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1 Introduction. Main result 

The eigenvalue problem we consider is the following 

-u" + f(u 2)u =.Xu, u = u(x), x E (0, 1), 

u(O) = u(1) = 0, 
1 J u2

(x)dx = l. 

0 

(1) 

(2) 

(3) 

Here all quantities are real and f is a given sufficiently smooth 

function. If a pair (.X,u), where .X E (-oo,oo) and u = u(x) is 

a twice continuously differentiable function of the argument x E 

[0, 1], sa:tisfies the problem (1)-(3), then we call .X the eigenvalue 

and u(x) the corresponding eigenfunction of this problem. 

In the present note, we establish an independent and shorter 

proof of our result from papers [1,2] which states that the eigen­

functions of the problem (1)-(3) form a Riesz basis in the space 

L2(0, 1). (In fact, paper [1], where a weaker statement on the ba­

s1s property of the system of eigenfunctions of the problem (1 )-(3) 

is presented, contains some mistakes and gaps in proofs; in the 

latter one [2] we correct these errors and make some additions to 

paper [1]. Also, in note [3], results of paper [l] are reestablished 

without proofs.) We remark that, to our knowledge, there are 

almost no investigations of basis properties of systems of eigen­

functions of nonlinear problems similar to (1 )-(3). We mention 

only paper [4], where these questions are, considered for a non­

linear problem arising from a linear one under small nonlinear 

perturbations, and our paper [.5]. 
In the present paper, our hypothesis is the following. 
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(f) Let f( u2 )u be a real continuously differentiable function 

of the argument u E (-oo,oo) and let f(s) be a non-decreasing 

function of the argument s E [0, +oo ). 

The hypothesis (f) is valid, for example, for the function f(s) = 
isiP where p :2:: 0 is a constant. 

In our paper [1], the following statement is proved. 

Theorem l. Under the hypothesis (f) 
(a) for an arbitrary integer n :2:: 0 there exists a pair (.Xn, un), 

consisting of an eigenvalue An and a corresponding eigenfunction 

Un of the problem (1 )-(3) and being unique up to the coefficient 

±1 of the function un, such that the function un(x) has precisely 

n roots in the interval (0, 1); 
(b) Ao < .\1 < ... <An< ... and lim An= +oo; 

n~oo 

(c) for any integer n :2:: 0 the solution un(x) of the equation 

(1) taken with .X = An can be continued onto the whole real line 

x E ( -oo, oo) and the roots of this solution are precisely the points 

xi: = n!1 where k runs over all integers; 
(d) there exists D > 0 such that lun(x)l :=:; D for all numbers 

n = 0,1,2, ... and for all x E (-oo,oo); 
(e) for any integer n :2:: 0 Un (x + n!1 ) = -un(x) for all 

xE(-oo,oo); 
(f) Un (n~1 +X) = -Un C~1 -X) for any non-negative in­

teger n, integer r and x E ( -oo, oo ). 

Remark. Really, in paper [1] statements (c),( d),( e) and (f) of 

theorem 1 are presented in a weaker form. However, proofs from 

paper [1] can be kept without modifications for proving these· 

statements in their present form. 

Let L2 (a, b), where a < b are real numbers, be the usual 

Lebesque space, consisting of real functions of the argument x E 
b ' 

(a, b), with the scalar product (v,w)L,(a,b) = J v(x)w(x)dx and 
a 
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the norm llviiL,(a,b) = (v, v)I,(a,b)" Let Lz = Lz(O, 1), (·, ·) = 
(·, ·)L,(D,J) and 11·11 = II·IIL,(o,J)· We also present the following 
definitions for the convenience of readers. 

Definition 1. A system of functions { hn}n=D,J,2, ... C Lz( a, b) 
is called a basis of the space L2(a,b) if and only if for an arbitrary 
function hE L2(a, b) there exists a unique sequence of real coeffi-

cients {an}n=O,J,2, ... such that lim llh- f. anhnll . = 0. We 
N-oo n=O L,(a,b) 

00 

write this equality as follows: h = 2: anhn. 
n=O 

In accordance with papers [6,7] we introduce the following 

Definition 2. We call a basis {hn}n=o,1 ,2, ... of the space Lz(a, b) 
the Riesz basis of this space if and only if the following two con­
ditions are satisfied: 

00 

1) for any h = 2: anhn E Lz(a, b), where a,. are real num-
n=O 

00 

bers, one has 2: a; < oo; 
n=O 

2) for any sequence { an}n=D,J,2, ... of real numbers such that 
00 00 

2: a; < oo the series 2: anhn converges in the space L2( a, b). 
n=O n=O 

Our main result is the following. 

Theorem 2. Under the hypothesis (f) the system of eigen­
functions { vn}n=D,J,2, ... of the problem (1 )-(3) from theorem I is a 
Riesz basis of the space L2. 
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2 Proof of theorem 2 

In what follows, we accept that vn(x) > 0 for x E (0, n~J) (it 
is possible in view of theorem !(c) and invariance of the problem 
(1)-(3) with respect to the multiplication of the unknown function 
by -I). Our proof of theorem 2 is based on a result obtained by 
N.K. Bary. To establish this result, we need the following 

Definition 3. A system of functions {hn}n=O,J,2 ... C Lz(a, b) 
is called minimal in the space L2 (a, b) if and only if for any intcga 

II 
,v 

n 2: 0 there exists Cn > 0 such that II hn + {;; akhk II 2: C n 

k;in f....2(a,b) 

for an arbitrary integer N > 0 and arbitrary real coefficients ak. 

The result of N.K. Bary announced in paper [6] and proYed 

in paper [7] is the following. 

Bary Theorem. Let a system of functions {gn}n=D.J,2, .. be a 
Riesz basis of the space Lz(a, b), {hn}n=D,J,2, ... be a sequence of 
functions from the space L2(a, b) and the following two conditions 

be satisfied: 
A. the system of functions {hn}n=D,!,2, ... is minimal in the 

space L2(a, b); 
00 

B. 2: llhn- gniiL(a,b) < 00. 
n::::O 

Then, the system of functions {hn}n=D,J,Z, ... is a Riesz basis of the 

space L2(a, b). 

Let en(x) = J2sin7r(n+ l)x where n = 0,1,2, .... Then, 
{ en}n=O,J,2, ... is an orthonormal basis in the space Lz. In partic­
ular, it is obviously a Riesz basis in this space.· Let us verify 
the conditions A and 13 of the Bary Theorem· for the systems of 

functions { en}n=0,1 ,2,.·. and { u~}n=o,1 ,2 , ... and the spa:ce Lz.' 
.·.· 
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To verify the condition A of the Bary Theorem, let us for 

each integer n ?: 0 expand the function Un (n~I) in the space L2 
00 

in the Fourier series: Un (n~I) = I; ai:ek(·) where ai: are real 
k=O 

coefficients. Then, one can easily verify that 

00 

Un(-) = 2:= b;:,em(-) ( 4) 
m=O 

in the space L2 where b0,+I)(k+I)-I = ai: and b;:, = 0 if m =J 
(n + I)(k + 1)- 1 for all k = 0, I, 2, .... (Indeed, the equality 

(4) obviously takes place in the space L2 (0, n~I ). Then, since in 

view of theorem 1(f) the function un(x) is odd with respect to the 

points ....!:_
1 

where r = 0, ±1, ±2, ... and since the direct verification 
n+ 

shows that the functions e(n+I)(k+Ij-I(x), where k = 0, 1,2, ... , are 

odd with respect to these points, too, the equality ( 4) also holds 

in the sense of each of the spaces L2 (.~ 1 , ~~;) where r = 1, n. 

Therefore, it is valid in the sense of the space L2.) Also, obviously 

b0 = ... = b~_ 1 = 0 for each n and, in view of our acceptation, 

b~ = a0 > 0. 

Lemma 1. The system of functions { un}n~o,1 , 2 , ... is minimal 

in the space L2 • 

Proof. Let us suppose that the statement of lemma 1 is 

invalid. Then, there exist a number n and sequences of numbers 

{Nt}t~ 1 ,2 ,3 , ... and of real coefficients dL where k = 0, N1, such that 

N, 

Un + l:=d~uk = at(x) and JJa-tJJ--> 0 as ./--> oo. 
k=O 

'"" 
In addition, introducing zero coefficients d~ if necessary, we can 

accept that N1 > n for all I. 
First, let n > 0. Let Pn be the orthogonal projector in the 

space L2 onto the subspace spanned over the functions { e0 , ... , e,;_1 } 
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( 
~ 

( 

and let Ln be the closure in the same space of the linear span of 

the functions {en+I,en+2, ... }. Then, since JJhJJ?: IIPnhll for any 
hE L2 and in view of the expansions (4), we get that 

[ 

N
1 l n-1 

Pn Un+{;d~Uk =[;dUPnuk]=.Bt(x) 

'"" 
where II.Bdl --> 0 as l--> oo. Hence, since the vectors 
Pnuo, ... , Pnun_1 are linearly independent in the space L2 (be­

cause the submatrix (b;;')m,k~o, ... ,n-l in the expansions (4) is non­

degenerate), we get that 4 --> 0 as I --> oo for all k = 0, n- 1. 

Therefore, 

N, 

Un + 2:= d~Uk = ')'t(X) where lbdl--> 0 as /--> 00. 

k;:;:n+l 

If n = 0, then this property also obviously holds. But in view of 
N, 

the expansions (4) I; d~uk E Ln, hence 
k~n+l 

N, 

un+ 2:= d~ukil?:b~>O, 
k=n+l 

and we get the contradiction. Thus, lemma 1 is proved. 

00 

Lemma 2. I: llun- enW < oo. 
n=O 

Proof. In view of theorem 1( d), we get by the comparison 

theorem (see [8]) that there exists D1 > 0 such that 

i>•n - Zn J :S D1 (5) 

for all numbers n where Zn = (1r(n + 1))2 are numbers such that· 

-e~(x) = Znen(x). Let us show that there exists D2 > 0 such 

that 

lu~(O)- e~(O)J:::; D2 and Ju~(l)- e~(l)J:::; D2 (6) 
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for all numbers n. 
At first, let us multiply the equation (1) written for u(x) = 

un(x) by un(x) and integrate the obtained identity over the seg­

ment [0, 1]. Then, due to theorem 1(d), we get 

I 

An- C1 :S J[u~(x)fdx :SAn+ C1 
0 

for a constant C1 > 0 independent of n. Further, let us multiply 

the equation (1) written for u(x) = un(x) by 2(1 + x)u~(x) and 

integrate the obtained identity between 0 and 1. We get after 

transformations with the use of the previous estimate 

\2[u~(l)f- [u~(O)f- 2An \ :S 

I 

::; cl + 2lj (1 + x)f(u~(x))un(x)u~(x)dxl < 
0 

I 

:S C1 + j IF(u~(x))ldx 
0 

' 
where F(s) = J f(t)dt. Hence, since due to theorem l(e) [u~(OJF 

0 

= [u~(l)JZ, theorem 1(d) implies that 

l[u~(l)f- 2Anl = i[u~(O)f- 2Anl :S C2 

for a constant C2 > 0 independent of n. We also remark that, 

due to the acceptation that un(x) > 0 for x E (0, n~ 1 ), we have 

u~(O) > 0 because otherwise (if u~(O) = 0) it must be un(x) = 0 

by the uniqueness theorem. Now, since sign u~(O) = sign e~(O) 

and, as it follows frorn theorem 1(e), sign u~(1) = sign e~(l), 

because [e~(O)J2 = [e~(l)J2 = 2zn and in view of the inequality 

(5), we get (6): 
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Let wn(x) = un(x)- en(x). Then, due to theorem l(d) and 

the inequality (5), we have 

-w~(x) + Wn(x) = ZnWn(x), x E (0, 1), (7) 

Wn(O) = Wn(l) = 0 (8) 

where {Wn(x)}n=o. 1,2 , ... is a uniformly bounded sequence of con­

tinuous functions. Multiplying the equation (7) by 2(1 + x )w~ (x) 

and integrating the obtained identity from 0 to 1 with the use of 

the integration by parts, due to (6) and (8) we get 

I I 1 

D:J- J[w~(x)j1dx -2 j(x+ 1)Wn(x)w~(x)dx 2': Zn j[wn(.r)J1dx 

0 0 0 

where D3 > 0 is a constant independent of 11. Therefore, applying 

the inequality 2ab :S a2 + b2
, we obtain that there exists D4 > 0 

1 

such that Zn J w;(x)d.r :S D4 for all numbers 11. Hence, llw,ll :S 
0 

l 

DJ1r- 1(n + 1)-1
, and lemma 2 is proved. 

Now theorem 2 follows from proved lemmas 1 and 2 and the 

l3ary Theorem. 
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We consider a nonlinear one-dimensional SchrOdinger-type eigenvalue problem 
on a segment and, using properties of its eigenfunctions obtained earlier, present a 
new and shorter proof of the statement that these eigenfunctions form a Riesz basis 
in the space Lz. The approach used in the paper is based on a theorem of N.K.Bary. 
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