


1 Introduction and basic definitions

There are many applications of the Lie (super)algebra cohomology in mathemat-
ics: characteristic classes of foliations; invariant differential operators; MacDonald-
type combinatorial identities, etc. (see [1] for details)., Besides, the cohomology is
used widely in mathematical and theoretical physics [2]: construction of the cen-
tral extensions and deformations for Lie superalgebras; construction of supergravity
equations for N-extended Minkowski superspaces and search for possible models
for these superspaces; study of stability for nonholonomic systems like ballbearings,
gyroscopes, electro-mechanical devices, waves in plasma, etc.; description of an ana-
logue of the curvature tensor for nonlinear nonholonomic constraints; new methods
for the study of integrability of dynamical systems.

General definitions and properties of cohomology of Lie algebras and superalge-
bras are described in [1]. Let’s recall briefly some basic definitions.

A Lie superalgebra is a Z,-graded algebra over a commutative ring K with a
unit:

L=Lo®Li, u€ Lo, vE Lg, a,B € Zy = {0,1} = [u,v] € Loys

The elements of Ly and Lj are called even and odd, respectively. We shall assume
K is one of the fields C or R. By definition, the Lie product (shortly, brackets) [, ]
satisfies the following axioms

[u,v] = —(=1)P@PC) [y, u], skew — symmetry,
[, [v, w]] = [[u, v],w] 4+ (=1)P@PO) [y, [u,w]], Jacobi identity,

where p(a) is the parity of element a € L, (,).

A module over a Lie superalgebra A is a vector space M (over the same field K)
with a mapping A x M = M, such that [a;,a5)m = a,(a;m) — (—1)P(e1)P(32)gz(a;m),
where aj,a; € A, m € M. The most important for our purposes are trivial (M is
arbitrary vector space, e.g.,M = K; am = 0), adjoint (M = A;am = [a,m]) and
coadjoint (M = A’;am = {a,m} is coadjoint action) modules.

A cochain complez is a sequence of linear spaces C* with linear mappings d*
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where the linear space C* = C*(A; M) is a super skew-symmetric k-linear mapping
Ax--+x A= M, C°= M by definition. The super skew-symmetry means sym-
metry w.r.t. transpositions of odd elements of A and antisymmetry for all other
transpositions. Elements of C* are called cochains.

The linear mapping d* (or, briefly, d) is called the differential and satisfies the
following property: d* o d*~! = 0 (or d* = 0).

The cochains mapped into zero by the differential are called the cocycles, i.e.,
the space of cocycles is

Z* = Ker d* = {C* | dC* = 0}.
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Those cochains which can be represented as differentials of other cochains are
called the coboundaries, i.e., the space of coboundaries is

B = Im d*' = {C*| C* = dC*'}.

Any coboundary is, obviously, a cocycle.
The non-trivial cocycles, i.e., those of them which are not coboundaries, form
the cohomology. In other words, the cohomology is the quotient space

H*(A; M) = Z*/B*.
The explicit form of the differential for a Lie superalgebra is
dC(eoy...164;0g415-..,0k) =
E( 1Y C(egy---5€im1y [€ir€5)s 3 €jye e s g3 Ogarye- Ok) +

i<y
q k —
(=)' Y > Cleoy..r€icns[€i,O05)y -+ 145 O0ggrse ., Ojy s Of) +
1=0 j=¢+1
. k=1 k .
(—I)H'l > C(eo, eq;0q+1,...,O;_l,[O;,Oj],...,O,-,...,Ok) +
i=g+1 j=q+2
] . N
;}(—1)’+le;0(eo,...,é},...,eq; Oq+17-"70k) +
(—1) E OC(GO, ’eq;0q+ls-~-a6i»---yok)-
i=q+

Here e; and O; are even and odd elements of the algebra, respectively, and the hat
“~” marks the omitted elements.

Here are some properties and statements we use in the sequel.

An algebra and a module are called graded if they can be presented as sums of
homogeneous components in a way compatible with the algebra brackets and the
action of the algebra on the module:

A= ®yEG Aga M= GageG Mg1 [AgnAgz] C Agn+yz7 AyxMyz C Mg1+gzv

where G is some abelian (semi)group. The grading in the algebra and module
induces a grading on cochains and, hence, in the coiomology:

C*(A; M) = @gec C7 (A M),  H'(A; M) = @gec Hi(A; M).

This property allows one to compute the cohomology separately for different homo-
geneous components; this is especially useful when the homogeneous components
are finite-dimensional.

If there is an element ao € A, such that eigenvectors of the operator a = [ao, a)
form a (topological) basis of algebra A, then H*(A) ~ H(A). In other words, all
the non-trivial cocycles of the cohomo]ogy in the trivial module lie in the zero grade

component. The element ay is called an internal grading element. If also eigenvectors
of the operator m — aom form a topological basis of module M, then the same
statement holds for the cohomology in the module M: H*(A; M) ~ Hj(A; M).

Any Lie superalgebra acts on its cohomology trivially, i.e., A o H¥(A; M) = 0.
The explicit formula for the algebra action on cochains is

k
aoC*ay,...,ax) = =Y C¥ai,...,[a,ai,...,ak) + aC¥(ay, ..., ax).

i=1

The triviality of the action allows one to reduce computation in some cases.

2 Lie superalgebras of vector fields

Below a list of the main Lie superalgebras of formal vector fields is given [3]. We
consider some sets of even (z;, ¢;,pi,t) and odd (called also Grassmann) variables
(U;, W). In many cases the vector fields can be expressed in terms of generating
functions. The coordinates of vector fields and generating functions are assumed to
be formal power series in the even and odd variables. Note that all the algebras
depending only on the odd variables are finite-dimensional. All these algebras are
graded due to prescribed grading of the variables. There are some standard gradings
for the variables: all variables z;, g;, p;, U; have grade 1 and the separate variables
t, W have grade 2. Non-standard gradings with zero grades for some odd variables
are possible too. The divergence-free algebras are called special. The symbol Z
denotes the center of an algebra.

1. General vectorial superalgebra W(n | m) or vect(n | m)
Variables: z1,...,2,;Uy;...,Un
The brackets denote the supercommutator of vector fields of the form

. 2
.'gx Jozz + kz=:l Gk au,
2. Special vectorial superalgebra S(n | m) or svect(n | m) consists of the elements
from W (n | m) satisfying the condition
E oo T kgl(_l)P(gk)g‘t% =

3. Poisson superalgebra Po(2n | m)
Variables: py,. S1Pnsqly- -5 o Uy,....Un

Brackets: {f,g}pb (5%55: 5%55:) (=1)7) g _.%671}7:
Hamiltonian superalgebra is H(2n | m) = Po(2n | m /Z
4, Contact superalgebra K(2n +1 | m)

Variables: 129 DN A T vqn)Ul’
Brackets: {f, g}xs = A(f)%% A(9) {fv g}Pb

Af)=2f ~E(f), E= } (pids +a:d) + X Uealy

=1



5. Buttin superalgebra B(n)
Variables: qi,...,qn;U1,...,Us

Brackets: {f,g}Bb ,(aq. st + (- 1)?(!)%%)
Leites superalgebra is Le(n) B(n)/Z

6. Special Buttin superalgebra SB(n) is subalgebra of B(n)
subject to the constraint i_g 3—2%% = 0 for generating function.

Special Leites superalgcbrafis SLe(n) = SB(n)/Z

7. Odd contact superalgebra M(n)
Variables: qi,...,q0; W, U, ..., Uy ‘
Brackets: {f,ghm = A(f)3% + (-1 5 A(g) — {f. g}

A(f) =2/ - B()), E= % (aiz + Uisly)

8. Spectal odd contact superalgebra SM(n) is subalgebra of M(n) subject to the

constraint (1 — E) 2L 37 Z m% = 0 for generating function.

3 Outline of algorithm and its implementation
To compute the cohomology one needs to solve the equation
dc* =0, : B ¢))
and throw away those solutions of (1) which can be expressed in the form
Ct=dC* .

In some exceptional cases it is possible to solve equation (1) in closed form. Gene-
rally, in the case of Lie superalgebras of vector fields, determining equation (1) is a
system of linear homogeneous functional equations with integer arguments. Unfor-
tunately there is no general method for solving such systems in closed form. Hence,
we need to carry out the corresponding computation “numerically”. There are sev-
eral packages for computing cohomology of Lie algebras and superalgebras written
in Reduce [4], [5] and Mathematica [2]. Some new results were obtained completely
or partially with the help of these packages. However, these packages, being based
on general purpose computer algebra systems, appeared to be too inefficient for large
real problems. In view of this, we wrote the program in C language.

The C code, of total length near 10000 lines, contains about 300 functions re-
alizing top level algorithms, simplification of indexed objects, working with Gras-
smannian objects, exterior calculus, linear algebra, substitutions, list processing,
input and output, etc. As internal structures we use 8 types of lists for different
objects. We represent Grassmann monomials by integer numbers using one-to-one
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correspondence between (binary codes of) non-negative integers and Grassmann
monomials. This representation allows one efficiently to implement the operations
with Grassmann monomials by means of the basic computer commands.

The program performs sequentially the following steps:

1. Reading input information.

2. Constructing a basis for the algebra: The basis can be read from the input
file; otherwise the program constructs it from the definition of the algebra.
Non-trivial computations at this step arise only in the case of divergence-free
algebras. The basis elements of such algebras should satisfy some conditions.
In fact, we should construct the basis elements of a subspace given by a system
of linear equations. The task is thereby reduced to some problem of linear
algebra combined with shifts of indices. For example, among the divergence-
free conditions for the special Buttin algebra SB(3) there are the following
two equations )

ta kv — (K + Daicy,jerrvw = 0,

taijpow + (7 + Daicyjy1.6vw = 0.
Here a;jsuv, ... are coefficients at the monomials p'q’r¥UV,... in the gene-
rating function; p,q,r and U, V,W are even and odd variables, respectively.
First of all, we have to shift indices 7 and k& in the second equation to reduce
the last terms of both equations to the same multiindices. Then, using some
simple tricks of linear algebra, we can easily construct the corresponding basis
element

Eiji = (k + D)p'@riUV — jp'@~ e UW + ipHi @ et V.

3. Constructing the commutator table for the algebra (if this table has not been
read from the input file).

4, Creating the general form of expressions for coboundaries and determining
equations for cocycles.

5. Transition to a particular grade in general expressions. At this step expressions
for coboundaries take the form x = bt, equations for cocycles take the form
Zx = 0, where vector x corresponds to C¥, parameter vector t corresponds to
C*~!, matrices Z,b correspond to the differential d. All these vector spaces
are finite-dimensional for any particular grade.

6. Computing the quotient space H*(A; M) = Z* | B*. Here cocycle subspace Z*
is given by relations Zx = 0, and coboundary subspace B* is given paramet-
rically by x = bt.



Substeps: The determining equation for 5-cocycles takes the form

d05 = {(_q - qt +r+rs+s-— t)C(Eija Ekl, Emnv Eop, Eq+a,r+t)

(a) Eliminate t from x = bt to get equations Bx =0
+(0 +or - P—pe—4q + T)C(E.'j, Ekb Emru Eo+q,p+,-, E,t)

(b) Reduce both relations Bx = 0 and Zx = 0 to the canonical form by Gauss

elimination. If rankB = rankZ, then there is no non-trivial cocycle; +(—o—ot +p+ps+ s —t)C(Ei;, Ext, Emn, Eotspits Egr)
otherwise go to Substep (c). j +(—=m—mp+n +no+ o~ p)C(Eij, Ext, Emtontp, Egry Est)
(c) Set Bx =y and substit'ute these rf:latior:s into Zx =0 to .get relations 7  +(m+mr—n—nqg—q+r)C(Eij, Ex, Emyqntry Eopy Eat)
:Ay =1 0. Thle I.;atfrzftmtch(no?-leadu;)g) y's ;ﬁ;;he IESt rellatlons are non- +(—=m —mt +n+ns+ s —t)C(Eij, Ext, Emtsnsty Eopy Eqr)
rivial cocycles; that is, they form a basis of the cohomology. 4 +(k + kn — 1 —Im — m + n)C(Eij, Exmisny Eopy Eors Ea)
In fact, the above procedure is based on the relation for quotient spaces +(~k —kp+1+lo+0—p)C(Eij, Exyottps Emny Egry Eqr)
Y/B +k+kr—1l—-lg—q+ T)C(E;j, Eryqitrs Emny Eopy Est)
Z/B = 7/-Z_’ =k —kt+1+1s+ 3 —t)C(Eij, Exysitts Emny Eopy Eqr)
. N +(—i— il +j+ jk +k — 1)C(Eisrjst, Emny Eopy Eqr, Eot)
where Y is an artificially introduced space, combining the above z's and y's. +(i+in —j — jm — m+n)C(Eiym jtns Exty Eop, E., Ey)
7. Output the non-trivial cocycles. H—i—ip+3j+jo+0—p)C(Eisostp, Ents Emny Eyr, Ent)
+(i+ir —j = jg— q+ r)C(Eiyqtrs Exty Emny Eop, Est)
4 Computation of H(E’__2)(PO(2)) 3 ' +'(—1 - i+ f + s+ 5 —)C(Eirejrt, Bty Emn,y Eop, Eqr)}
E;NEGANE, . AE ANE, NE, =0.
The algebra Po(2) of 2D Poisson polynomial vector fields has basis elements Computation in the grade —2 shows that the ranks of the coboundary and cocycle
E; = g subspaces are equal to 24 and 23, respectively. The non-trivial cocycle can be
expressed in the form
satisfying the commutator table 12C(E-1,-1, E-1,0, Bo,-1, Eor, Er0) — 6C(E-1,-1,E-10, Eo 1, Eog, Ei 1)

[Eijy En) = (i +il — j — jk — k 4+ DEiyk - ~12C(E-1,-1, E-11, Eo,-1, Eco, Evo) + 3C(E_1,-1, E_1,1, Eo _1, Eor, Ey,—1)
‘ - +14C(E-1,-1, E_1,2, Eo,-1, Eoo, Er,-1) — 36C(E_, 0, E-
The 5-coboundaries are given by the formula :2 \ o~ Eoo, B, 1) (E-1.0, E-1.1, Eo,-1, Evo, B1,1)
= 12C(1,4,p,p¢",P’q) — 6C(1,4,p,p¢°, p*) — 12C(1,4%, p, pq, p*q)
dC* = {(p+ps—a—ar —r+35)C(Eij Buts B, Epyrgss) +3C(1L,¢*,p,pq*,p%) + 14C(1, 6% p, pq, P°) — 36C(q, ¢, p, pq, P°).
+(_m —mg+n + np+p-— q)C(Eij’ Ey, Em+p,n+qa Era)

Note that H? ,,(Po(2 i -trivi
(4 — 1 — 1 — 1+ $)C(Esjs ety Entrmpor E,) ote tha (_4)( 0(2)) also contains a non-trivial cocycle

+(k + kn — l — lm —m + n)C(Eij, Ek+m,l+na qu7 Era) C(E-ly—l’ E—l.01 EO.—I) = C(lv q, P)-
+(—k — kq+ 1+ Ip+p— q)C(Eij, Extpitas Emn, Ers)
: ’ Other cocycl t b ivi
k4 ks — L — I — 1 )C(Bsy Erosres o Eo) r cocycles up to number 5 and grade 10 are trivial.
+(-—l —_ 11 + j + jk + k - I)C(Ei+k,j+l’ Emn’ qu, Era) - 5 C l .
+(l + in — J - Jm —m+ n)C(Ei+m.j+n’ Ekh quy Ers) % Onc usion
+(—‘i - 1q +.j +.J'p +p = ¢)C(Eiypjt+er Exts Emn,y Ers) \ We have not found reports of an explicit computation of cohomology for the algebra
+ (i +1is — j — jr — 1 + 8)C(Eirj+s) Exty Emn, Epg)} 'S Po(2). In [6] some results of computation of cohomology for the algebra of Hamilto-

Ej; A EuNE, . ANE, ANE],. nian vector fields H(2) = Po(2)/Z are presented. That computation was also based
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on the use of a computer. Though our program is oriented to work with algebras
of vector fields, it can be easily adapted to work with Lie superalgebras of other
types. It is necessary only to write some additional input functions. The current
preliminary version of the program uses standard 32-bit words for integers. As our
experience shows, the computation of more than 5th cohomologies and in more than
10th grades for Po(2) leads to overflow of such integers. Thus, it is necessary to add
to the program the arithmetic of arbitrary precision. It would be useful to add also
the arithmetic of finite fields, because there is a lot of unsolved problems even for
cohomology of finite-dimensional Lie algebras over such fields.
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Kopnax B.B.
Mporpamma 11 BhYMCIEHHS KoroMosoruii cynepanre6p Jlu
BEKTOPHEIX NOJIER

E5-98-380

Onucan anropuT™ U ero peanusauus Ha a3sike C U151 BBIYHCIIEHHS KOTOMOJIOTHI
anre6p u cynepanre6p JIn. Ilpu paspaGoTke aIropuT™Ma OCHOBHOE BHHMaHHe Gblio
yIEIeHO KOTOMOJIONMSAM B TPHUBHAJIBHOM, TIPHCOEAMHEHHOM H KONPHCOEIMHEHHOM
momynsax wig (cynep)anreGp JIu QopManbHEIX BEKTOPHBIX nonell. DTH anreOpsl
LINPOKO HCTIONIB3YIOTCS B COBPEMEHHBIX CYNEPCUMMETPUYHLIX MOJENAX TeopeTHyec-
Ko M Maremarhiuyeckoil ¢u3uku. B kauecTse nmpuMepa Mbl MPHBOAUM HaHIEHHBIE
KOMMBIOTEPOM 3- H 5-KOLHMKIIBl U3 KOTOMOJIOTHH B TPHBHAJILHOM MOZYJIe [Uls anre6-
pu! Ilyaccona Po (2).

PaGora BeimonHeHa B JlaGopaTopuu BBHIYMCIIUTENIBHOH TEXHHKH H  aBTO-
MatH3auun OUSH.

Mpenpunt O6bEANHEHHOrO HHCTHTYTA ANEPHBIX HccaenoBanuit. [lybHa, 1998

Kornyak V.V.
A Program for Computing Cohomology of Lie Superalgebras
of Vector Fields

E5-98-380

An algorithm and its C implementation for computing the cohomology of Lie
algebras and superalgebras is described. When elaborating the algorithm we paid
primary attention to cohomology in trivial, adjoint and coajoint modules for Lie
algebras and superalgebras of the formal vector fields. These algebras have found
many applications to modern supersymmetric models of theoretical
and mathematical physics. As an example; we present 3- and 5-cocycles
from the cohomology in the trivial module for the Poisson algebra Po (2), as found
by computer. ‘

. The investigation has been performed at the Laboratory of Computing
Techniques and Automation, JINR. )
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