form of the expression ( l) shows the possibility of ronq)('nsal ion of I h<' 
electric type radiation if tlw t.oroid and charge monwnt.s a.rc switched on fl~ 
"anti-pha.,e" Oil<'S [3] (see also [19]). ' 
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oyKHHa E. H., lly6osHK B.M. 

KanH6pOS04Ha>! cso6oua B pacwHpeHHOH TeopeMe renhMromua 

H noreHuHanax HeHMaHa - Jle6IDI H ee npo51BJieHHe 

npH MYIIbTHfiOJibHOM pa3Jl0)KCHHH COXp3H51101UCfOCSI TOKa 

ES-98-96 

Mhi o6c)OKIIaeM KanH6poso4HYJO cso6o11y )lll• pacwHpeHHoii TeopeMhi renhM­

ronbua H noreHuwanos HeH.MaHa-lle6ru~ H 3areM )leMoHctpHpyeM, Ka.K oHa peanH3y­

ercSI B MynbTHfiOJibHOM pa3110)KeHHH 3JICKTpOM3fHHTH0fO TOKa npH BbUl.CJICHHH 

ceMeHcrsa ropOHllHbiX MOMeHTOB. ToliHOe peweHHe 3TOH npo6neMbi 6b1JIO noii)"-leHo 

B 1974 r., HO OTBeTbl H3 HeKOTOpb!e BOITpOCbl liHCTO MaTeMaTHlJCCKOfO xapaKtepa, 

cljlopMynHposaHHhie 11.fi.<t>peH4eM H IO.illHMaMoTo OKono 40 neT lia:Jau, uaHhi 

snepBble s 3TOH pa6ore. 

Pa6ora BblfiOJIHeHa B na6oparopHH reopetHlJeCKOH 4>H3HKH HM. H.H.Eoromo-

6osa 0115111. 
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