


i1 Introduction

The symmetries of space-times were systematically investigated in terms of the
. motion of pseudo-classical spinning point particles described by the supersym-
metric extension of the usual relativistic point particle.Such a supersymmetric

theory possesses a supercharge Q generating the supersymmetry transforma-.

tion between the particle’s position z* and the particle’s spin x?, which must be
introduced to forbid the negative norm states of spin due to indefinite Lorentz
metric 7.5.1t was a big success of Gibbons et al. [1] to have been able to show
that the Killing-Yano tensor (2], which’had long besn known to relativistic
as a rather mysterious structure, can be understood as an object generating
” a non-generic” supersymmetry,i.e a supersymmetry appearing only in spe-
cific spacetimes [1]. In 2 geometrical setting , symmetries are connected with
isometries associated with Killing vectors, and more generally, Killing tensors
on the configuration space of the system.An example is the motion of a point
particle in a space with isometries [3], which is a physicist’s way of studying
the geodesic structure of a manifold.The non-generic symmetries were investi-
gated in the case of Taub-NUT metric [4] and extended Taub-NUT metric [5].
The geometrical interpretation of Killing tensors was investigated in [6]. Re-
cently Holten [7] have presented a theorem concerning the reciprocal relation
between ‘two local geometries described by metrics which are Killing tensors

with respect to one another. If K*¥ are the contravariant components of a .

Killing tensor with respect to the inverse metric ¢#“, then ¢*¥ must repre-
sent a Killing tensor with respect to the inverse metric defined by K*. The
physical interpretation of the dual metrics was not clarified, In this paper we
investigate the geometric duality which exist between g,, and K,,. The main
aim of this paper is to investigate - generic and non-generic symmetries of the
dual metrics K,, and to construct the dual spinning space. Spinning space
was constructed without introduction of torsion.The 1ntroduction of torsion is
not crucial here.

The plan of this paper is the following:

In Section 2 we analysed the generic and non-generic symmetries of the
'metric K,, which is dual to g,,. In Section 3 the dual spinning space was
constructed. In Section 4 we present our conclusions.

2 Symmetries and geometric duality

Let a space with metric g,, admits a Killing tensor field K,,. A Killing tensor
is a symmetric tensor which satisfies the following relation:

DKy, + DKoy + DKy, =0 (1)
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where D represent the covariant derivative. The’ equation of motion of a par-

- ticle on a geodesic is derived from the action

’ ) Lo oo RS wegny o
s=/.dr(§g#;xuzu) R
The Hamiltonian is constructedin' the‘folloWing form H : %gu,,p“p" ;The -
Poisson brackets are :
Aewp}=6.. . . 0

The equation of motion for a phase space function F(z,p) can be computed
from the Poisson bra.ckets with the Hamiltonian

F={FH}. )

From the covariant component K, of the Killlng tensor we can construct a
constant of motion K, : . R

K= §Kuup“P". (5)

We can easy veriﬁed that . s
C{H,K}=0. (6)
If we denote D to be the covariant derivative in respect to g, and D the
covariant derivative with respect to K v then

Dygu :0

DAA,“, +D K +D VK =0 (7
DAI{““’ : . 0 . eprpine Bt B
D/\guu + D gu/\ + Dug,\p = 0 . ’ (8)

On the other hand between the connectlons e . and ™ oy is an 1nteresting

relation T RN
[, =T% — K*DsKon | B

As is well known for a given metric Guv, the conformal transforma.tion is deﬁned

as H

e = g
g o= Mg U=UE. (10

From( 10)the relation between the correspondlng connectlons is
0, =1, +25(“U,,) g™ SR, (11)

A — dU
where U = 2.
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After calculations we conclude that the dual transforrnatlon (9) is not a

conformal transformation. s .

It 1s easy to check that the metrlc K,“, = fuf) has an inverse 1f the
dlrnenswn of manifold are even.

~ The next step is to 1nvest1agte the syrnmetrles of the dual rnamfold 1\
" Theorem 1

* The metric and the dual metric have the same generic symmetries if
A ; "

DsKu3*=0. . a2
Proof.

Let T, and I‘w\ be the connections corresponding to g,, and respectively
K,;,. We have the following very 1mportant relation

[ =T — KM™DsK,\. - (13)

Taking into account (13) Kllhng s vectors equations in the dual space are the
followmg form

DuXu+DuX;Z‘+2I{60D61{MV>A<a =0 v (14)

wht.ere >_2” are Killing vectors in the dual épace and D represents the covariant
derivative on manifold g,, . Let x, be the Killing vectors corresponding to
9uv- When we suppose that ¥, = x, from (12) and (14) we can obtain that

DsK,%° = DsK,ux* =0, ’ (15)
Ifwe assume that (12) is valid frornl"(»14) we can deduce that x, = %,. Q.E.D.

"~ An 1nterest1ng case arises when K v Satisfies the followmg relation D, K, =

1],\1( w- Then we have the same generic syrnmetrles for given manifold and for
dual manifold if

‘ nax =nsx’ = 0. (16)

. Another very mterestmg case arises when' D,\I\ u = 0. Then we have the saine
generic symmetries for the manifold and its dual.
. Theorem 2

The metric and the dual metric have the same non-generic symmetries if
- Jus K Do Ky + 2f s KO DsK oy + fuo K DsK,p =0, (17)
Proof. ’ |

We suppose that metric gy admlts a Klllmg-Yano tensor fo,.A Klllmg—
Yano tensor is an antisymmetric t(‘nsor[7 8] whlch satisfics the following equa-

tions

‘ I)Af;tu+[);1fu\_0 T k . (18)
Because ) s C o
. l‘ll"—fﬂﬁf‘ == f‘mf“—-e €ua v ’ f:(19) .
we have that . o
[";w = f:fua = ézéua . (20)
If we take the dual in (20) we obtain that e o
G = €ieva = [ fra. s @
Taking into account that ’
’ Juo = fll’ﬂc;‘/ - ) R (22)
from (20) ,(21) and (22) we deduce :
f;w = f;w, : (23)

From (18) and (ZJ) the metric and its dual niust have the same l\lllmg- ‘ano

tumoxs ;
On the other hand from (13) Killing- Yano cquatlons in the dual space have

the form

i)ufw\ + Dufu/\ = Dufw\ + D, fix + fu61\&11) l\u\ +‘)fd\l\ D“l\i“’
+ f,ml\ ‘DsK,\ =0 (21)

where D rcprcscnts the covariant derivative corresponding to g,.,. Il we suppose
that (17) is satisfied then f,,,, = —fuis a Killing- Yano tensor.If we suppose
that f;w ==fuisa K)llmg-Yano tensor then from (21) we deduce { 17).
When this Theorem. is satisfies the metric and its dual have the sane nou-
generic symmetries. QED

A solution of Eq.(31) is fm,'-— bu,, wh(‘rc b#,, is a ((mstant anhs\ mmetric
tensor. .
If the manifold admits a Killing tensor Ky s ‘atlsfymg, D; l\“,, t— 0 thvn (llldl
mamfold has the sdm(' sylnm(-lrlu like |n|t|dl maulfold

An mt(‘l(stmg cxample is Kerr-Newimann metric [l] .
The Kerr-Newmann geowetry describes a charged splnmug black lhole: m a
st dndar(l ¢ h()l(‘c of (00|(lmat( S lll(‘ m(‘trl( is glvvn l)y the [oll()\\ |||g lnu‘ ¢ l( lnvnt
AN

ds? = —-;)—— [dl — asl||2(0)d ] sm(0)

[( ‘+ a?)dyp — adl].2 + —A—dr2 + p'zd()'f(‘.l;"))



'~ Here,

A=r4a’—2Mr 4+ Q% p* =1 4 a%cos? 9 o (26)

with @) the background electric‘charge, and J = Ma the total angular mo-

mentum. The expression for ds? onl i
ntur y describes the fi ide the hori:
which s located at ‘ e fields outside the-horizon,

r=M+ (M- Q*—a?)'? ' (27)

The Killing Yano tensor for the Kerr-Newman is defined by [1]

1
§fu,d1:“ Adz” = a cosOdr A (dt — a sin® 0d¢)
+rsinfdf A [~adt + (r? +a%) dg)], _ (28)

The 'Kerr-'New.man metric admits a second-rank Killing tensor field.It can
be described in this coordinate system by the quadratic form S

S

L2 g . alcos?OA
. K = Kodetdz” = — [dt — asin® 0de]” +
r¥sin? g 9 ' 2 2
oI\ + a? do — adt 2 — .*p_ 2 p_ ,‘
p* [( i — adi] Aa? Coszﬁdr + r? o (29)

Its contravariant components define the inverse metric g*" of the dual ge-
QITletry.From‘[7] we know that the dual line element is

R A in?
At e L g 2 2 sin”f ‘ ;
’ 7 cosTl [dt asin 9{1(,9] + o [(7-2 + a2).d<,9 —’th]z
R
’ Aa?cos? ()
pquyiding an explicit expression for the dual met‘ric; k
err-Newman metric admits two Killj 5 2 se K, i
dual to g, and K** are dual u:v-o o ling vectors 5 an.d 5 Because K, is
cum o X ¥ are dua 'to g"" 1s interesting to investigate the generic and
K.ﬁ:generlc symmetries in this two cases. Using Theorem 1 the éorrésponding
tlling vectors for dual metrics (29) and (30) are fou s
1 ‘ und t !
Kerr—Ngwman metric(25). ( ) e to be the same as for
m(;t_We'kus‘c now Theorem 2 for investigation non—gene_r‘ivc symmetrie; of dual
(Qé rics (29) and .(3()»). The equations (24) have no solutions for .f‘;,,vgivein by
2i‘hl hlS. means that the metric K, do not admits Killing-Yano tensors.
= e Klvl]}ng*Yano equations corresponding to dual metric from (30) are [2]

dr® + EdeQ
[ 7-2 3 (30)

Dufor+ Dufur + JoDsKux + 20 Do Ky + [EDsKn =0 . (31)
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We suppose that metric g, admits a Killing-Yano tensor S A Killii{g¥
Yano tensor is an antisymmetric tensor(7,8} which satisfies the following equa- -

‘tions : , )
Dyfut Dyfux=0. . ‘ (18)
Because ‘ o ,
Ky = fupfl == fuafl = €00 o)
we have that : o S . ;
K = [ifva = Eiéva . (20)
If we take the dual in (20) we obtain that » L S

' .qlu) = CZCun :'f;fvu. ‘ o B : (2])
Taking into account that .

: . . f;w = fuac; : ) e, Lo (22)
from (20) ,(21) and (22) we deduce : ' :

fuv = ffltV. . (‘23)

From (18) and (23) the metric and its dnal must have the same Killing-Yano
tensors. : . : . C
On the otherhand from (13) Killing-Yano equations in the dual space have

the form

f)“f"’\ + i)"fl“\ = [)Mfw\ +,'1)l)fu,\ + fvﬁl"&'/n l)n 1‘.;1,\ + 2.[:1\ 1\’-”5 [).\ [\'uv'i"' ’
+ f;za 1‘,05 Dﬁl(v,\ =0 (21)

where D represents the covariant derivative cor‘r;(“sp()nding to g, lwesuppose
that (17) is satisfied then fuw = =Ju is a Killing-Yano tensor.If we suppose
that j:,“, = —fuwisa Ki]]ing-Yano tensor then from (24) we deduee ((17).
When this Theorem s satisfies the metric and its dual have the same non-
generic symmetries. QED T L .

A solution of: Eq.(3i) is f;;,, = b, W]lCijC \b,,,, is a (‘()IlSt»valvll; anlt,is‘\"nlnl("tri('
tensor. e S L . k L
If the manifold adrhits a Killing {cnsor K, se{l.isfyirlg [),\1\',t,; =0 then dual
manifold has the same symmetrics like initial manifold. : '

An interesting example is Kerr-Newimann metric [1]. ‘ :
The Kerr-Newmann geometry describes a charged spinning black hole: in a

standard choice of coordinates thie metric is given by the following line clement:

. A (0 . g gty
ds* = 5 [ — asin®(0)dy)” + :]"lp(z—) [(* + a®)dg — adi]* + %""2 + pPd07(25)

o



Here ] SR ) ‘ : S

R I N T

TA =2 +a® —2Mr +~Q2,p2’:" r? fatcostg U (26)

#

with @ the background electric charge, and J = Ma the total angular mo-
mentum. The expression for ds? only describes the fields outside the horizon,
which is located at

r=M+(M2—Q2—a2)1/2. o (27)

The Killing Yano tensor for the Kerr—Nevgr_nz;n is defined by [1]

! LAz* A dz” = a cosldr A dt —asin®0d¢
274 :

+rsinfdi A [—adt + (r? +_'a2) dg]. .(28)

The Kerr-Newman metric admits a second-rank Killing tensor field.It can
be described in this coordinate system by the quadratic form - ;

2cos?0A” '
dK? = Kdotde” = 22022 [t — asin? 0dp)” +
: . . : p “. - . o B
r’sin’f o, 2 P’ 2, P
p2 :;[(T‘ +a )d(p ~?adt] - mdr .+ ;do .- (29)

Its contravariant components define the inverse metric §#* of the dual ge-
ometry.I'rom 7] we know that the dual line element ‘s :

‘ A g g2 sin®0 o
O = ot camtg L0 = S04 4 2 (7 4 a*)dg — adl]?
’ cos? Snoml T o . _
T ‘ P 2, P
= Tl e e : —Aa2cos20dr.'+ ;Eda : (30)

providing an explicit expression for the dual metric. ]

" "Kerr-Newman metric admits two Killing vectors a% and %.Beca}lge Ky is
dual to g,, and K** are dual to'g* is interesting to investigate the generic and
non-generic symmetries in this two cases. Using Theorem 1 the corresponding
Killing vectors for dual ‘metrics (29) and (30) are found to be the same as for
Kerr-Newman metric(25). o : ‘

We use now Theorem 2 for im}'c'stigatio’n rion-generic‘ lsymymetrie.of{ dual
metrics’(29) and (30). The equations (24) have no solutions for f,, given by
(28). This means that the metric [(‘"., do not admits Killing-Yano tensors.

- The Killing-Yano equations corresponding to dual metric from (30) are [2]

Difus + Dufur + fEDsKon + 23 Dy Koy + [ Ds Ko = 0 . (31)

e s 6

T

¥

Here D, represents the covariant deriya.t_ive;ppﬂyrgsppﬁding to K,

v+ After

very tedious calculations we found th_ét;th%»éduatitfds?(31)"}1‘5,(/(:"‘1'10“ solutions..
Symime-

In conclusion the dual metrics (20) and (30) have no non-generic

tries. 7 C T

Ry

Now” we want to investigate the connection between Riemann curvature

tensor, Ricei,Ricci scalar of manifold g,, and the cofrespondiri'g‘éxpression,s

for the dual metrics I{;‘,. We know that L o e

vpa va,p vp,o vot op vp™ ao

RS, =Tf T8 4ropl _Ters

then the corresponding dual Riemann curvature tensor RE,
expression

where R,, and R, are given by (36) and (37).

7

(32)

has the following

R, = B,y + R, 6
where R:f;o is given by - A
Rf, = —(K”DsK,,), + (K**D,K.,), —T% K**D,K,,
- TS K*DsK,, + L3, KPX Dy Ky 4+ T8 K DsK,, - et
.~ = K*DsK,,KPXD.K,, + K*°DsK,, KPXD, K.; " (3
The eXplicit express‘i(v)in(tfolritli‘e QRl;ccki tensor is Y -
R =T ST ST TS AT, ()
The dual Ricci tensor can be written as
Ru=Ry,+R, . (36)
~where = ) ;
B = ~(K™DyKya) + (KD K,) o — T2 K¥ DK,y
FzﬁI(ﬁ‘ngI(m — I‘gﬁK"xDxI p— I‘fal("fxDxK‘jg TR T
- 1{"51{“0,(1(“,1351{0,, + K*Dy K, g K DsK,q, . (37)
If the metric g, satisfies Einstein’s equations in vacuum "
1
‘Ruu - Eguuﬁ = 0 (38)
then the dual metric K, satisfies the following equation
' . R L
(e = Boo)Orubow — 5006 ) =0 (39)



3 ' Dual spinning space |

The purpose of this section is to construct the dual spinning :pace.o'f]“};{eilﬁzr;
generic symmetries on the manifolds are relatt?d to' thi ex:ishenc.e i
Yano tensors [3]. Let a theory describefi by the Ylelbglp e’ an ! av1r'1§  Kiling:
Yano tensor fu, = fie,q.This theory has»a sqpersymme;ryf gsc‘r}) e"— ::1 >
supercharge Q = e“P,*,where the momentum P, has the form w = & Guu:
The noncovariant Poisson bracket read

Qs = LB +‘%cabc¢“¢"¢° (10)

here o
. Cabe = egelble/c\D/\fuu . (41)

By construction @ and Q; satisfies

{Q,Qr}1=0 (42)
.where noncovariant Poisson brackets are § o
] ‘ & OF 8G OF 0G -, o OF .
Ry =2E08 _OF08 iy s a5 o D
{ 3 I az+- P P‘, az+ a'll) a"/’a BP‘, I . - :
’ ‘ R (43)
The dual theory is described by a vielbeip é* and the Killing—Yano tensor
fu;, = —f,,. The momentum P* is given by : .
| Bo= K. (44)
The noncovariant Poison bracket v‘are‘ in this case
af G  OF G OF 0G (45)
= e - ——— 1(— ) -
5 G}”‘ dz#9p, 9P 0zr T ¥" O
The supercharges has the form
Q = yeéLh, (16)
the new supercharge has the form'
A a fa p i a 1b jca ’ 47)
Qf=1/’fuP“+E¢1/”/1Cubc (
L with o
o {@,Qs}n = 0. (48)
Bei:;xuse we have fw = —fu the supeftha}ges Q and 'Q!- have the forms
Q=( sy (9

8

very tedious calculations we found that the equations (31)lhgi've'hci':scill’xtion's'.j
In conclusion the dual metrics (29)

Here D, represents the covariant(dearivgz,tiye,cyqrrqsgqndi\ng to K,,: After:

» -and, (30) ;have no nén-genericAsy’Inme—' ,
tries. SIS : ; g

Tofie st baciggen i o
O H :

~ Now ‘wekwa,‘nt vyto_inv’éstigat_g thez.‘comylection;ibetween Riemann. curklature
tensor, Ricci,Ricci scalar of manifold g,, and the corresponding expressions
for the dual metrics K,,. We know that ; T :

R}, =Tf T8 4rorf _peps - (32)

vo = ap vp© ao

then the corresponding dual Riemann curvature tensor fi’fpa has the following
expression : ' ‘

RN

iad YT L e (33)
where R:f;a is.given by ’ ‘ -
RE, = —(KPDsK,,), + (KI’XQXK_,,,),U — I}, K°*D, K., -
- T4 K*DsK,, +T3K**D.K,, + e, K°DsK,,
-  K*DsK,,K°*D,K,, + K*DsK,, K"*D, K,,," o (34):
The éxplicit expression for the Ricci tensor is o v ’
Bow = Ve ~The = TaT 415008, 7 a5)
The dual Ricci tensor can be written as
,}Az;w =Ry +,R:w PR TE e AT bl (36),
where ‘ B
R, = —(K™DyKyua) + (K™D, Ky) o — T K% DsK oy
— TS K*DsK,, — Ffﬁl(“xDx((”g “TO KXD K5
~ KPP KD, K, DsK.z + KDy Ky K¥DsK,o . - (37)
If the metric g, satisfies Einstein’s equations in vacuum
! .
R, - é‘guuR: 0 (38)
then the dual metric K, uv satisfies the following equation
(Fxo = By )(Enbow — S0mg™) =0 . (39)

where R,, and R, are given by (36):and*(37).

7 -



3" Dual spinning space

The purpose of this section is‘to construct the dual spinning space. 'i.I‘};{elEc:]n:
generic symmetries on the manifolds are relatt?d to' thi ex1s§lenc.e o vK!“ing-
Yano tensors [3]. Let atheory despribed by the v1¢lbeln el and' avu.lg ad t: t}i,
Yanoltensor fiw = f&e,qa.This theory has a supersymmetryfdesg;;) e— 2.-}: :
supercharge Q = e P,%° where the momentum P, has thg §rm = & Gup-
The noncovariant Poisson bracket read

Qs = FLPA" + Feant Py (10)

where ’
N Cabe = €'eer Dy fun . (41)

By construction @ and Q; satisfies

{Q,Q/11=0 (42)
where nohcov#iaﬂt Poisson brackets are
9F 3G OF 8G o OF 8C OF 0G . 110, 0F 0G |
(@ = 2B O e i) g
I g P, P, Oz* 8‘([) Ya gp, oz , )
The dual theory is described by a vielbein é and the Killing-Yano tensor
f,,,, = —f,,. The momentum P* is given by
P =#K.. . (44)

The noncovariant Poison bracket are in this case

af 86 9F 9G . ., 0F 3G )

=2 —1)F e
{F,G}Il—azuap“’ 8Pu61“%1( ) ‘,‘l)a 8‘([)?
The supercharges has the form ‘
Q=yeetP, (46)
the new supercharge has the form
A a Aﬂ > . i a b ca N 47
Qf='/’f,,P“+g'/’¢¢'Cabc (47)
with e ‘ )
{Q,Q;}=0. 4 (18)
‘Because we have f,,., - —fu the superéhargés Q and @} have the forms
- O=(er )

8

and T T

3 R

Q= UTRAUT R SRR (30

Here

170 a a ’ :
Mo = 5 (G 4 sy O) (1)
3\ 0z Jxr . Qzv ) .
The dual spinuing space was constructed naturally without introduction of
torsion. In {7] the torsion was.considered but. the consistency. condition. (21)
were not taking into account.

4 Conclusions - .

Recently Holten [7] has presented a theorem concerning the reciprocal relation
between two local geometries described by metrics which are Killing tensors
with respecet to one another.Unfortunately Holten found the geometric duality
between g# and K#v. SR o o

In-this paper we have investigate the geometric duality b{jf\\'(;(.‘il G and
a Killing tensor K,,. We found an interesting relation between ‘connections
corresponding to g,, and K. Relation (11) is important from geometrical
point of view because it can be gencralized when K, is not a Killing teusor.
Symmetrics of the dual manifolds lx’ﬂ;'wcrc‘ invesiiga.tcd.'l‘hc manifold g, and
its dual metric K, have the same Killing-Yano tensors f,, if and only if (17)
Is zero. - T S . S -

The dual manifold K, has the same Killing vectors as Gupe 11 @ particular
case when DyK,, =0 or DK, =1, K. (R N s

The dual spinning space was constructed without introduction of torsion:
Dual Kerr-Newmann metric has the same Killing vectors as Kerr-Newmann
metric but has no Killing-Yano tensors. In this case we can nof construct a
dual spinning space .This result is different from those obtained in [7].

A special case arises when we investigate dual Binstein's metrics. I G
belougs to type D and N in the Petrov’s classification,then it has Killing-Yano
tensors. A special attention will be devoted to Taub-NUT because it has ouc
Killing-Yano tensor and three complex structures [9].
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