


1 Introductlon

Recently was demonstrated that for agiven mamfold Y whrch admits a Kllllng
tensor K, we have two types of dual metrics [1]. In [2] a'geometric duallty*
between a metric g*” and its Killing tensor K** was dlsscused The relation was
generalized to spinhing spaces, but only at the expense of introducing torsion.
The physical interpretation of the dual metrics was not clarified*[2]. -On the-
other hand the geometrical 1nterpretatlon of Killing tensors was investigated
in [3]. In [1] geometric duality between g, ‘and a Killing tensor K,,. In this
case the dual spinning space was constructed-without introduction of torsion.
An interesting class of metrics with Killing-Yano tensor are:Einstein’s metrics
of D or N types in Petrov’s clasiffication. :

-Taub-NUT geometry. is involved in many modern’ studles in physics, For
example the Kaluza-Klein monopole of Gross and Perry [4] and of Sorkin [5]
was obtained by embedding the Taub-NUT gravitational instanton'into five-
dimensional Kaluza-Klein theory. Remarkably, the same object has re-emerged
in the study of monopole scattering. In the long distance limit, neglecting radi-
“ation, the relative motion'of the BPS monopoles is described by the geodesics‘z
of this space [6][7). The dynamics of well-separated monopoles is completely
soluble and has a Kepler type symmetry [8, 9, 10, 11]

On the other hand the geodesic motion of pseudo—classrcal splnnlng partl-‘
cles in Euclidian Taub-NUT were analised in [12]: °

Symmetries of extended Taub NUT metrics recently were mvestrgated in
[13][14][15] P £

The aim of this paper is to 1nvest1gate generic and non-generrc symmetrles,
of the dual metrics. In section one we present brleﬂy some notions about
geometric duality. In section two we mvestrgate the symmetrles corespondlng
toTaub-NUT dual metrics: BHTE : - “ "'

- In Anexa l:we present the graphrcs ‘of the curvature in-the case’of two '
pairs of dual metrics.In'Anexa 2 we write down Christoffel symbols and the”
scalar curvaturefor dual metrics. The calculus for all Taub NUT metrlcs were '
provided but due to their huge and complicated expressions we canmot write
them out in this paper. Nevertheless we present two quite interesting cases.

2 Geometric Duality"f’ ‘

The 1mportance of symmetries in the descrlptron of physlca.l systems can hardly‘
be overestimated. In the case of dynamical systems in partrcula.r, continuous
symmetries determxne the structure of the algebra of observables by Noether’s
theorem, grvrng rise to constants of motron in classical med’ramcs and quantum ,
numbers labehng statlonary states in qua.ntum theory In a geometrlcal set- .
ting, symmetries are connected with isometries associated with Krlhng vectors
and, more generally, Killing tensors on the conﬁguratrons space of the system.
An example is the motion of a pornt partlcle in a space with isometries [16],

| Boteasuiin gl GLITRTYY (
1 ansutil® Bocs2zoo3oEd



which is a physicist’s way of studying the geodesic structure of a manifold.
Contact with the algebraic approach is made through:Lie-derivatives-and their
commutators. In [16] such studies were extended to spinning space-times de-
scribed by supersymetric extensions of the geodesic motion, and'in [17] it was
shown ‘that this-can glve rise to mterestmg new types of supersymmetry as
well. : :

-Let a space with rnetrrc v a.dmlts a Klllmg tensor field K., A' Klllmg
tensor is a symmetric tensor which satisfies the following rela.txon

D,\K,‘.,+D KVA+D Kyi=0 ' '(1)

where D,,. denote covariant derivatives. The equa.tlon of motion of a pa.rtlcle
on a geodesrc is derived from the action :

The Ha.rniltonia.n has the form H = lg,,,,p“p"‘ The Poisson brackets are

Aawp} =6 B ¢ )

The equa.tlon of rnotron for a pha.se space functlon F(z ,p) can be computed
from the ”Pmsson brackets with the Hamiltonian

From the cova.na.nt components K, of the Kllhng tensor. one can \ construct a
constant of motion K, .,

K = Kup'p” IR ()
It can'be easy verified that B
' L {H K}—U B (6)

We ha.ve two different wa.ys to investigate the symmetries of: the manifold..

First, we consider the metric g* and the Killing tensor K** and second-we

consider J{# like a metric and the Killing tensor g#”. In this paper we will use.

the duality which exist between g, and K, [1]. Killing’s vectors equa.tlons in
the dual space have the following form [1],

Dy%o+ Dufu + 2K DKoo =0 (1)

where ¥, are Krlllng vectors in dual spaces. . . .

We suppose that metric g,, admits a lelmg-Ya.no tensor 'f,,., A Klllmg-:“

Ya.no tensor is an a.ntlsymmetrlc tensor [17] Wthh satisfies the equa.txons .

Dafur+ Dufux=0 - ®)

Hence the existence of a Klllmg Ya.no tensor of the bosomc ma.mfold is
eqmva.lent to the cxxstence of a supersymmetry for the spmnmg pa.rtlcle with

supercha.rge

fo;f:nrszg'f:%imtwwf,‘*“‘,{Q,QJ}; oo

where Hyux= fuvix: and: semicolon- denotes : covariant - derivative. » Then the
corespondmg Kllhng—Ya.no equa.tron in the dual space has the form

.”,

,‘fu,\ iD o+ f6D5K,‘A +2f,D K.,,, +J8 1)61{,A =0 - (19)

where D represents the covariant derivative correspondmg t0 Gy .
The metric g,, and the dual metric K uv have the same generlc syrnmetnes
if and only if - R -
Ds'KwX?O A, ;(”)

3 Generlc and non-generlc symmetrles

i H- vl 5
The four- dlmenslona.l Taub NUT metric depends on a pa.ra.meter m which can
be positive or negative, depending an the a.ppllca.tlon for m > 0 it represents
a nonsmgula.r solution of the self-dual Euclidean- equa.tlon and as such is in-
terpreted as a gra.v1ta.trona.l msta.nton The sta.nda.rd form of the line element

e
is

+1+2 /r

—(dy + cos Bdnp) : (12)

The Killing vectors for the metric (12) have thevfollo“}in‘g'for'm'ir

Dta) = R“”“.(”m a=1,---,4 | (13)
tvhere Tremme e N Af , v
W = % (14)
D@ =_% e R ;;' . ‘5 o1 (‘"15)-
D® = sintp.gb- —{;‘cosap( cotﬂ% C:ISI(: 3[1[) 4 (16)
W — _cowaﬁ“mwowai S:;‘Z 6‘1 , )

D(‘) which generates the U®) of A translations, comrnutes thh other Killing
vectors.The remaining three vectors obey an SU (2) algeb’r‘a.’:wrth e
e [D(’) DO = —DW,ete... (18)

i

In the Taub-NUT geornetry four lehng-Ya.no tensors are know to exist {18].
i~



* In this case in 2 form notation the expl]c1t expressmns for the- f, are [18].
fi= 4m(d1,b + cos Bdcp) A dz. €k (1 + —) dz_; A dzk (19)

Y = 4m (dy + cos Odip) A dr + 4r (v + m) (1 + é) sinfdf Adp  (20)
fifi + fifi= =26, fif; — fjf-' = 2 fx (1)

A symmetric Killing tensor with respect to this metric is represented by

the quadratic form
. "

dK? = (1}+ T"‘) (dr’ + -gl—i(r + m)*(d6® + sin® adw))

" The inverse matrix of the covariant form from (22j gives the dual line
element

ds? = .(1 + 2Tm) (d + (——+—)—2(d0'-’ + sin? fdp? ))

Am 2
+m(d‘g{) + cos 0dcp) (23)

If we make the transformation for r to a new variable u using the relation

E2l

(24)

we find that this metric is a particular form for an extended Taub- NUT
metric presented in [13, 14]:

u=re

ds? = F(u)(du® + u*(d6* + sin® 0dp?)) + G(u)(dip + cos 6dp?)  (25)
where F(u) and G(u) satisfies a very interesting relation
|  GF() = 1m?f(u) . (26)
with f(u) having the expresion : ‘

1

f(re =TT E. 21
(1 1) riem ‘ - ‘ ( )

The metric has four Klllmg vectors like a extended Taub-NUT metric [13 14,
15]. Using the techniques from [1] the properties of the metric were investi-
7 gated Because F(rew) and G( ) have the following expression

e i

Fref) = f(rem)(l-}-ZTrﬁ) o (28)

£

pa—

and

r Am? - 5
Glre®) = 1 . 29)
After calculations:we have obtained the following results: The dual metric
is not a flat metric or conforinally flat. It has no’ Rungc-Lenz vectors: ! The™"
metric do not have lelmg-\ ano tensors, but admit the same Killing vectors
like Taub-NUT. We are rcady now lo study the symmetrlcs of all dual Taub-
NUT metrics :

Lo o

dKGy = 2 (1 + g‘n—l) (1 + E) r,(dr + r2d02 + r¥sin 0d,,2) +
77

8m ’ 2 2m
- = drdr;
r(l T 2m/r)r,(dw + cos 0dcp) + (1 + ) rdr;

+4 (1 + —) (rx dr) (dd) +. cosOdn,a) > , (30)
Thesc conserved quantm(b deﬁne the dual lm(' L]Cm(‘lll'i
=1 2m '
~2. — e o 2 102 d
ds(f) g (r+"7n) -{- .‘1:’, (1 + )r,(dr +r do +vr s:m 0 %)
§r(n]_$2i‘7_r/_l/)_r) ,((h/: + cos 0(1.,‘9)2 + 2inr (1 +—;~) kd1 dl,
+am? (1 + ———) (r-% dr)(dy + cos 0d<;))} , ' (31)

After calculations we found that the dnbal“)mctricys from (22) and (23) have
the same Killing vectors like Taub-NUT metric because relation (11) is identi-
cally satisfied. The coresponding metrics for i = 3 in (30) and (31) admit two
Killing vectors (14) and (15).: For i = 1,2 we have only one Killiig vector (1)
for the coresponding metrics from (30) and (31).

Non-generic qymm(‘tnes arc a.sqocnaled with, the existence of Killing Yano

tensors For this reason we mvostlgat(d the non-generic symmetries of dual

metrics (22) , (23), (30) and (31).

After tedious calculations we have obtained that all dual metrics-have no
Killing-Yano tensors.Because the curvature is not zero for all dual metries we
have no Runge-Lenz vector. Another nnportant obse llel()ll is th.\l we (mmot
construct a dual spinning space for’ dual Taub-NUT metric because:thére are
no Killing-Yano teusors. Our result differs from that of [2].




Annexa 1

- For the metric

432 ( i ) (d-f? ;,(:_J:_n?(doz + sin? 0(14,9 )) +

2

im
m (IL + cos 0(1;,9)

non-vanishing Chrlstoﬂ'el components are

2 A
m 2 m*

My=-——, = j
r(r 4 2m) (r+m)(r+2m) \/
5. = m? 4 mcos(ﬂ) Ca m h
137 r(r2 + 3rm + 2m?)’ BT 24 3rm y2m? M r(r +2m)
oo rm* s = _(r* ~2m?) cos(9)
2 (r+m)3(r+2m) B sin(0)(r +2m)?
o 3 cos?(0)r®— r? — 4sin*(6)rm — 4m?
23 =

2sm(0)(r +2m)?

(r? + 2rm + m? ) cos(9)(r? -I—2rm-|—m )
sin(9)(r +2m)?’ u= sin(#)(r? +4rm + 4m?)
rm3(r*m + 11r°m cos?() + 4rm? + 8rm? cos?(8) + 4m® + 4r3 cos?(0))

3
“F24 -

|
F33 = 6 4+ 9rSm + 33r4m? + 63r3m3 + 66r2m* + 36rm® + 8mS)
I — r(3r + 4m) cos(9) sin(8) ro_ rm? cos(6)
oo (r + 2m)? S oTsT r3 + 6r2m + 12rm? 4 8m3
) (r + m)®sin(0) ., mir
Fsa=2 (r+2m)2 * 4 (r+2m)®

and.the curvature is:

6m? 4+ 3rm + 20

A= _2m(r3 + 4r?m 4 5rm? + 2m3) '

For the metric
4m?

— cos fdp)?.
T3 om/r (dv + cos Odyp)

di? < (1 + 2—-) (dﬁ + 5 (r + m)*(d6® + sin’ 9d,<r°2)) +
m?2 . : g

non-vanishing Christoffel coeficients are

m? + dmr + 2r?
r(r? + 3rm + 2m?)

m
1 _ 2 _
I111'—_ FIZ—'

r(r +2m)’

s _ mit4rm42rt oo cos(0)(3m + 2r)
B r(r?+3rm 4 2m?)’ BT T 124 3rm + 2m?
e — m o r(r + m)(m? + 4rm + 2r?)
1= o lap=— 2
) r(r + 2m) (r+2m)m
3 _ cos(9)(r' 4 6r3m + 13r?m? + 12rm® + 2m*)
7 sin(0)(r1 + 6r3m + 13r2m? + 12rm? +4mi)
e _(cos®(8) + 1)(r* + 6mr® + 13r?m? + 12rm3) + 4m*
B 2sin(0)(r* + 6r3m + 13r?m? + 12rm3 + 4m*)
3 — o ~mid ‘
# sin(0)(r* + 6r%m + 13r2m? + 12rm3 + 4m4)
' : “mAcos(d) - -
Fg:: = ©

0 A
sin(B)(r“ + 6r3m -{=-l3r2m2 + 12rm3 + 4m4)

L (2r3sin?(0) + 14r*msin®(8) + 371'3m2 sin’ (B) + 45r m3sin (0) + 24rm sin?(6) + 4m®)
B m’(r"’ + 6r2m + 12rm? + 8m3)

2 _ _ rsin(f) cos(H)(r + 6r m + 13rm? + 12m3)
37 sin(0)(r* + 6rm + 13r2m?  12rm® + 4m?*)
o= 4 m®r cos(0) 7
Hu 3+ 6r2m + 12rm? + 8m3
[2 —o m*sin(0). S L m3r
3= T 6r9m 1 13r%m2 + 12rmd +4me’ M (r+2m)3
and the curvature

6m3 + 21rm? + 22r?m 4 83

=2
2m3 + 9rm? 4+ 16r?m3 +.14m?r3 + 6rim + 5
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Figure 2: Ricciscalar plot for metric (23) (dual to (22)
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4 Conclusions

In this paper were investigated the generic and non-generic symfnet'ric's of dual
Taub-NUT metric. The scalar curvature of Taub-NUT metric is zero’,but the
coresponding dual metrics have non _vanishing'curvatures{ The dual Taub-NUT
metrics have no Killing-Yano tensors. These properties tell us that we have
no Runge-Lenz vector for dual Taub-NUT metrics, The dual metrics K#-and
K, have different topological properties. On the other hand the symmetries
of the.dual Taub-NUT, metrics depend drastically on.their particular form. "’

ey}
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