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I. INTRODUCTION 

In the expansion of charge and currents in electromagnetism, three families of 

multipole moments arise : the charge, the magnetic and the. toroid moments [1]. 

Among the first memb.ers of these multipolar families, the time derivative of the 

charge dipole d, charge quadrupole Q;j and tht; magnetic ·dipole p, correspond 

to infinitesimal translations, shears and rotations of the points of a continuous 

distribution of charged matter. For example the charge multipole moments, Q;,;2 ••• ;n, 

are related to the n-th order inertia moments of a continuous distrilJution of mass 

[2]. In view of the correspondence between the electric chargee, which is connected 

to gauge invariance and the gravitational mass m, which is related to the Poincare 

invariance, we make the formal change of the current density j by the momentum 

vector p . In this way we obtain the following associations for these tensors 

d; -tp;, 

1 2 
Q;j -t XjXj- 3r J;j, 

. 2 r 
Q;j -t x;pj + XjPi- 3(r · p)o;j, 

tt;-tL; 

(1) 

(2) 

. (3) 

(4) 

These tensors can be found as generators of many Lie dynamical symmetries like for 

example the three-dimensional rotation group S0(3), which is g~nerated by the three 

components of the angular momentum L;, the group of the rigid rotator ROT(3), 

generated by the mass quadrupole tensor Q;j and L; [3], or the linear motion group. 

SL(3) which in its turn is generated by the shear tensorS;;= Q;j and L; [4]. It is 

then natural to seek the symmetries and the geometrical features of the higher-rank 

tensors arising in the rriultipole expansion. An important. point that one should 

mention is that the above tensors are written in the position space:; Unfortunately 

r , .. 
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the components of the higher-rank multipoles does n~t satisfy the closure relations 

for the Lie symmetry. For our purposes it will turn out to be useful to consider 

the same tensors in the mome'ntum space too. It is more convenient to write these 

tensors in a form which will allow the generalization to higher dimensions. For this 

we introduce a Killing-Yano tensor fp.v on a smooth manifold M of dimension n 

which satisfies the following equation [5] 

-"' 
V:..fvp. + V,f:,.,. = 0 

Here V denotes the covariant derivative. 

(5) 

Next, we consider a pair of Killing-Yano tensors (!,]),where f is a second-order 

Killing-Yano tensor in the position space and J in the m?mentum space. In the case 

of three-dimensional flat space these tensors have the following form : 

Iii = CkijXk hi = Ckij]Jk (6) 

Eq.(6) can be inversed and, thus one may express the position x and momentum 

'p variables in terms of the tensors f and J 

1 
X; = 2./0ijk/jk, 

1 -
Pi = 2,/0ijkfjk (7) 

The Poisson bracket of f and J reads 

{!;j, lkt} = 8;k8jl - 8;t8jk (8) 

A scalar product can be defined for these Killing-Yano tensors. For example, the 

square off can be written as follows 

! 2 = f . f = /;j /;j (!J) 

Equation (7) enables us to construct the phase-space in terms of the Nambu tcnwr 

Eijk and the Killing-Yano tensors /;j and jii· When a manifold admits a Killing-Yano 
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1-

ten~or /;,; then we can construct a Killing tensor_ 1\'ij = .r;.l"j - r
2
8;i· This Killing 

tensor corresponds to a constant of motion [\' = 1\';iPiPi· Because Cijk is a Nambu 

tensor of rank three it defines a Nambu mechanics with the constants of motion 

II = 1? and /\. [6,7]. In [8] an interesting relation between Killing-Yano tensors' 

and Nambu tensors was found. These' results can be generalized in the flat space of 

arbitrary dimension [8]. In this case we have 

1 
~l'i = 1(iit···infit•··in 

n. 

1 -
}Ji = ffiit•••infit···in 

11. 
(10) 

Equation ( 10) enables us to construct the phase space in tPrms of T\ambu tensor 

c;;
1 

••• ;, and Killing-Yano tensors /; 1 ... ;., and };, ... ;". 

II. MULTIPOLE AND DYNAMICAL SYMMETRY TENSORS 

The next step consists in writing some quadratic forms. like the square of the 

radius r 2 and of the impulse' p 2 
• 

7'2 = ~ f2 
2' 

2- ~~-2 
p -2 ' 

The magnetic dipole tensor is given by 

and the dilatation 

1 -
Jlj = L; = 2,Sktmfkifim, 

1 -[) = 1'. p = :/ij/;j 

The quadrupole mass-inertia tensor reads 

I 1 2 
Q;j = 4(/i,..fmj - 38;j.{ ) 

(11) 

(I~) 

(I ;1) 

( 1·1) 

Tlw toroid dipole tensor, a quantity related to t.lw poloidal CIIITPnts on a torus. can 

be writ.t.en iu tlw following manner [!l] 
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1 2 1 - - 2 T; = 
10 

(J:;D- 2r pi) = 
40 

E;jk{fik(f ·f)- 2fik.f } ( 15) 

In the case of purely transversal velocity fields this expression gets a more simplified 

form [10] 

1 . 1 -
T; = 2d;D = SEijdjk(J. f) ( 16) 

.,J 

Next we pass to other tensors, related to dynamical symmetries. Consider first the 

conformal operator 

1 - - 2 
C; = 2x;D- r

2
p; = -;{iik{2fik(J ·f)- lid } ( 17) 

Together with the angular momentum J,;, C; is a generator of a symmetry group 

which obeys commutation relations isomorphic to those of SO( 4 ). This is a subgroup 

of the group SO( 4,2) [11 ,12] (isomorphic to the conformal group in Minkowski space) 

which leaves invariant the free Maxwell's equations [13]. The other generators of 

this larger group are the impulse p; and the dilatation D which were defined above. 

Another interesting tensor is the following particular form of the Runge-Lenz vector 

[12] with components 

1 2 1 
A;= 2x;p - p;D- 2x; (18) 

This vector, together with the orbital angular momentum L,, the dilatation D and 

other 2 vectors and 2 scalars generates the 5'0(4,2) group which contains as a 
\{ 

subgroup the symmetry group of the Hydrogen atom, i.e. SO( 4). Thus, from 

algebraic point of view the properties of the Runge-Lenz vector are similar to those 

of the conformal one. If we next take the momentum conjugate of (18), we then 

obtain the following tensor in Killing-Yano form 

- 1 2 - -
A;= SC:ijk{(J - 2)fjk- 2/ik(f. !)} (19) 

4 

;\ 
\v 

{· 
··v· .. I l 
:.I' 

This tensor can be viev,;ed as a symmetry generator like A;, but in the momentum· 

space. Thence we obtain the following formula for the Killing-Yano 'tensors in terms 

of the Runge-Lenz vectors and the conformal operator in the space and momentum 

subs paces. 

!ik = -c:ijk(2A; + C;) jjk = -C:ijk(2A; + C;) (20) 

In this way the toroid dipole tensor (16) can be directly related to SO( 4,2) symmetry 

generators in the full phase-space : 

'f· 

T; = (2A; + C;)D (21) 

When we move to the next rank multipolar tensors we encounter the charge 

octupole tensor 

1 f-" 2 ) 1 2( . } 
Qijk = 41. Cimn(oid + 2fid~k - r/ CimnOjk + C:jmnOik+ CkmnOij) ' (22) 

the magnetic quadrupole tensor 

1 1{ - '} f.lii = 3(x;Li + XjL;) = -:-3 f;dkdli + Jidkl!li , (23) 

and the toroid quadrupole tensor 

( 
1 2) - 5 - 2 

T;j = J;mfmj -: 40ijJ (f · J)- 2Jimfmjf (24) 

Using again (20) we write the last tensor in terms of dynamical symmetry generators, 

in the position subspace of ROT(3) and 50(4,2), for the purely transversal gauge 

mentioned above 

1 ( 1 2) -T;j = Q;jD = S f;mfmi- 3J;J (f ·f) (25) 

In this paper we introduced a pair of Killing-Yano tensors which allowed us to 

make a natural link with the Nambu's mechanics in the case of a flat space. As an 
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application of this construction we rewrite the expressions of the multi pole tensors 

in terms of the three-dimensional position and impulse subspaces of the full phase-

space. 

Although we were not able to find new symmetries for the higher order 

multipoles, as was for the first members (d;, Jl;, Q;j, Q;j), we showed that in the 

full phase space it is possible to relate the, toroid dipole and quadrupole tensors 

to SO( 4,2) and ROT(3) generators acting in the full phase-space. This pattern is 

followed also by the toroid and magnetic tensors with higher multipolarity. 

Similar multipolar tensors occur in the theory of continuous media [14,15] and 

can be related to dynamical symmetry generators in the full phase-space using a 

geometrical representation valid in fiat and curved spaces as we showed above. 

The authors are very grateful to dr.C.~ochichiu for the interest manifested during 

the completion of this paper and his critical remarks. 
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