

ОБЪЕДИНЕННЫЙ ИНСТИТУТ Ядерных Исследований

Дубна

E5-98-189

1998

D.Baleanu*

KILLING-YANO TENSORS AND NAMBU MECHANICS

Submitted to «Journal of Physics A: Mathematical and General»

*After 1st March 1999 at Institute for Space Sciences, POB MG-36, Bucharest-Magurele, Romania E-mail: baleanu@thsun1.jinr.ru.; baleanu@roifa.ifa.ro

1 Introduction

In this paper we found a very interesting connection between Killing-Yano tensors[1] and Nambu tensors. Nambu mechanics is a generalization of classical Hamiltonian mechanics introduced by Yoichiro Nambu[2]. The fundamental principles of a canonical form of Nambu's generalized mechanics, similar to the invariant geometrical form of Hamiltonian mechanics, has been given by Leon Takhtajan [3]. In [4] was demonstrated that several Hamiltonian systems possessing dynamical symmetries can be realized in the Nambu formalism of generalized mechanics. Nambu's generalization of mechanics is based upon a higher order $(n \geq 2)$ algebraic structure defined on a phase space M.

Let M be a smooth manifold of dimension n with metric g_{ab} . An r-form field $(1 \le r \le n) \eta_{a_1 \cdots a_r}$ is said to be a Killing-Yano tensor[1] of valence r iff

$$\nabla_{(a_1} \eta_{a_2} \dots a_r = 0 \tag{1}$$

orderstand dated of

here ∇_a denotes the covariant derivative and the parenthesis denote complete summetryzation over the components indices. According to (1) the (r-1) form field

$$l_{a_1 \cdots a_{r-1}} = \eta_{a_1 \cdots a_{r-1m}} p^m$$
 (2)

is parallel transported along affine parametrized geodesics with tangent field p^a . A symmetric tensor field $K_{a_1\cdots a_r}$ is called a Killing tensor of valence r iff

$$\nabla_{(a_1} K_{a_2 \cdots a_r)} = 0 \tag{3}$$

This equation (3) ensures that $K_{m_1\cdots m_r}p^{m_1}\cdots p^{m_r}$ is a first integral of the geodesic equation. These two generalizations of the Killing vector equation are related. Let $\eta_{a_1\cdots a_r}$ be a Killing-Yano tensor, then tensor field $K_{ab} = \eta_{am_2\cdots m_r}\eta^{m_2\cdots m_r}{}_b$ is symmetric and proves to be a Killing tensor called the associated Killing tensor. Therefore

$$l_{m_1 \cdots m_{r-1}} l^{m_1 \cdots m_{r-1}} = \eta_{m_1 \cdots m_{r-1}a} \eta^{m_2 \cdots m_r}{}_b p^a p^b \tag{4}$$

输出了有自己的复数形式的复数形式 的第三

is the quadratic first integral generated by K_{ab} . We point out that a Killing-Yano tensor $f_{\mu\nu}$ with covariant derivative zero generate a Nambu tensor and any Killing-Yano tensor of order higher than two is a Nambu tensor.Because of this very important result all Killing-Yano tensors with covariant derivative zero have the same physical and geometrical signification. We found that all Killing-Yano tensors from flat space a Nambu tensors. In the case of Kerr-Newmann metric and Taub-NUT metric we found that all Killing-Yano tensor of rank two generate a Nambu tensor of rank three.

> Овъевенный систруг Олеряна исследований БМБЛИОТЕНА

2 Nambu Mechanics

M is called a Nambu-Poisson manifold [3] if there exists a R-multilinear map

 $\{f_1f_2, f_3, \cdots, f_{n+1}\} = f_1\{f_2, f_3, \cdots, f_{n+1}\} + \{f_1, f_3, \cdots, f_{n+1}\}f_2$

$$,\cdots,\}:[C^{(\infty)}]^{\otimes}\to C^{\infty}(M)$$

(5)

(7)

called a Nambu bracket of order n such that $\forall f_1, f_2 \cdots, f_{2n-1}$

 $\{f_1, \cdots, f_n\} = (-)^{P(\sigma)}\{f_{\sigma(1)}, \cdots, f_{\sigma(n)}\}$ (6)

and

$$\{\{f_1, \dots, f_{n-1}, f_n\}, f_{n+1}, \dots, f_{2n-1}\} + \{f_n\{f_1, \dots, f_{n-1}, f_{n+1}\}, f_{n+2}, \dots, f_{2n-1}\} + \dots + \{f_n, \dots, f_{2n-2}, \{f_1, \dots, f_{n-1}, \{f_n, \dots, f_{2n-1}\}\} = \{f_1, \dots, f_{n-1}, \{f_n, \dots, f_{2n-1}\}\}$$

$$(8)$$

The dynamics on a Nambu-Hamiltonian manifold M(i.e. a phase space) is determined by n-1 so called Nambu-Hamiltonians $H_1, \dots, H_{n-1} \in C^{\infty}(M)$ and is governed by the following equations of motion

$$\frac{f}{h} = \{f, H_1, \cdots, H_{n-1}\}, \forall f \in C^{\infty}(M)$$
(9)

The Nambu bracket is geometrically realized by the Nambu tensor field $\eta \in \wedge^n TM$, a section of the n-fold exterior power $\wedge^n TM$ of a tangent bundle TM, such that

$$\{f_1,\cdots,f_n\} = \eta\{df_1,\cdots,df_n\}$$
(10)

In local coordinates (x^1, \cdots, x^n) it becomes

$$\eta = \eta^{i_1 \cdots i_n}(x) \frac{\partial}{\partial x^{i_1}} \wedge \cdots \wedge \frac{\partial}{\partial x^{i_n}}$$
(11)

The fundamental identity (8) is equivalent to the following algebraic and differential constraints on the Nambu tensor $\eta^{i_1} \cdots i_n$

$$N^{i_1i_2\cdots i_n j_1 j_2\cdots j_n} + N^{j_1i_2i_3\cdots i_n i_1 j_2 j_3\cdots j_n} = 0$$
(12)

where

$$N^{i_{1}i_{2}\cdots i_{n}j_{1}j_{2}\cdots j_{n}}: = \eta^{i_{1}i_{2}\cdots i_{n}}\eta^{j_{1}\cdots j_{n}} + \eta^{j_{n}i_{1}i_{3}\cdots i_{n}}\eta^{j_{1}j_{2}\cdots j_{n-1}i_{2}} + \cdots + \eta^{j_{n}i_{2}i_{3}\cdots i_{n-1}i_{1}}\eta^{j_{1}j_{2}\cdots j_{n-1}i_{n}} - \eta^{j_{n}i_{2}i_{3}\cdots i_{n}}\eta^{j_{1}j_{2}\cdots j_{n-1}i_{n}}$$
(13)

and one differential [2]

$$\frac{D^{i_{2}\cdots i_{n}j_{1}\cdots j_{n}}}{-\eta^{j_{1}j_{2}\cdots j_{n-1}k}\partial_{k}\eta^{j_{1}j_{2}\cdots j_{n}}} + \cdots + \eta^{j_{n}i_{2}\cdots i_{n-1}k}\partial_{k}\eta^{j_{1}j_{2}\cdots j_{n-1}i_{n}} - \eta^{j_{1}j_{2}\cdots j_{n-1}k}\partial_{k}\eta^{j_{n}i_{2}i_{3}\cdots i_{n}} = 0$$
(14)

It has been shown [6] that the algebraic equations (12) and (13) imply that the Nambu tensors are decomposable (as conjectured in [5]) which in particular means that they can be written as determinants of the form

$$^{i_1\cdots i_n} = \epsilon_{\alpha_1\cdots\alpha_n} v^{i_1\alpha_1}\cdots v^{i_n\alpha_n} \tag{15}$$

In this section we present the connection between Killing-Yano tensors and Nambu tensors.

Theorem 1

If a manifold M of dimension N admits a Killing-Yano tensor $\eta_{\mu\nu}$ with covariant derivative zero then we can construct Killing-Yano tensors of order n

$$\eta^{\mu_1\cdots\mu_r} = \epsilon_{\alpha_1\cdots\alpha_n} \eta^{\mu_1\alpha_1}\cdots \eta^{\mu_r\alpha_n} \tag{16}$$

with $n = 3, \dots N - 1$

Proof.

Let $\eta_{\mu\nu}$ be a Killing-Yano tensor with covariant zero then we have

$$D_{\lambda}\eta_{\mu\nu} = 0, D_{\lambda}\eta^{\mu\nu} = 0 \tag{17}$$

On the other hand $\eta^{\mu_1...\mu_n}$ from(16) is antisymmetric by construction. Then the corresponding Killing-Yano equations are

$$D_{\lambda}\eta_{\mu_1\cdots\mu_n} + D_{\mu_1}\eta_{\lambda\cdots\mu_n} = 0 \tag{18}$$

From (16) and (17) we can deduce immediately (18). For n = N the corresponding Killing-Yano tensor is proportional to $\epsilon_{i_1\cdots i_n}$. QED.

Using the fact that for every Killing-Yano tensors $\eta_{\mu_1\cdots\mu_n}$ we can associate a constant of motion we have the following conserved quantities H, K^3, K^4, \cdots, K^N , where $K^i = K^i_{ab} p^a p^b$ for $i = 3, \cdots N$.

Theorem 2

If $\eta^{i_1\cdots i_n}$ is a Killing-Yano tensor with covariant derivative zero then it is a Nambu tensor

Proof.

If $\eta_{\mu\nu}$ is a Killing-Yano tensor of order 2 then from Theorem 1 we can construct a Killing-Yano tensor of order r

$$\sum_{i_1\cdots i_n}^{\mu_1\cdots \mu_n} = \epsilon_{i_1\cdots i_n} \eta^{\mu_1 i_1} \cdots \eta^{\mu_r i_r}$$
(19)

Let suppose that $\nabla_k \eta^{i_1 \cdots i_n} = 0$. Then we have the following relations:

$$\frac{\partial \eta^{i_1 \cdots i_n}}{\partial x^k} = -\Gamma^{i_1}_{km} \eta^{m \cdots i_n} - \cdots \Gamma^{i_n}_{km} \eta^{i_1 \cdots m}.$$
(20)

The fundamental identity have the following form

$$D^{i_2\cdots i_n j_1\cdots j_n} := \eta^{ki_2\cdots i_n} [\Gamma^{j_1}_{km} \eta^{m\cdots j_n} + \cdots \Gamma^{j_n}_{km} \eta^{j_1\cdots m}] +$$

$$\begin{array}{ccc} \cdot + & \eta^{j_n \cdots i_{n-1}k} [\Gamma^{j_1}_{km} \eta^{m \cdots i_n} + \cdots + \Gamma^{i_n}_{km} \eta^{j_1 \cdots m}] \\ - & \eta^{j_1 \cdots j_{n-1}k} [\Gamma^{j_n}_{km} \eta^{m i_2 i_3 \cdots i_n} + \Gamma^{i_n}_{km} \eta^{j_n \cdots m}] \end{array}$$

On the other hand (12) is becomes zero when $\eta^{\mu_1 \cdots \mu_r}$ is given by (16). Using this fact in the case when the background has no torsion we found after calculations that (21) is identically zero. QED

When a Killing-Yano tensor is a Nambu tensor it has the same geometrical interpretation. For every Killing-Yano tensor we can associate a constant of motion $K = K_{ab}p^a p^b$, where $K_{ab} = \eta_{am_2\cdots m_r} \eta^{m_2\cdots m_r}{}_{b}$.

Using Theorem 2 we put the algebraic constraint (14) in the following form

$$D^{i_{2}\cdots i_{n}j_{1}\cdots j_{n}}: = \eta^{k_{i_{2}}\cdots i_{n}} \nabla \eta^{j_{1}j_{2}\cdots j_{n}} + \eta^{j_{n}k_{i_{3}}\cdots i_{n}} \nabla_{k} \eta^{j_{1}j_{2}\cdots j_{n-1}i_{2}} + \cdots + \eta^{j_{n}i_{2}i_{3}\cdots i_{n-1}k} \nabla_{k} \eta^{j_{n}i_{2}i_{3}\cdots i_{n-1}k} - \eta^{j_{1}j_{2}\cdots j_{n-1}k} \nabla_{k} \eta^{j_{n}i_{2}i_{3}\cdots i_{n}} = 0$$
(22)

4 Examples

4.1 Flat Space

A very interesting example is the flat space.

Let E^{n+1} be a Euclidean space and $x^{\lambda}(\lambda = 1 \cdots n+1)$ an orthogonal coordinate system. Killing-Yano equations have this form:

$$\partial_{(\mu} f_{\nu_1)\nu_2\cdots\nu_n} = 0 \tag{23}$$

After calculations, from Killing-Yano equations we have the following general solutions

$$f_{\nu_1 \cdots \nu_n} = x^{\nu} g_{\nu \nu_1 \nu_2 \cdots \nu_n} + h_{\nu_1 \cdots \nu_n}$$
(24)

where $g_{\nu\nu_1\cdots\nu_n}$ and $f_{\nu\nu_1\cdots\nu_n}$ are constant antisymmetric tensors. In the flat case all the Killing-Yano tensors are Nambu tensors because relations (12) and (14) are satisfied. In this case the associate Killing tensor is

$$\begin{aligned}
K_{ab} &= f_{a\nu_2\cdots\nu_n} f^{\nu_2\cdots\nu_n}{}_b + f_{b\nu_2\cdots\nu_n} f^{\nu_2\cdots\nu_n}{}_a \\
&= x^{\alpha} x^{\beta} (g_{a\alpha\nu_2\cdots\nu_n} g^{\nu_2\cdots\nu_n}{}_{b\beta} + g_{b\alpha\nu_2\cdots\nu_n} g^{\nu_2\cdots\nu_n}{}_{a\beta}) \\
&+ x^{\alpha} (g_{a\alpha\nu_2\cdots\nu_n} b^{\nu_2\cdots\nu_n}{}_b + g_{\alpha b\nu_2\cdots\nu_n} b^{\nu_2\cdots\nu_n}{}_a + g_{b\alpha\nu_2\cdots\nu_n} b^{\nu_2\cdots\nu_n}{}_b \\
&+ b_{b\nu_2\cdots\nu_n} b^{\nu_2\cdots\nu_n}{}_a + b_{a\nu_2\cdots\nu_n} b^{\nu_2\cdots\nu_n}{}_b
\end{aligned}$$
(25)

Because euclidean space has dimension n we have n-2 Killing-Yano tensors with valence $r = 3 \cdots n$. Then we have n-2 constants of motions K_{ab}^i with $i = 3, \cdots n$ associated with Killing-Yano tensors. If we take into account and the Hamiltonian H we have n-1 constants of motion.

This property is very important and make the natural connection with Nambu mechanics.

4.2 Taub-NUT metric

In the Taub-NUT geometry four Killing-Yano tensors are know to be exist [8]. In this case in 2-form notation the explicit expression for the f_i are [8].

$$f_i = 4m(d\psi + \cos\theta d\varphi) \wedge dx_i - \epsilon_{ijk} \left(1 + \frac{2m}{r}\right) dx_j \wedge dx_k$$
(26)

$$Y = 4m \left(d\psi + \cos\theta d\varphi \right) \wedge dr + 4r \left(r + m \right) \left(1 + \frac{r}{m} \right) \sin\theta d\theta \wedge d\varphi \qquad (27)$$

The symmetries of extended Taub-NUT metric was investigated in [9]. Let consider i = 1 in (26)

From Theorem 1 and Theorem 2 we found that the independent components of Nambu's tensor $\eta^{i_1i_2i_3}$ are η^{124} , η^{134} and η^{234}

$$\eta^{124} = 4 \frac{\sin\varphi}{rm\sin\theta(r+2m)^2}, \eta^{134} = -4 \frac{\cos\varphi}{rm\sin^2\theta(r+2m)^2}$$
$$\eta^{234} = -4 \frac{\sin\varphi}{r^2m(r+2m)^2\sin\theta}$$
(28)

When
$$i = 2$$
 we obtaining the following results.

$$\eta^{124} = -4 \frac{\cos\varphi}{rm\sin\theta(r+2m)^2}, \eta^{134} = 4 \frac{\sin\varphi}{rm\sin^2\theta(r+2m)^2}$$

$$\eta^{234} = -\frac{4\sin\varphi}{r^2m(r+2m)^2\sin\theta}$$
(29)

For i=3 the independent components for Nambu tensor of order 3 are η^{134} and η^{234}

$$\eta^{134} = -\frac{4\cos\theta}{rm\sin^2\theta(r+2m)^2}, \eta^{234} = -4\frac{\cos\theta}{r^2m\sin^2\theta(r+2m)^2}.$$
 (30)

Killing-Yano tensor Y from (27) has not covariant derivative zero but it generate a Nambu tensor of order 3. In this case we have the following nonzero components for the Nambu tensor

$$\eta^{234} = \frac{2(r^4 + 4r^3m + 6r^2m^2 + 4rm^3 + m^4)}{m^3r^2[-\sin^2\theta(r^4 + 16m^4) + 8rm\cos^2\theta(r^2 + 3rm + 4m^2)]}$$
(31)

4.3 Kerr-Newmann metric

The Kerr-Newmann geometry describes a charged spinning black hole; in a standard choice of coordinates the metric is given by the following line element:

$$ds^{2} = -\frac{\Delta}{\rho^{2}} \left[dt - a \sin^{2}(\theta) d\varphi \right]^{2} + \frac{\sin(\theta)^{2}}{\rho^{2}} \left[(r^{2} + a^{2}) d\varphi - a dt \right]^{2} + \frac{\rho^{2}}{\Delta} dr^{2} + \rho^{2} d\theta^{2} (32)$$

Here

$$\Delta = r^2 + a^2 - 2Mr + Q^2, \rho^2 = r^2 + a^2 \cos^2(\theta)$$
(33)

with Q the background electric charge, and J = Ma the total angular momentum.

Killing-Yano tensor for the Kerr-Newmann metric is defined by

$$\frac{1}{2}f_{\mu\nu}dx^{\mu}\wedge dx^{\nu} = a\,\cos\theta\,dr\,\mathcal{h}\left(dt - a\,\sin^2\theta\,d\phi\right) +r\,\sin\theta\,d\theta\wedge\left[-a\,dt + (r^2 + a^2)\,d\phi\right]$$
(34)

This Killing-Yano tensor have not covariant derivative zero but again generate a Nambu tensor of order 3.

It has the following nenule components

$$\eta^{134} = \frac{\cos^6 \theta \sin \theta a^7 r^3}{\sin^2 \theta (r^2 + a^2)^2}, \eta^{234} = \frac{r^6 \cos^3 \theta a^3}{\sin^2 \theta (r^2 + a^2)^2}$$
(35)

A very interesting problem is quantization of Nambu mechanics when Nambu tensor is Killing-Yano tensor. There exist different approaches toward a quantization of Nambu mechanics, such a deformation quantization in the spirit of [8] and Feynman path integral approach, based on the action principle for Nambu mechanics [3].

5 Acknowledgments

I would like to thank Prof.M. Flato for very interesting discussions about Nambu mechanics during the period of International Conference "Particle, Fields and Gravity" from Lodz-Poland, 15-19th April 1998.

References

[1] K.Yano, Ann. of Math. 55 (1952) 328

[2] Nambu, Phys.Rev.D.7,(1973) 2405

[3] Takhtajan L.A., Comm.Math.Phys.,160 (1994) 295

[4] R.Chatterjee, Lett. Math. Phys. 36 (1996) 117-126

[5]	L. Takhtajan and R. Chatterjee, Lett. Math. Phys. 37 (1996) 4	75-482
[6]	P.Gautheron, Lett. Math. Phys. 37 (1996) 103-106	
[7]	II.IIictarinta, J.Phys.A:Math.Gen.30 (1997) L27-L33	, tati , Ala
[8]	J.W.van Holten, Phys. Lett. B342 (1995) 47	
[9]	D.Baleanu, Gen. Rel. Grav. 30, no.2 (1998) 195 D.Baleanu, Helv. Acta. Phys. vol. 70, no.3 (1998)) ² 44
[10]	M.Flato at all., Ann. Phys. 110 (1967) 67	N Ng ^{al} ang Ng
	Mentantan Mentantan Spirategi (Stratistica Stratistica Stratistica Stratistica Stratistica Stratistica Stratistica Stratis	
		n Na Na Na Na
		. h.
	· 1997年1月1日,1997年1月1日,1997年1月1日,1997年1月1日。 - 1997年1月1日,1997年1月1日,1997年1月1日,1997年1月1日,1997年1月1日,1997年1月1日,1997年1月1日,1997年1月1日,1997年1月1日,1997年1月1日,1997年1月1日	ζ.,
	of hereight sources and a substrain a shift of the second sources of the second sources of the second sources o Substrategy is the second source sources of the second sources of the second sources of the second sources of the State Substrate sources of the second sources of the second sources of the second sources of the second sources	
	na an a	

Received by Publishing Department on June 24, 1998.

6