


1 Introduction. Main result
The eigenvalue problem we consider is the following
—u’ + f(uP)u = I, u=uz), z€(0,1)}, (1)
u(0) =u(l) =0, (2)

/ w(e ()

Here all quantities are real and f is a given sufficiently smooth
function. If a pair (A, u), where A € (—oo,c0) and u = u{z) is
a twice continuously differentiable function of the argument z €
[0, 1], satisfies the problem (1)-(3), then we call A the eigenvalue
and u(z) the corresponding eigenfunction of this problem.

In the present note, we establish an independent and shorter
proof of our result from papers {1,2] which states that the eigen-
functions of the problem (1)-(3) form a Riesz basis in the space
L3(0,1). (In fact, paper {1], where a weaker statement on the ba-
sis property of the system of eigenfunctions of the problem (1)-(3)
is presented, contains some mistakes and gaps in proofs; in the
latter one [2] we correct these errors and make some additions to
paper [1]. Also, in note [3], results of paper (1} are reestablished
without proofs.) We remark that, to our knowledge, there are
almost no investigations of basis properties of systems of eigen-
functions of nonlinear problems similar to (1)-(3). We mention
only paper [4], where these questions are. considered for a non-

linear problem arising from a linear one under small nonlinear

perturbations, and our paper [3].
In the present paper, our hypothesis is the following.
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(f) Let f(u?)u be a real continuously differentiable function
of the argument u € (—oo0,0) and let f(s) be a non-decreasing
function of the argument s € [0, +00).

The hypothesis (f) is valid, for example, for the function f(s) =
{s|” where p > 0 is a constant.
In our paper [1], the following statement is proved.

Theorem 1. Under the hypothesis (f)

(a) for an arbitrary integer n > O there ezists a pair (An, Un),
consisting of an eigenvalue X, and a corresponding eigenfunction
un of the problem (1)-(3) and being unique up to the coefficient
+1 of the function u,, such that the funciion un(z) has precisely
n roots in the interval (0,1);

b)) o< A <..< A <...and ]im/\ = +00;

(c) for any integer n > 0 the solution uq(z) of the equation
(1) taken with A = X, can be continued onto the whole real line
z € (—oo o0) and the roots of this solution are precisely the points

p = ? where k runs over all integers; :

(d) there exists D > 0 such that |ux(z)| < D for all numbers
n=0,1,2,... and for all z € (—o0,00);

(e )for any integer n > 0 u, (m—l— n+1) = mun(:r;) for all
z € (—oo,00);

() un (G5 +2) = —tan (;% — ) for any non-negative in-
teger n, integer v and z € (—o0,00).

Remark. Really, in paper [1} statements (c),(d),(e) and (f) of
theorem 1 are presented in a weaker form. However, proofs from
paper [1] can be kept without modifications for proving these
statements in their present form. ST

Let Ly(a,b), where a < b are real numbers, be the usual

Lebesque space, consisting of real functions of the argument z €
o
(a,b), with the scalar product (v,w)r,ap) = [ v(z)w(z)dz and
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the norm |[ollzy(@s) = (v,0) 04 Let Lo = L2(0,1), (-) =
(-,-)L.z(.o,]) and || - || = [| - llz,(0,1)- We also present the following
definitions for the convenience of readers. —

‘ Definition 1. A system of functions {hn}r=01.2,. C L2(a,b)
is cali_'ed a basis of the space Ly(a,b) if and only if for an arbitrary
function h € Ly(a,b) there exists a unique sequence of real coeffi-

N
h=S anhs =0 We

ctents {an}n=01,2,.. such that lim
Nmoo n=0 La{a.b)

write this equality as follows: h = i anhy,.

n=0

In accordance with papers [6,7] we introduce the following

Definition 2. We call @ basis {hn}n=01.2,.. of the space Ly(a, b)
the Riesz bdsis of this space if and only if the following two con-
ditions are satisfied:

1) for any h = annhﬂ € Ly{a,b), where a,, are real num-
n=

[eo)
bers, one has 3 a2 < oo
n=0

2) for any sequence {a,}n=012,.. of real numbers such that

o0 oo

2 . .
ann < oo the series ) anh, converges in the space Lq(a,b).
no= n=0

Our main result is the following.

Theorem 2. Under the hypothesis (f) the system of eigen-

functions {un}n=012... of the problem (1)-(3) from theorem 1 is a
Riesz basis of the space L.

2  Proof of theorem 2

In what follows, we accept that un(z) > 0 for = € (0, 737) (it
is possible in view of theorem 1{c) and invariance of the problem
(1)-(3) with respect to the multiplication of the unknown function
by —1). Our proof of theorem 2 is based on a result obtained by
N.K. Bary. To establish this result, we need the following

Definition 3. A system of functions {hn}n=04.... C La(a,b)
is called minimal in the space La(a,b) if and only if for any integer

N
n > 0 there exists Cn > 0 such that |the + > arhs >,
k=0

kam L2(a.d)
for an arbiirary integer N >0 and arbitrary real coefficients ax.

The result of N.K. Bary announced in paper [6] and proved
in paper (7] is the following.

Bary Theorem. Let a system of functions {gn}n=01.2,.. be a
Riesz basis of the space La(a,b), {hn}n=012... be a sequence of
functions from the space Ly(a,b) and the following two conditions
be satisfied:

A. the system of functions {hn}tn=01.2,.. i8 minimal in the
space La(a,b);

B. Zoﬂhn — gall? () <

Then, theﬂsysiem of functions {hy}n=012,.. i @ Hiesz basis of the
space La(a,b).

Let e,(z) = V2sin w(n 4+ 1)z where n = 0,1,2,.... Then,
{€n}n=0,12,. 15 an orthonormal basis in the space L;. In partic-
ular, it is obviously a Riesz basis in this space.- Let- us verify
the conditions A and B of the Bary Theorem: for the systems of
functions {€n}n=01,2.. and {u.}n=012,.-and the spaceLq.
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To verify the condition A of the Bary Theorem, let us for

each integer n > 0 expand the function u, (n_-ﬁ) in the space L,
o0

in the Fourier series: u, (;;;ﬁ) = kz ajer(-) where a} are real
=0

coefficients. Then, one can easily verify that

un(-) = Z brem(-) (4)

in the space L where b?ﬂ+1)(k+1)—1 = a} and 6% = 0if m #
(n+4+ 1)(k+1)—1foral k =0,1,2,... (Indeed, the equality
(4) obviously takes place in the space L, (0, =5 ). Then, since in

view of theorem 1(f) the function u,(z}) is odc}lt‘ith respect to the
points n";l where r = 0, £1, 42, ... and since the direct verification
shows that the functions e(n1)(ks1)~1(2), where k = 0,1,2,..., are
odd with respect to these points, too, the equality (4) also holds
in the sense of each of the spaces L, (njrl , ;::) where r = 1,n.
Therefore, it is valid in the sense of the space Lj.) Also, obviously

by = ... =b_, = 0 for each n and, in view of our acceptation,

n-1 —

by =af > 0.

Lemma 1. The system of functions {tn }n=01.2,. is minimal
in the space Ls.

Proof. Let us suppose that the statement of lemma 1 1s
invalid. Then, there exist a number n and sequences of numbers
{Ni}1=123... and of real coefficients d%, where k = 0, Ny, such that

Ny
Un + Zdiuk = q(z) and |ja]| = 0 as [ — o0,
kin
In addition, introducing zero coefficients d} if necessary, we can
accept that Ny > n for all L.
First, let n > 0. Let P, be the orthogonal projector in the
space L, onto the subspace spanned over the functions {eo, ..., €n—1}

6

g r——

Ty

and let L™ be the closure in the same space of the linear span of
the functions {€ns1,€ns2,-.-}. Then, since ||a|| > ||P,A|| for any
h € Ly and in view of the expansions (4), we get that

Ny n-1
Po(tn+ > diur| =) di[Paui] = Bi(z)
k=0 k=0

k#n
where ||3|| — 0 as I — co. Hence, since the vectors
P,ug, ..., Patin-y are linearly independent in the space L, (be-
cause the submatrix (57 )m k=o,.,n—1 in the expansions (4) is non-
degenerate), we get that d — 0 as { — oo for all k = 0,n — L.
Therefore,
Ny
Un + Z diup = n(z) where {|m|l =0 as [ — oo.
k=n+1
If n = 0, then this property also obviously holds. But in view of

Ny
the expansions (4) Y, diur € L™, hence
k=n-41 .

N
Un + Z diuk

k=n+1

2 b >0,

and we get the contradiction. Thus, lemma 1 is proved.

Lemma 2. Y. [lun — enl]* < oo.
n=0
Proof. In view of theorem 1{d), we get by the comparison

theorem (see [8]) that there exists D; >0 such that
|An_zn| SDI (5)

for all numbers n where z, = {7(n + 1))* are numbers such that
—e(z) = z,e,(z). Let us show that there exists D; > 0 such

that
[u’(0) — e, (0)| < Dy and |u,(1) —e,(1}| < D2 (6)
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for all numbers n.

At first, let us multiply the equation (1) written for u(z) =
un(z) by un(z) and integrate the obtained identity over the seg-
ment [0,1]. Then, due to theorem 1(d), we get

1
M —C1 £ /[u;(w)]zd;c <A+ Ch
0
for a constant C; > 0 independent of n. Further, let us multiply
the equation (1) written for u(z) = us(z) by 2(1 + 2)u, ' (z) and

integrate the obtained identity between 0 and 1. We get after
transformations with the use of the previous estimate

|20 (] — [ (0)) — 2] <

<Cr+2 ] (1 + 2) £ (12 (2) Jun (e (2) | <
0

<O+ / F(2(2))|dz

where F(s) = fsf(t)dt. Hence, since due to theorem 1{e) [}, (0))
0
= [/ (1)]?, theorem 1(d) implies that
B4 = 2] = O ~ 204l < s

for a constant Cy > 0 independent of n. We also remark that,
due to the acceptation that un(x) >0 for z € (0, 3 1), we have
! (0) > 0 because otherwise (if u,(0) = 0) it must be un(z) =0
by the uniqueness theorem. Now, since sign u/,(0) = sign e,,(0)
and, as it follows fromi theorem 1(e), sign u,(1} = sign e (1),
because [€,(0)]? = [¢/,(1)}]* = 2z, and in view of the inequality

(5), we get (6):

Let wa(z) = us(z) — en(z). Then, due to theorem 1(d) and
the inequality (5), we have

—wl(z) + Walz) = zawa(z), z € (0,1), (7)

wa(0) = wa(l) =0 (8)
where {W,(z)}r=01.2,. is a uniformly bounded sequence of con-
tinuous functions. Multiplying the equation (7) by 2(1 + z)w! (z)
and integrating the obtained identity from 0 to 1 with the use of
the integration by parts, due to (6) and (8) we get

D;— j[tv;(z)]zdm ——2](3: + DWe(z)wl(z)dz > 2z, j[zun(:c)]za’m

where D3 > 01s a constant independent of n. Therefore, applying
the inequality 2eb < a? + b?, we obtain that there exists Dy > 0
1

such that znfwi(m)dm < Dy for all numbers n. Hence, ||waf] <
0
DZr Y n+1)7?, and lemma 2 is proved.

Now theorem 2 {ollows from proved lemmas 1 and 2 and the
Bary Theorem.
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