


I. INTRODUCTION.

In the expansion of charge and currents in electromagnetism, three families of
multipole moments arise : the charge, the magnetic and the.toroid moments [1].
Among the ﬁrst,rﬁemb‘e'rs of these multipolar families, the time derivative of the
charge dipole d, charge quadrupole Q;j and the m_agnetic‘dipole.y, correspond
to infinitesimal translations, shears. and rotations of the points of a continuous
distribution of charged matter. For example the'chz;rge multipole moments, Qi i;...in,
are 1elated to the n-th order inertia moments of a continuous distribution of mass
[2]. In view of the correspondence between the electric charge e, which is connected
to gauge invariance and the gravitational mass m, which is related to the Poincaré
invariance, we make the formel change of the current density j by the momentum

vector p . In this way we obtain the following associations for these tensors

d: — p, ) ‘ . 1)
: , -
Qi — 2ixj — 378, ‘ , - (2)
: 2 .
Qi — @ipj + 29— 5(r - p)Si, )

Hi — L,‘ . (4)

These tensors can be found as generators of many Lie dynami‘cal symmetries like for
example the three-dimensional rotation group SO(3), which is generated by the three
components of the angular momentum L;, the group of the rigid rotator ROT'(3),
generated by the mass quadrupole tensor Q);; aﬁd L; [3], or the linear motion group
SL(3) which in its turn is generated by the shear tensor Si; = Qi; and L; [4]. It is
then natural to seek the symmetries and the geometrlcal features of the higher-rank
tensors arising in the multipole expansion. An important point that one should

.mention is that the above tensors are written in the poksition space! ‘Unfor'tunately
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. the components of the higher-rank multipoles does not satisfy the closure relations
for the Lie symmetry. For -our purposes it will turn out to be uéeful to consider
_the same tensors in the momentum space too. It is more convenient to write these
tensors in a form which will allow the generalization to higher dimensions. For this
we introduce a Killing-Yano tensor f,, on a smooth manifold M of dimension n
which satisfies the following equation [5]
o ‘ ;
Dafuu+Dufru=0 | )
Here D denotes the covariant derivative.
.Next, we consider a pair of Killing-Yano tensors (f, f), where f is a second-order
Killing-Yano tensor in the position space and f in the momentum space. In the case

- of three-dimensional flat space these tensors have the following form :
fi; = €wiszr fij = €kijpx (6)

Eq.(6) can be inversed and, thus one may express the position z and momentum

“p variables in terms of the tensors f and f

1 1 -
Ti= §5ijkfjkv pi = '2_5ijkfjk _ (7)
The Poisson bracket of f and f reads
{fij;fkl}' = &ikdj1 — Sudjk ‘ (8)

‘ A scalar product can be defined for these Killing-Yano tensors. For example, the

sqiiare of f can be written as follows
fP=f-f=fif A 9)

Equation (7) enables us to construct the phase-space in terms of the Nambu tensor

€ijx and the Killing-Yano tensors f;; and f,, When a manifold admits a Killing-Yano

'

tensor f;; then we can construct a l\"illing‘ tensor hy; = rivj — r?é;j, This Killing
tensor corresponds to a constant of rﬁotiou K = Nipip;j. Because €5k is a Nambu
tensor of rank three it defines a Nambu mechanics with the constants of motion’
H = p? and K [6,7]. In [8] an interesting relation between Killing-Yano tensors '
and Nambu tensors was found. These results can be generalized in the flat space of
arbitrary dimension {8]. In this case we have

1 " 1 s '
Ty = —l(iir“infil"-in pi = —Tfih-"infix---in - (10)
n: n. -

Equation (10) cnables us to construct the phase space in terms of Nambu tensor

€y i and Killing-Yano tensors fi..i, and fij..i,-

II. MULTIPOLE AND DYNAMICAL SYMMETRY TENSORS

The next step consists in writing some quadratic forms, like the square of the

radius 72 and of the impulse p?

1 , 1z ‘
2 __ L2 2 _ 1R _
r=3f VA B (11)
The magnetic dipole tensor is given by
1 F ‘l
pi=Li= ;Skszkifhm : (12)
and the dilatation .
‘D =r-p= Sf,']'f,'j : (13)
The quadrupole mass-inertia tensor reads
1 1. .,
Qi = Z(fimfmj - §5ijf ) . (1)

The toroid dipole tensor, a quantity related to the poloidal currents on a torus, can

be written in the following manner {9]



1

T; =
10

@D =2 _40~m{f,k (F-D=2fury ()

In the case of purely transversal velocity fields this expression gets a more simplified

form [10]
1. 1 x
T; = §d,~D = gsijkfjk(f‘ f) (16)

Next we pass to other tensors, related to dynamical symmetries. Consider first the

co}lformal operator
\ 1 r r
Ci =22;D — v’p; = 4_5ijk{2fjk(f - f) = Fixf*} (17)

Together with the angular momentum L;, C; is a geneltator of a symmetry group
which obeys commutation relations isomorphic to those of SO(4). This is a subgroup
of the group S0(4,2) [1 1,12] (isomorphic to the conformal group in Minkowski space)
which leaves invariant the free Maxwell’s equations [13]. The other generators. of
this larger group are the impulse p; and the dilatation D which were deﬁned above.
Another interesting tensor is the following particular form of the Runge-Lenz vector

[12] with components

1 1
Aiz_i2—i - 5T
5 TP piD 5% (18)

‘This vector, together with the orbital angulér momentum L;, the dilatation D and
9tﬁer 2 vectors and 2 scalars generates the 50(4,2) group which contains as a
subgroup the symmetry group of the Hydrogen atom, i.e. SO(4). Thus, from
algebraic point of view the propertiés of the Runge-Lenz vector are similar to fhose
of the conf;)rmal one. If we next take the momentum conjugate of (18), we then

obtain the following tensor in Killing-Yano form

A; = %ef,-k{(ﬁ = 2)fix = 2fi(f - )} o (19)
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This tensor can be viewed ‘as a symmetry generator like A;, but in the momenturmn’
space. Thence we obtain the following formula for the Killing-Yano tensors in terms
of the Runge-Lenz vectors and the conformal operator in the space and momentum

subspaces.
fjk = —_-6,'_,'1:(2)A~,' +’ C,) ) fjk = '—6,'_,‘k(2A.‘ + é.) : ’ . (20)

In this way the toroid dipole tensor (16) can be directly related to SO(4 2) symmetry

generators in the full phase-space :
T: = (24; + C))D ‘ (21)

When we move to the next rank multipolar tensors we encounter the charge

octupole tensor
1 1 :
Qijk = 1 {fimn(5jkf2 +2fifu) — gf2(6imn6jk + 5jmn6ik>+ 6kmn5ij)} , (22)

the magnetic quadrupole tensor

(:c :L; + x, =—c {fzkfklfl] + kakafh} (23)
and the ‘toroid quadrupole tensor
; ~5 -
| T = (fimfmj‘“: §5ijf2> (f'f)jyifimfn{rjfy . (?4)

Using again (20) we write the last tensor in terms of dynamical symmetry genie‘rart/ors,y
in the position subspace of ROT(3) and SO(4,2), for the purely transversal gauge‘

mentioned above
—op= (r .Y Nrn
T = QD) = 5 (fimfms = 307°) () @

In th1s paper we introduced a pair of Kll[mg-Yano tensors whlch allowed us to

make a natural link with the Nambu’s mechamcs in the case of a ﬂat space. As an



application of this construction we rewrite the expressions of the multipole tensors,
in terms of the three-dimensional position and impulse subspaces of the full phase-
space.

Although we were not able to find new symmetries for the higher order
multipoles, as was for the first members (diy piy Qijs Qij), we showed that in the
full phase space it is possible to relate thes toroid dipole and quadrupole tensors
to SO(4,2) and ROT(3) generators acting in the full phase-space. This pattern is
followed also by the toroid and magnetic tensors with higher multipolarity.

Similar mulﬁpolar tensors occur in the theory of continuous media {14,15] and
can be related to dynamical symmetry generators in the full phase-space using a

geometrical representation valid in flat and curved spaces as we showed above.
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