

ОБъЕДИНЕННЫЙ ИНСТИТУт ЯДЕРНЫХ ИССЛЕДОВАНИЙ

D.Baleanu*

KILLING-YANO TENSORS
 AND NAMBU MECHANICS

Submitted to «Journal of Physics A: Mathematical and General»

[^0]
1 Introduction

In this paper we found a very interesting connection between Killing-Yano tensors[1] and Nambu tensors. Nambu mechanics is a generalization of classical Hamiltonian mechanics introduced by Yoichiro Nambu[2]. The fundamental principles of a canonical form of Nambu's generalized mechanics, similar to the invariant geometrical form of Hamiltonian mechanics, has been given by Leon Takhtajan [3].In [4] was demonstrated that several Hamiltonian systems possessing dynamical symmetries can be realized in the Nambu formalism of generalized mechanics. Nambu's generalization of mechanics is based upon a higher order ($n \geq 2$) algebraic structure defined on a phase space M.

Let M be a smooth manifold of dimension n with metric $g_{a b}$. An r-form field ($1 \leq r \leq n$) $\eta_{a_{1} \cdots a_{r}}$ is said to be a Killing-Yano tensor [1] of valence riff

$$
\begin{equation*}
\nabla\left(a_{1} \eta_{\left.a_{2}\right) \cdots a_{r}}=0\right. \tag{1}
\end{equation*}
$$

here ∇_{a} denotes the covariant derivative and the parenthesis denote complete summetryzation over the components indices. According to (1) the $(r-1)$ form field

$$
\begin{equation*}
l_{a_{1} \cdots a_{r-1}}=\eta_{a_{1} \cdots a_{r-1} m} p^{m} \tag{2}
\end{equation*}
$$

is parallel transported along affine parametrized geodesics with tangent field p^{a}. A symmetric tensor field $K_{a_{1} \cdots a_{r}}$ is called a Killing tensor of valence riff

$$
\begin{equation*}
\nabla\left(a_{1} K_{\left.a_{2} \cdots a_{r}\right)}=0\right. \tag{3}
\end{equation*}
$$

This equation (3) ensures that $K_{m_{1} \cdots m_{r}} p^{m_{1}} \cdots p^{m_{r}}$ is a first integral of the geodesic equation. These two generalizations of the Killing vector equation are related. Let $\eta_{a_{1} \ldots a_{r}}$ be a Killing-Yano tensor, then tensor field $K_{a b}=\eta_{a m_{2} \cdots m_{r}} \eta^{m_{2} \cdots m_{r}}$ is symmetric and proves to be a Killing tensor called the associated Killing tensor. Therefore

$$
\begin{equation*}
l_{m_{1} \cdots m_{r-1}} l^{m_{1} \cdots m_{r-1}}=\eta_{m_{1} \cdots m_{r-1} a} \eta_{b}^{m_{2} \cdots m_{r}} p^{a} p^{b} \tag{4}
\end{equation*}
$$

is the quadratic first integral generated by $K_{a b}$.
We point out that a Killing-Yano tensor $f_{\mu \nu}$ with covariant derivative zero generate a Nambu tensor and any Killing-Yano tensor of order higher than two is a Nambu tensor.Because of this very important result all Killing-Yano tensors with covariant derivative zero have the same physical and geometrical signification. We found that all Killing-Yano tensors from flat space a Nambu tensors. In the case of Kerr-Newmann metric and Taub-NUT metric we found that all Killing-Yano tensor of rank two generate a Nambu tensor of rank three.

2 Nambu Mechanics

M is called a Nambu-Poisson manifold [3] if there exists a R-multilinear map

$$
\begin{equation*}
\{, \cdots,\}:\left[C^{(\infty)}\right]^{\otimes} \rightarrow C^{\infty}(M) \tag{5}
\end{equation*}
$$

called a Nambu bracket of order n such that $\forall f_{1}, f_{2} \cdots, f_{2 n-1}$

$$
\begin{equation*}
\left\{f_{1}, \cdots, f_{n}\right\}=(-)^{P(\sigma)}\left\{f_{\sigma(1)}, \cdots, f_{\sigma(n)}\right\} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\left\{f_{1} f_{2}, f_{3}, \cdots, f_{n+1}\right\}=f_{1}\left\{f_{2}, f_{3}, \cdots, f_{n+1}\right\}+\left\{f_{1}, f_{3}, \cdots, f_{n+1}\right\} f_{2} \tag{7}
\end{equation*}
$$

and

$$
\begin{align*}
& \left\{\left\{f_{1},, \cdots, f_{n-1}, f_{n}\right\}, f_{n+1}, \cdots, f_{2 n-1}\right\}+\left\{f_{n}\left\{f_{1}, \cdots f_{n-1}, f_{n+1}\right\}, f_{n+2}, \cdots, f_{2 n-1}\right\} \\
& +\cdots+\left\{f_{n}, \cdots, f_{2 n-2}\left\{f_{1}, \cdots, f_{n-1},\left\{f_{n}, \cdots, f_{2 n-1}\right\}\right\}\right. \\
& = \tag{8}
\end{align*}
$$

The dynamics on a Nambu -Hamiltonian manifold M(i.e. a phase space) is determined by n-1 so called Nambu-Hamiltonians $H_{1}, \cdots H_{n-1} \in C^{\infty}(M)$ and is governed by the following equations of motion

$$
\begin{equation*}
\frac{d f}{d t}=\left\{f, H_{1}, \cdots, H_{n-1}\right\}, \forall f \in C^{\infty}(M) \tag{9}
\end{equation*}
$$

The Nambu bracket is geometrically realized by the Nambu tensor field $\eta \in$ $\wedge^{n} T M$, a section of the n-fold exterior power $\wedge^{n} T M$ of a tangent bundle TM, such that

$$
\begin{equation*}
\left\{f_{1}, \cdots, f_{n}\right\}=\eta\left\{d f_{1}, \cdots, d f_{n}\right\} \tag{10}
\end{equation*}
$$

In local coordinates $\left(x^{1}, \cdots, x^{n}\right)$ it becomes

$$
\begin{equation*}
\eta=\eta^{i_{1} \cdots i_{n}}(x) \frac{\partial}{\partial x^{i_{1}}} \wedge \cdots \wedge \frac{\partial}{\partial x^{i_{n}}} \tag{11}
\end{equation*}
$$

The fundamental identity (8) is equivalent to the following algebraic and differential constraints on the Nambu tensor $\eta^{i_{1}} \cdots i_{n}$

$$
\begin{equation*}
N^{i_{1} i_{2} \cdots i_{n} j_{1} j_{2} \cdots j_{n}}+N^{j_{1} i_{2} i_{3} \cdots i_{n} i_{1} j_{2} j_{3} \cdots j_{n}}=0 \tag{12}
\end{equation*}
$$

where

$$
\begin{gather*}
N^{i_{1} i_{2} \cdots i_{n} j_{1} j_{2} \cdots j_{n}}:=\eta^{i_{1} i_{2} \cdots i_{n}} \eta^{j_{1} \cdots j_{n}}+\eta^{j_{n} i_{1} i_{3} \cdots i_{n}} \eta^{j_{1} j_{2} \cdots j_{n-1} i_{2}}+\cdots \\
\eta^{j_{n} i_{2} i_{3} \cdots i_{n-1} i_{1}} \eta_{1}^{j_{1} j_{2} \cdots j_{n-1} i_{n}}-\eta^{j_{n} i_{2} \cdots i_{n}} \eta^{j_{1} j_{2} \cdots j_{n-1} i_{n}} \tag{13}
\end{gather*}
$$

and one differential [2]

$$
\begin{align*}
D^{i_{2} \cdots i_{n} j_{1} \cdots j_{n}}: & =\eta^{k i_{2} \cdots i_{n}} \partial_{k} \eta^{j_{1} j_{2} \cdots j_{n}}+\cdots+\eta^{j_{n} i_{2} \cdots i_{n-1} k} \partial_{k} \eta^{j_{1} j_{2} \cdots j_{n-1} i_{n}} \tag{14}\\
& -\eta^{j_{1} j_{2} \cdots j_{n-1} k} \partial_{k} \eta^{j_{n} i_{2} i_{3} \cdots i_{n}}=0
\end{align*}
$$

It has been shown [6] that the algebraic equations (12) and (13) imply that the Nambu tensors are decomposable (as conjectured in [5]) which in particular means that they can be written as determinants of the form

$$
\begin{equation*}
\eta^{i_{1} \cdots i_{n}}=\epsilon_{\alpha_{1} \cdots \alpha_{n}} v^{i_{1} \alpha_{1}} \cdots v^{i_{n} \alpha_{n}} \tag{15}
\end{equation*}
$$

3 Nambu and Killing-Yano tensors

In this section we present the connection between Killing-Yano tensors and Nambu tensors.

Theorem 1

If a manifold M of dimension N admits a Killing-Yano tensor $\eta_{\mu \nu}$ with covariant derivative zero then we can construct Killing-Yano tensors of order n

$$
\begin{equation*}
\eta^{\mu_{1} \cdots \mu_{r}}=\epsilon_{\alpha_{1} \cdots \alpha_{n}} \eta^{\mu_{1} \alpha_{1}} \cdots \eta^{\mu_{r} \alpha_{n}} \tag{16}
\end{equation*}
$$

with $n=3, \cdots N-1$
Proof.
Let $\eta_{\mu \nu}$ be a Killing-Yano tensor with covariant zero then we have

$$
\begin{equation*}
D_{\lambda} \eta_{\mu \nu}=0, D_{\lambda} \eta^{\mu \nu}=0 \tag{17}
\end{equation*}
$$

On the other hand $\eta^{\mu_{1} \cdots \mu_{n}}$ from(16) is antisymmetric by construction. Then the corresponding Killing-Yano equations are

$$
\begin{equation*}
D_{\lambda} \eta_{\mu_{1} \ldots \mu_{n}}+D_{\mu_{1}} \eta_{\lambda \cdots \mu_{n}}=0 \tag{18}
\end{equation*}
$$

From (16) and (17) we can deduce immediately (18). For $n=N$ the corresponding Killing-Yano tensor is proportional to $\epsilon_{i_{1} \cdots i_{n}}$. QED.
Using the fact that for every Killing-Yano tensors $\eta_{\mu_{1} \cdots \mu_{n}}$ we can associate a constant of motion we have the following conserved quantitics $I, K^{3}, K^{4}, \cdots K^{-2}$. where $K^{i}=K_{a b}^{i} p^{a} p^{b}$ for $i=3, \cdots N$.

Theorem 2

If $\eta^{i_{1} \cdots i_{n}}$ is a Killing-Yano tensor with covariant derivative zero then it is a Nambu tensor

Proof.

If $\eta_{\mu \nu}$ is a Killing-Yano tensor of order 2 then from Theorem I we can construct a Killing-Yano tensor of order r

$$
\begin{equation*}
\eta^{\mu_{1} \cdots \mu_{n}}=\epsilon_{i_{1} \cdots i_{n}} \eta^{\mu_{1} i_{1}} \cdots \eta^{\mu_{r} i_{r}} \tag{19}
\end{equation*}
$$

Let suppose that $\nabla_{k} \eta^{i_{1} \cdots i_{n}}=0$. Then we have the following relations:

$$
\begin{equation*}
\frac{\partial \eta^{i_{1} \cdots i_{n}}}{\partial x^{k}}=-\Gamma_{k m}^{i_{1}} \eta^{m \cdots i_{n}}-\cdots \Gamma_{k m}^{i_{n}} \eta^{i_{1} \cdots m} \tag{20}
\end{equation*}
$$

The fundamental identity lave the following form

$$
\begin{array}{cc}
\cdots+ & \eta_{n \cdots i_{n-1} k}^{\left.j_{n} \cdots \Gamma_{k m}^{j_{1}} \eta^{m \cdots i_{n}}+\cdots+\Gamma_{k m}^{i_{n}} \eta^{j_{1} \cdots m}\right]} \quad \eta^{j_{1} \cdots j_{n-1} k}\left[\Gamma_{k m}^{j_{n}} \eta^{m i_{2} i_{3} \cdots i_{n}}+\Gamma_{k m}^{i_{n}} \eta^{j_{n} \cdots m}\right] \tag{21}
\end{array}
$$

On the other hand (12)is becomes zero when $\eta^{\mu_{1} \cdots \mu_{r}}$ is given by (16).Using this fact in the case when the background has no torsion we found after calculations that (21) is identically zero.QED

When a Killing-Yano tensor is a Nambu tensor it has the same geometrical interpretation. For every Killing-Yano tensor we can associate a constant of motion $K=K_{a b} p^{a} p^{b}$,where $K_{a b}=\eta_{a m_{2} \cdots m_{r}} \eta^{m_{2} \cdots m_{r}}$.

Using Theorem 2 we put the algebraic constraint (14) in the following form

$$
\begin{align*}
D^{i_{2} \cdots i_{n} j_{1} \cdots j_{n}}: & =\eta^{k i_{2} \cdots i_{n}} \nabla \eta^{j_{1} j_{2} \cdots j_{n}}+\eta^{j_{n} k i_{3} \cdots i_{n}} \nabla_{k} \eta^{j_{1} j_{2} \cdots j_{n-1} i_{2}} \\
& +\cdots+\eta^{j_{n} i_{2} i_{3} \cdots i_{n-1} k} \nabla_{k} \eta^{j_{n} i_{2} i_{3} \cdots i_{n-1} k} \\
& -\eta^{j_{1} j_{2} \cdots j_{n-1} k} \nabla_{k} \eta_{n}^{j_{n} i_{2} i_{3} \cdots i_{n}}=0 \tag{22}
\end{align*}
$$

4 Examples

4.1 Flat Space

A very interesting example is the flat space.
Let E^{n+1} be a Euclidean space and $x^{\lambda}(\lambda=1 \cdots n+1)$ an orthogonal coordinate system. Killing-Yano equations have this form:

$$
\begin{equation*}
\partial_{(\mu} f_{\left.\nu_{1}\right) \nu_{2} \cdots \nu_{n}}=0 \tag{23}
\end{equation*}
$$

After calculations, from Killing-Yano equations we have the following general solutions

$$
\begin{equation*}
f_{\nu_{1} \cdots \nu_{n}}=x^{\nu} g_{\nu \nu_{1} \nu_{2} \cdots \nu_{n}}+h_{\nu_{1} \cdots \nu_{n}} \tag{24}
\end{equation*}
$$

where $g_{\nu \nu_{1} \ldots \nu_{n}}$ and $f_{\nu \nu_{1} \cdots \nu_{n}}$ are constant antisymmetric tensors. In the flat case all the Killing-Yano tensors are Nambu tensors because relations (12) and (14) are satisfied. In this case the associate Killing tensor is

$$
\begin{align*}
& K_{a b}=f_{a \nu_{2} \cdots \nu_{n}} f^{\nu_{2} \cdots \nu_{n}}{ }_{b}+f_{b \nu_{2} \cdots \nu_{n}} f^{\nu_{2} \cdots \nu_{n}}{ }_{a} \\
& =x^{\alpha} x^{\beta}\left(g_{a \alpha \nu_{2} \cdots \nu_{n}} g_{\nu_{2} \cdots \nu_{n}}{ }_{b \beta}+g_{b \alpha \nu_{2} \cdots \nu_{n}} g^{\nu_{2} \cdots \nu_{n}}{ }_{a \beta}\right) \\
& +x^{\alpha}\left(g_{a \alpha \nu_{2} \cdots \nu_{n}} \nu_{\nu_{2} \cdots \nu_{n}}{ }_{b}+g_{\alpha \nu_{2} \nu_{2} \cdots \nu_{n}} b^{\nu_{2} \cdots \nu_{n}}{ }_{a}+g_{b \alpha \nu_{2} \cdots \nu_{n}} b^{\nu_{2} \cdots \nu_{n}}{ }_{a}+g_{\alpha a \nu_{2} \cdots \nu_{n}} b^{\nu_{2} \cdots \nu_{n}}{ }_{b}\right) \\
& +b_{b \nu_{2} \cdots \nu_{n}} b^{\nu_{2} \cdots \nu_{n}}{ }_{a}+b_{a \nu_{2} \cdots \nu_{n}} b^{\nu_{2} \cdots \nu_{n}}{ }_{b} \tag{25}
\end{align*}
$$

Because euclidean space has dimension n we have $n-2$ Killing-Yano tensors with valence $r=3 \cdots n$. Then we have n-2 constants of motions $K_{a b}^{i}$ with $i=3, \cdots n$ associated with Killing-Yano tensors.If we take into account and the Hamiltonian H we have $\mathrm{n}-1$ constants of motion.
This property is very important and make the natural connection with Nambu mechanics.

4.2 Taub-NUT metric

In the Taub-NUT geometry four Killing-Yano tensors are know to be exist [8]. In this case in 2 -form notation the explicit expression for the f_{i} are [8].

$$
\begin{array}{r}
f_{i}=4 m(d \psi+\cos \theta d \varphi) \wedge d x_{i}-\epsilon_{i j k}\left(1+\frac{2 m}{r}\right) d x_{j} \wedge d x_{k} \\
Y=4 m(d \psi+\cos \theta d \varphi) \wedge d r+4 r(r+m)\left(1+\frac{r}{m}\right) \sin \theta d \theta \wedge d \varphi \tag{27}
\end{array}
$$

The symmetries of extended Taub-NUT metric was investigated in [9]. Let consider $i=1$ in (26)

From Theorem 1 and Theorem 2 we found that the independent components of Nambu's tensor $\eta^{i_{1} i_{2} i_{3}}$ are η^{124}, η^{134} and η^{234}

$$
\begin{align*}
\eta^{124} & =4 \frac{\sin \varphi}{r m \sin \theta(r+2 m)^{2}}, \eta^{134}=-4 \frac{\cos \varphi}{r m \sin ^{2} \theta(r+2 m)^{2}} \\
\eta^{234} & =-4 \frac{\sin \varphi}{r^{2} m(r+2 m)^{2} \sin \theta} \tag{28}
\end{align*}
$$

When $i=2$ we obtaining the following results.

$$
\begin{align*}
\eta^{124} & =-4 \frac{\cos \varphi}{r m \sin \theta(r+2 m)^{2}}, \eta^{134}=4 \frac{\sin \varphi}{r m \sin ^{2} \theta(r+2 m)^{2}} \\
\eta^{234} & =-\frac{4 \sin \varphi}{r^{2} m(r+2 m)^{2} \sin \theta} \tag{29}
\end{align*}
$$

For $\mathrm{i}=3$ the independent components for Nambu tensor of order 3 are η^{134} and η^{234}

$$
\begin{equation*}
\eta^{134}=-\frac{4 \cos \theta}{\left.r m \sin ^{2} \theta(r+2 m)^{2}\right)}, \eta^{234}=-4 \frac{\cos \theta}{r^{2} m \sin ^{2} \theta(r+2 m)^{2}} \tag{30}
\end{equation*}
$$

Killing-Yano tensor Y from (27) has not covariant derivative zero but it generate a Nambu tensor of order 3. In this case we have the following nonzero components for the Nambu tensor

$$
\begin{equation*}
\eta^{234}=\frac{2\left(r^{4}+4 r^{3} m+6 r^{2} m^{2}+4 r m^{3}+m^{4}\right)}{m^{3} r^{2}\left[-\sin ^{2} \theta\left(r^{4}+16 m^{4}\right)+8 r m \cos ^{2} \theta\left(r^{2}+3 r m+4 m^{2}\right)\right]} \tag{31}
\end{equation*}
$$

4.3 Kerr-Newmann metric

The Kerr-Newmann geometry describes a charged spinning black hole; in a standard choice of coordinates the metric is given by the following line element:
$d s^{2}=-\frac{\Delta}{\rho^{2}}\left[d t-a \sin ^{2}(\theta) d \varphi\right]^{2}+\frac{\sin (\theta)^{2}}{\rho^{2}}\left[\left(r^{2}+a^{2}\right) d \varphi-a d t\right]^{2}+\frac{\rho^{2}}{\Delta} d r^{2}+\rho^{2} d \theta^{2}(32)$

Here

$$
\begin{equation*}
\Delta=r^{2}+a^{2}-2 M r+Q^{2}, \rho^{2}=r^{2}+a^{2} \cos ^{2}(\theta) \tag{33}
\end{equation*}
$$

with Q the background electric charge, and $J=M a$ the total angular momentum.

Killing-Yano tensor for the Kerr-Newmann metric is defined by

$$
\begin{array}{r}
\frac{1}{2} f_{\mu \nu} d x^{\mu} \wedge d x^{\nu}=a \cos \theta d r \wedge\left(d t-a \sin ^{2} \theta d \phi\right) \\
+r \sin \theta d \theta \wedge\left[-a d t+\left(r^{2}+a^{2}\right) d \phi\right] \tag{34}
\end{array}
$$

This Killing-Yano tensor have not covariant derivative zero but again generate a Nambu tensor of order 3.

It has the following nenule components

$$
\begin{equation*}
\eta^{134}=\frac{\cos ^{6} \theta \sin \theta a^{7} r^{3}}{\sin ^{2} \theta\left(r^{2}+a^{2}\right)^{2}}, \eta^{234}=\frac{r^{6} \cos ^{3} \theta a^{3}}{\sin ^{2} \theta\left(r^{2}+a^{2}\right)^{2}} \tag{35}
\end{equation*}
$$

A very interesting problem is quantization of Nambu mechanics when Nambu tensor is Killing-Yano tensor. There exist different approaches toward a quantization of Nambu mechanics, such a deformation quantization in the spirit of $[8]$ and Feynman path integral approach, based on the action principle for Nambu mechanics [3].

5 Acknowledgments

I would like to thank Prof.M. Flato for very interesting discussions about, Nambu mechanics during the period of International Conference "Particle,Fields and Gravity" from Lodz-Poland, 15-19th April 1998.

References

[1] K.Yano, Ann.of Math. 55 (1952) 328
[2] Nambu, Phys.Rev.D.7,(1973) 2405
[3] Takhtajan L.A., Comm.Math.Phys., 160 (1994) 295
[4] R.Chatterjee,Lett.Math.Phys. 36 (1996) 117-126
[5] L..Takhtajan and R.Chatterjee, Lett.Math.Phys. 37 (1996) 475-482
[6] P.Gautheron,Lett.Math.Phys. 37 (1996) 103-106
[7] II.Hictarinta,J.Phys.A:Math.Gen. 30 (1997) L27-L33
[8] J.W.van Iolten, Phys.Lett.B342 (1995) 17
[9] D.Baleanu, Gen. Rel.Grav.30,no. 2 (1998) 195
D. Balcanu, Helv.Acta. Phys.vol. 70, no. 3 (1998)
[10] M.Flato at all.,Ann.Phys. 110 (1967) 67

Received by Publishing Department
 on June 24, 1998.

[^0]: *After lst March 1999 at Institute for Space Sciences, POB MG-36, Bucharest-Magurele, Romania
 E-mail: baleanu@thsun1.jinr.ru.; baleanu@roifa.ifa.ro

