

СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

98-61

E5-98-61
P.E. Zhidkov*

ह

EIGENFUNCTION EXPANSIONS
ASSOCIATED WITH A NONLINEAR SCHRÖDINGER EQUATION

[^0]
1 Introduction. Main result

The eigenvalue problem we consider is the following

$$
\begin{gather*}
-u^{\prime \prime}+f\left(u^{2}\right) u=\lambda u, \quad u=u(x), \quad x \in(0,1), \tag{1}\\
u(0)=u(1)=0, \tag{2}\\
\int_{0}^{1} u^{2}(x) d x=1 . \tag{3}
\end{gather*}
$$

Here all quantities are real and f is a given sufficiently smooth function. If a pair (λ, u), where $\lambda \in(-\infty, \infty)$ and $u=u(x)$ is a twice continuously differentiable function of the argument $x \in$ $[0,1]$, satisfies the problem (1)-(3), then we call λ the eigenvalue and $u(x)$ the corresponding eigenfunction of this problem.

In the present note, we establish an independent and shorter proof of our result from papers $[1,2]$ which states that the eigenfunctions of the problem (1)-(3) form a Riesz basis in the space $L_{2}(0,1)$. (In fact, paper [1], where a weaker statement on the basis property of the system of eigenfunctions of the problem (1)-(3) is presented, contains some mistakes and gaps in proofs; in the latter one [2] we correct these errors and make some additions to paper [1]. Also, in note [3], results of paper [1] are reestablished without proofs.) We remark that, to our knowledge, there are almost no investigations of basis properties of systems of eigenfunctions of nonlinear problems similar to (1)-(3). We mention only paper [4], where these questions are considered for a nonlinear problem arising from a linear one under small nonlinear perturbations, and our paper [5].

In the present paper, our hypothesis is the following.
(f) Let $f\left(u^{2}\right) u$ be a real continuously differentiable function of the argument $u \in(-\infty, \infty)$ and let $f(s)$ be a non-decreasing function of the argument $s \in[0,+\infty)$.
The hypothesis (f) is valid, for example, for the function $f(s)=$ $|s|^{p}$ where $p \geq 0$ is a constant.

In our paper [1], the following statement is proved.
Theorem 1. Under the hypothesis (f)
(a) for an arbitrary integer $n \geq 0$ there exists a pair $\left(\lambda_{n}, u_{n}\right)$, consisting of an eigenvalue λ_{n} and a corresponding eigenfunction u_{n} of the problem (1)-(3) and being unique up to the coefficient ± 1 of the function u_{n}, such that the function $u_{n}(x)$ has precisely n roots in the interval $(0,1)$;
(b) $\lambda_{0}<\lambda_{1}<\ldots<\lambda_{n}<\ldots$ and $\lim _{n \rightarrow \infty} \lambda_{n}=+\infty$;
(c) for any integer $n \geq 0$ the solution $u_{n}(x)$ of the equation (1) taken with $\lambda=\lambda_{n}$ can be continued onto the whole real line $x \in(-\infty, \infty)$ and the roots of this solution are precisely the points $x_{k}^{n}=\frac{k}{n+1}$ where k runs over all integers;
(d) there exists $D>0$ such that $\left|u_{n}(x)\right| \leq D$ for all numbers $n=0,1,2, \ldots$ and for all $x \in(-\infty, \infty)$;
(e) for any integer $n \geq 0 \quad u_{n}\left(x+\frac{1}{n+1}\right)=-u_{n}(x)$ for all $x \in(-\infty, \infty)$;
(f) $u_{n}\left(\frac{r}{n+1}+x\right)=-u_{n}\left(\frac{r}{n+1}-x\right)$ for any non-negative integer n, integer r and $x \in(-\infty, \infty)$.

Remark. Really, in paper [1] statements (c),(d),(e) and (f) of theorem 1 are presented in a weaker form. However, proofs. from paper [1]. can be kept without modifications for proving these statements in their present form.

Let $L_{2}(a, b)$, where $a<b$ are real numbers, be the usual Lebesque space, consisting of real functions of the argument $x \in$ (a, b), with the scalar product $(v, w)_{L_{2}(a, b)}=\int_{a}^{b} v(x) w(x) d x$ and
the norm $\|v\|_{L_{2}(a, b)}=(v, v)_{L_{2}(a, b)}^{\frac{1}{2}}$. Let $L_{2}=L_{2}(0,1), \quad(\cdot, \cdot)=$ $(\cdot, \cdot)_{L_{2}(0,1)}$ and $\|\cdot\|=\|\cdot\|_{L_{2}(0,1)}$. We also present the following definitions for the convenience of readers.

Definition 1. A system of functions $\left\{h_{n}\right\}_{n=0,1,2, \ldots} \subset L_{2}(a, b)$ is called a basis of the space $L_{2}(a, b)$ if and only if for an arbitrary function $h \in L_{2}(a, b)$ there exists a unique sequence of real coefficients $\left\{a_{n}\right\}_{n=0,1,2, \ldots}$ such that $\lim _{N \rightarrow \infty}\left\|h-\sum_{n=0}^{N} a_{n} h_{n}\right\|_{L_{2}(a, b)}=0$. We write this equality as follows: $h=\sum_{n=0}^{\infty} a_{n} h_{n}$.

In accordance with papers $[6,7]$ we introduce the following
Definition 2. We call a basis $\left\{h_{n}\right\}_{n=0,1,2, \ldots}$ of the space $L_{2}(a, b)$ the Riesz baisis of this space if and only if the following two conditions are satisfied:

1) for any $h=\sum_{n=0}^{\infty} a_{n} h_{n} \in L_{2}(a, b)$, where a_{n} are real numbers, one has $\sum_{n=0}^{\infty} a_{n}^{2}<\infty$;
2) for any sequence $\left\{a_{n}\right\}_{n=0,1,2, \ldots}$ of real numbers such that $\sum_{n=0}^{\infty} a_{n}^{2}<\infty$ the series $\sum_{n=0}^{\infty} a_{n} h_{n}$ converges in the space $L_{2}(a, b)$.

Our main result is the following.
Theorem 2. Under the hypothesis (f) the system of eigenfunctions $\left\{u_{n}\right\}_{n=0,1,2, \ldots .}$ of the problem (1)-(3) from theorem 1 is a Riesz basis of the space L_{2}.

2 Proof of theorem 2

In what follows, we accept that $u_{n}(x)>0$ for $x \in\left(0, \frac{1}{n+1}\right)$ (it is possible in view of theorem 1(c) and invariance of the problem
(1)-(3) with respect to the multiplication of the unknown function
by -1). Our proof of theorem 2 is based on a result obtained by N.K. Bary. To establish this result, we need the following

Definition 3. A system of functions $\left\{h_{n}\right\}_{n=0,1,2, \ldots} \subset L_{2}(a, b)$ is called minimal in the space $L_{2}(a, b)$ if and only if for any integer $n \geq 0$ there exists $C_{n}>0$ such that $\left\|h_{n}+\sum_{\substack{k=0 \\ k \neq n}}^{N} a_{k} h_{k}\right\|_{L_{2}(a, b)} \geq C_{n}$ for an arbitrary integer $N>0$ and arbitrary real coefficients a_{k}.

The result of N.K. Bary announced in paper [6] and proved in paper [7] is the following.

Bary Theorem. Let a system of functions $\left\{g_{n}\right\}_{n=0,1,2, \ldots}$ be a Riesz $\frac{\text { Basis of the space }}{} L_{2}(a, b),\left\{h_{n}\right\}_{n=0,1,2, \ldots}$ be a sequence of functions from the space $L_{2}(a, b)$ and the following two conditions be satisfied:
A. the system of functions $\left\{h_{n}\right\}_{n=0,1,2, \ldots}$ is minimal in the space $L_{2}(a, b)$;
B. $\sum_{n=0}^{\infty}\left\|h_{n}-g_{n}\right\|_{L_{2}(a, b)}^{2}<\infty$.

Then, the system of functions $\left\{h_{n}\right\}_{n=0,1,2, \ldots}$ is a Riesz basis of the space $L_{2}(a, b)$.

Let $e_{n}(x)=\sqrt{2} \sin \pi(n+1) x$ where $n=0,1,2, \ldots$. Then, $\left\{e_{n}\right\}_{n=0,1,2, \ldots}$ is an orthonormal basis in the space L_{2}. In particular, it is obviously a Riesz basis in this space. Let us verify the conditions A and B of the Bary Theorem for the systems of functions $\left\{e_{n}\right\}_{n=0,1,2, \ldots}$ and $\left\{u_{n}^{\cdot}\right\}_{n=0,1,2, \ldots}$ and the space L_{2}.

To verify the condition A of the Bary Theorem, let us for each integer $n \geq 0$ expand the function $u_{n}\left(\frac{\dot{H}}{n+1}\right)$ in the space L_{2} in the Fourier series: $u_{n}\left(\frac{\cdot}{n+1}\right)=\sum_{k=0}^{\infty} a_{k}^{n} e_{k}(\cdot)$ where a_{k}^{n} are real coefficients. Then, one can easily verify that

$$
\begin{equation*}
u_{n}(\cdot)=\sum_{m=0}^{\infty} b_{m}^{n} e_{m}(\cdot) \tag{4}
\end{equation*}
$$

in the space L_{2} where $b_{(n+1)(k+1)-1}^{n}=a_{k}^{n}$ and $b_{m}^{n}=0$ if $m \neq$ $(n+1)(k+1)-1$ for all $k=0,1,2, \ldots$. (Indeed, the equality (4) obviously takes place in the space $L_{2}\left(0, \frac{1}{n+1}\right)$. Then, since in view of theorem $l(\mathrm{f})$ the function $u_{n}(x)$ is odd with respect to the points $\frac{r}{n+1}$ where $r=0, \pm 1, \pm 2, \ldots$ and since the direct verification shows that the functions $e_{(n+1)(k+1)-1}(x)$, where $k=0,1,2, \ldots$, are odd with respect to these points, too, the equality (4) also holds in the sense of each of the spaces $L_{2}\left(\frac{r}{n+1}, \frac{r+1}{n+1}\right)$ where $r=\overline{1, n}$. Therefore, it is valid in the sense of the space L_{2}.) Also, obviously $b_{0}^{n}=\ldots=b_{n-1}^{n}=0$ for each n and, in view of our acceptation, $b_{n}^{n}=a_{0}^{n}>0$.

Lemma 1. The system of functions $\left\{u_{n}\right\}_{n=0,1,2, \ldots .}$ is minimal in the space L_{2}.

Proof. Let us suppose that the statement of lemma 1 is invalid. Then, there exist a number n and sequences of numbers $\left\{N_{l}\right\}_{l=1,2,3, \ldots}$ and of real coefficients d_{k}^{l}, where $k=\overline{0, N_{l}}$, such that

$$
u_{n}+\sum_{\substack{k=0 \\ k \neq n}}^{N_{l}} d_{k}^{l} u_{k}=\alpha_{l}(x) \text { and }\left\|\alpha_{l}\right\| \rightarrow 0 \text { as } l \rightarrow \infty
$$

In addition, introducing zero coefficients d_{k}^{l} if necessary, we can accept that $N_{l}>n$ for all l.

First, let $n>0$. Let P_{n} be the orthogonal projector in the space L_{2} onto the subspace spanned over the functions $\left\{e_{0}, \ldots, e_{n-1}\right\}$
and let L^{n} be the closure in the same space of the linear span of the functions $\left\{e_{n+1}, e_{n+2}, \ldots\right\}$. Then, since $\|h\| \geq\left\|P_{n} h\right\|$ for any $h \in L_{2}$ and in view of the expansions (4), we get that

$$
\begin{aligned}
& \qquad P_{n}\left[u_{n}+\sum_{\substack{k=0 \\
k \neq n}}^{N_{l}} d_{k}^{l} u_{k}\right]=\sum_{k=0}^{n-1} d_{k}^{l}\left[P_{n} u_{k}\right]=\beta_{l}(x) \\
& \text { where }\left\|\beta_{l}\right\| \rightarrow 0 \text { as } l \rightarrow \infty . \text { Hence, since the vectors }
\end{aligned}
$$

$P_{n} u_{0}, \ldots, P_{n} u_{n-1}$ are linearly independent in the space L_{2} (because the submatrix $\left(b_{k}^{m}\right)_{m, k=0, \ldots, n-1}$ in the expansions (4) is nondegenerate), we get that $d_{k}^{l} \rightarrow 0$ as $l \rightarrow \infty$ for all $k=\overline{0, n-1}$. Therefore,

$$
u_{n}+\sum_{k=n+1}^{N_{l}} d_{k}^{l} u_{k}=\gamma_{l}(x) \text { where }\left\|\gamma_{l}\right\| \rightarrow 0 \text { as } l \rightarrow \infty
$$

If $n=0$, then this property also obviously holds. But in view of the expansions (4) $\sum_{k=n+1}^{N_{l}} d_{k}^{l} u_{k} \in L^{n}$, hence

$$
\left\|u_{n}+\sum_{k=n+1}^{N_{l}} d_{k}^{l} u_{k}\right\| \geq b_{n}^{n}>0
$$

and we get the contradiction. Thus, lemma 1 is proved.

$$
\text { Lemma 2. } \sum_{n=0}^{\infty}\left\|u_{n}-e_{n}\right\|^{2}<\infty
$$

Proof. In view of theorem $1(\mathrm{~d})$, we get by the comparison theorem (see [8]) that there exists $D_{1}>0$ such that

$$
\begin{equation*}
\left|\lambda_{n}-z_{n}\right| \leq D_{1} \tag{5}
\end{equation*}
$$

for all numbers n where $z_{n}=(\pi(n+1))^{2}$ are numbers such that. $-e_{n}^{\prime \prime}(x)=z_{n} e_{n}(x)$. Let us show that there exists $D_{2}>0$ such that

$$
\begin{equation*}
\left|u_{n}^{\prime}(0)-e_{n}^{\prime}(0)\right| \leq D_{2} \text { and }\left|u_{n}^{\prime}(1)-e_{n}^{\prime}(1)\right| \leq D_{2} \tag{6}
\end{equation*}
$$

for all numbers n.
At first, let us multiply the equation (1) written for $u(x)=$ $u_{n}(x)$ by $u_{n}(x)$ and integrate the obtained identity over the segment $[0,1]$. Then, due to theorem $1(\mathrm{~d})$, we get

$$
\lambda_{n}-C_{1} \leq \int_{0}^{1}\left[u_{n}^{\prime}(x)\right]^{2} d x \leq \lambda_{n}+C_{1}
$$

for a constant $C_{1}>0$ independent of n. Further, let us multiply the equation (1) written for $u(x)=u_{n}(x)$ by $2(1+x) u_{n}^{\prime}(x)$ and integrate the obtained identity between 0 and 1 . We get after transformations with the use of the previous estimate

$$
\begin{gathered}
\left|2\left[u_{n}^{\prime}(1)\right]^{2}-\left[u_{n}^{\prime}(0)\right]^{2}-2 \lambda_{n}\right| \leq \\
\leq C_{1}+2\left|\int_{0}^{1}(1+x) f\left(u_{n}^{2}(x)\right) u_{n}(x) u_{n}^{\prime}(x) d x\right| \leq \\
\leq C_{1}+\int_{0}^{1}\left|F\left(u_{n}^{2}(x)\right)\right| d x
\end{gathered}
$$

where $F(s)=\int_{0}^{s} f(t) d t$. Hence, since due to theorem $1(e)\left[u_{n}^{\prime}(0)\right]^{2}$ $=\left[u_{n}^{\prime}(1)\right]^{2}$, theorem $1(\mathrm{~d})$ implies that

$$
\left|\left[u_{n}^{\prime}(1)\right]^{2}-2 \lambda_{n}\right|=\left|\left[u_{n}^{\prime}(0)\right]^{2}-2 \lambda_{n}\right| \leq C_{2}
$$

for a constant $C_{2}>0$ independent of n. We also remark that, due to the acceptation that $u_{n}(x)>0$ for $x \in\left(0, \frac{1}{n+1}\right)$, we have $u_{n}^{\prime}(0)>0$ because otherwise (if $u_{n}^{\prime}(0)=0$) it must be $u_{n}(x) \equiv 0$ by the uniqueness theorem. Now, since sign $u_{n}^{\prime}(0)=\operatorname{sign} e_{n}^{\prime}(0)$ and, as it follows from theorem $1(e)$, sign $u_{n}^{\prime}(1)=\operatorname{sign} e_{n}^{\prime}(1)$, because $\left[e_{n}^{\prime}(0)\right]^{2}=\left[e_{n}^{\prime}(1)\right]^{2}=2 z_{n}$ and in view of the inequality (5), we get (6):

Let $w_{n}(x)=u_{n}(x)-e_{n}(x)$. Then, due to theorem $1(\mathrm{~d})$ and the inequality (5), we have

$$
\begin{align*}
-w_{n}^{\prime \prime}(x)+W_{n}(x) & =z_{n} w_{n}(x), \quad x \in(0,1) \tag{7}\\
w_{n}(0) & =w_{n}(1)=0 \tag{8}
\end{align*}
$$

where $\left\{W_{n}(x)\right\}_{n=0,1,2, \ldots .}$ is a uniformly bounded sequence of continuous functions. Multiplying the equation (7) by $2(1+x) w_{n}^{\prime}(x)$ and integrating the obtained identity from 0 to 1 with the use of the integration by parts, due to (6) and (8) we get
$D_{3}-\int_{0}^{1}\left[w_{n}^{\prime}(x)\right]^{2} d x-2 \int_{0}^{1}(x+1) W_{n}(x) w_{n}^{\prime}(x) d x \geq z_{n} \int_{0}^{1}\left[w_{n}(x)\right]^{2} d x$
where $D_{3}>0$ is a constant independent of n. Therefore, applying the inequality $2 a b \leq a^{2}+b^{2}$, we obtain that there exists $D_{4}>0$ such that $z_{n} \int_{0}^{1} w_{n}^{2}(x) d x \leq D_{4}$ for all numbers n. Hence, $\left\|w_{n}\right\| \leq$ $D_{4}^{\frac{1}{2}} \pi^{-1}(n+1)^{-1}$, and lemma 2 is proved.

Now theorem 2 follows from proved lemmas 1 and 2 and the Bary Theorem.

References

[1] P.E. Zhidkov. Completeness of systems of eigenfunctions for the Sturm-Liouville operator with potential depending on the spectral parameter and for one non-linear problem// Matematicheskii Sbornik. 1997. V. 188, No 7. P. 123-138.
[2] P.E. Zhidkov. Corrections to the paper "Completeness of systems of eigenfunctions for the Sturm-Liouville operator with potential depending on the spectral parameter and for one non-linear problem" (Matematicheskii Sbornik. 1997. V. 188, No 7. P. 123-138) // Submitted to "Matematicheskii Sbornik".
[3] P.E. Zhidkov. On the completeness of the system of normalized eigenfunctions of a nonlinear Schrödinger-type operator on a segment// Int. J. Modern Phys. A. 1997. V. 12, No 1. P. 295-298.
[4] A.P. Makhmudov. Completeness of eigenelements for some non-linear operator equations// Doklady Akad. Nauk SSSR. 1982. V. 263, No 1. P. 23-27.
[5] P.E. Zhidkov. On the property of being a Riesz basis for the system of eigenfunctions of a nonlinear Sturm-Liouville-type problem// Submitted to "Matematicheskii Sbornik".
[6] N.K. Bary. On bases in Hilbert space// Doklady Akad. Nauk SSSR. 1946. V. 54, No 5. P. 383-386.
[7] N.K. Bary. Biorthogonal systems and bases in Hilbert space// Moskov. Gos. Univ. Učenye Zapiski. 1951. Vip. 148. Matematika 4. P. 69-107.
[8] B.M. Levitan, I.S. Sargsyan. Sturm-Liouville and Dirac operators. 1988, Moscow, Nauka.

> Received by Publishing Department on March 20, 1998.

[^0]: *E-mail: zhidkov@thsun 1.jinr.dubna.su

