


1. INTRODUCTION
As we have pointed out in previous papers [1], the recent evolution of the mathematical
models for describing the gravitational interaction on the classical level shows a tendency
to generalizations [2], [3] using spaces with an affine connection and a metric: [the s.c.
(Ln,g)-spaces]. It has been shown [4] .- [6] that every differentiable manifold with affine
- connection and metric can be used as a model for space-time in which the equivalence
principle holds. In (Ln, g)-spaces the connection for cotangent vector fields (as being dual
to the tangent vector fields) differs from the connection for the tangent vector fields only
by sign. This fact is due to the definition of dual bases of vector spaces over points of
a manifold, which is a trivial generalization of the notion of dual bases of algebraic dual
vector spaces from the multilinear algebra. The (Ln,g)-spaces can also be generalized
using the freedom of the differential-geometric preconditions and especially by means of a
generalization of the definition of dual vector spaces. In the last case, if the manifold has
two different (not only by sign) connections for tangent and cotangent vector fields [the
s.c. (Ln, g)-spaces] (1], the situation changes and is worth being investigated. On the other
side, the gauge theories of gravity in (pseudo) Riemannian spaces with torsion (Einstein-
Cartan’s spaces) Uy show some peculiarities related to the existence of the torsion tensor
field {7} - [9]. If one uses manifolds with contravariant and covariant affine connections
and Riemannian covariant metric related to the covariant affine connection as a Levi-
Civita (Christoffel, symmetric) connection [the s.c. V4-spaces as a special case of (L, g)-
spaces], then a model of the gravitational interaction [in analogy to Einstein’s theory of
gravitation (ETG)] can be considered.. It has been shown that in ¥,-spaces the notion of
spherical symmetry can be introduced and spherically symmetrical metrics of the type of
the Schwarzschild metric can exist [10]. In contrast to the general relativity and to the
gravitational theories in Us-spaces some new results induced by the existing torsion field
for the contravariant affine connection could be expected.

In the present paper the Einstein theory of gravitation is considered over (pseudo)
Riemannian spaces V4, where the contravariant affine connection T is induced by the
symmetric covariant connection P # —[ and an invariant function ¢ : [}, = —P} +
Pk g; The invariant function ¢ = @(z*) is introduced by the action of the contraction
operator S on the contravariant and covariant basic vector fields {;} ({e4}) and {dz/}
({e®}). In contrast to the action of the common (canonical) contraction operator C
on & and dz/ as C(8;,dz?) = C(dz?,8;) = dz/(8;) = g} used in Vy-spaces and in
ETG, the action of the new contraction operator S- (S instead of C) in V4-spaces is
determined as S(6;,dz’) = S(dz/,8;) = f%; = p.gl, v € C7(M), r > 2. (In the
common case, where S = C, the relation ' = —P is fulfilled and the change of T in the

© O6beanHeHHbIN NHCTUTYT AAEPHLIX MCCREROBAHMIA. Ay6xa, 1998

Py

form I_;,‘ =Ti + Lp‘k.:q_j-.induce's automatically a covariant affine cgnngctism P:‘.f; -;I‘. yviFh
componerits 75;,‘ :-F;k = P;k— lp.k.g;-.)' T L o ST

The notion: of Vn-space is introduced.:. The method -of: Lagrangl.ans. with: partial
derivative (MLPD) and the method of Lagrangians. with covariant»derlvatlvgs:(MLCD)
are sketched for the case of V,-spaces. .The MLCD ‘leads directly to covariant: Euler-
Lagrange’s equations and to the energy-momentum tensors .for,a Le%gran'gian theory of
tensor fields. The Euler-Lagrange equations as a genyeraliz_{atlon of Einstein’s ﬁeld equa-
tions for a V4-space and their corresponding energy-momentum tensors are obtained. The
geodesic equation is found by means of the variational principle. (ir‘lvt'l}g s.tgnd‘a_rd' manner).
By the use of the representation of the contravariant affine connef:tlon in tern'15 of gener-
alizéd Christoffel symbols and an additional tensor field (generalized coptorsmn tensor),
the geodesic equation is compared with the equation of the corresponding auto—p.arall'el
vector field. The Einstein field equations and the geodesic' and auto-parallel equations in
V 4-spaces are compared with these in V4-\spaces. :

2. (PsEupo) RIEMANNIAN SPACES WITH DIFFERENT (NOT ONLY BY SIGN)

" GONTRAVARIANT AND COVARIANT .AFFINE CONNECTIONS (V,-SPACES)
The (pseudo) Riemannian spaces with-different” (not only by sign) contravariant and
covariant affine connections are considered as a special case of (Ln; g)-spaces: izt
con-

i

Definition 1 (P%éudo) Rieﬁ;hﬁﬁfan space with co.ntlr_‘quariqntl and covariant.affine
nections (V,-space). - S P s
i‘A-(Ln, g)-space with S(dz*,8;) = f',j;:e“f;’.g;,;zp,eC'»,.(M),,r >-2and a covana',nt
affine connection V = P, connected ‘with the covariant metric g [by means of.the relation
Veg = 0 for ¥§ € T(M) (or gijix = gijk + fi’k.g,j.+ Pj{k.gu = 0)] and d‘eﬁned‘ as a
Levi-Civita (symmetric) connection, is called-a 'V p-space. i " g (RO T S

Remark 1. The definition of V ,-space could be made for the general g:?.s‘é, where S(dz", 9;
fij, fij €CT(M), r>2, and without'the explicit form of f*;."Since in the present pa-
per we will consider only the spe;ial case, where_f'j =ef.g;, v € CT(M), r > 2, the
(pseudo) Riemannian space is indicated here as Vn-space. :

2.1. General characteristics of a V,-space. 'On the grounds’ of its definition apd
the properties of the (L, g)-spaces, a V -space has the characteristics:

(a) Contraction operator S obeying the relations . “, - e

S(dz*,8;) = fij = e“’.g;-, SoVe=VioS,Sofe="2£05¥ E‘T(M). N ‘

(b) Contravariant affine connection I'. 'T' will have in a gq—qrdvmatg”bnasﬁls. Athvej com-
ponents,l’;-,‘ : Vo,0; = [3.0i, Ty = T = T #0 (le_:"- are the compqpqgts of thﬁe
contravariant torsion tensor-T). ~ .. .. - . e

(c) Covariant affine connection P. P will have in a co-ordinate basis the compom.znts

;k : Vo dz* = P;k.d:cj, P;k - P;k = U’ =0 (U’ are th_e‘ components of the covariant

torsion tensor U), (U = 0 follows from the definition of a V.,.-space). .

(d) Covariant metric tensor g. g has in a co-ordinate basis the componenti gij ’obeylng
the conditions gij;x = gijk + Pl .gi; + P;k.g;;-: 0, and ¢(8;, ;) : 95 = 5 f g =

9 .
€ w.g;j.
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'_ (e)j‘CcLIlltiavg;iaril!;* metric tfansor field g. - g fulfils the relations g(dzt, dzd) = g7 =
f k-J11.9% = e?¥ g and Eas in a co-ordinate basis the components g/ related: t 9ii b
means of the conditions gij.gjk = i g™gik = e g7.g It l o

co - 97 gik = .9 .95k = gt. It.can S
that the conditions for 9ij : gij:x = 0 induce the conditions for Jy"j :g’kj!k =0 " Prov"d
From (a), {(c), (d) and (e} there follows that , .

T T ‘
U ~ k=50 ok ¥ ghg = gied) )

‘ ~ From (a),.(’b:)‘an‘d (c) the relations follow ¢

- i i { ;. ’ ) . . :

B L L 2 VY T 2 R )

P N
T:”‘ N F;‘j _F';k— ?,k:g}—-(p’j.y;“, St ‘ (3)

Rk =Py,
'l.‘.:__.l‘ ‘l%": ) ik i

.ﬁffk_—;;'k,j*l“;'j,kr%l“'rj, S UI o (1)

Plge= B BL A PP ey

From the last reiations'follow that, despi i ' ’
. ; despite of the difference between th 1
and covariant affine connections I’ and P, the corresponding contrav. - andl covartont

va v inection i ariant and covaria
curvature tensors are different only by sign as in -the case of V, -spac T "
n

es.

2.2. «Properties of the Riemann r b
i curvatu i okl i i
mannian) (curvature) tensor R s (cu .'ie) tensor R skt~ The Riemann (Ric-
tian) ¢ or I jzi-1n a .V ,-space fulfils: the relations : :
“a) Ry =R . : P T |
(b) Rijkr = —Rjixt. This property can be proved by means of the relations

+9(0my B 511.05) = =g(85, R 1. 0:).+([Va,, Vo, 19)(05, Orm) ;
9(0m, B j51.05) = R jk1.9(Om; 05) =R k1.5 = Remixt ’ '
9095, B mit-0:) = R¥ it 9(05,0)) = R mkluq—':’ =R (%)
Vog=0,fl;=e’g}. ’ et

.. (¢) -Bianchi identity of the 1. type

. ! LR T . ; o .
R <ijk>l: T<ij[ k> + T<,~jm.kal> =0 "
R+ Rigij + Re=0. (6)

.

The prodf follows immediately after di utati ' : :
the use of (3). | ; lately after direct comput.a'tlon‘of T<i1! xs + Tl _vakl> by

From the last i.‘d‘ent‘;ity., follows the symmetry of the Ricci tensor R,-; = gh . R* iy
» » . : LT

(d) Bianchi identity of the 2. type
R! i<ikip> = _R[ imei T ™ = : !
i > = im<j- gy s = 2. R icik.p
- < - 7 P>
R ijkp + R ipjk + R ikpij = 2(R ikj-Pp + R ijp-Pk + R ipk - _]) . (8)
- 4

By the use of the both types of‘B‘ianchyi,identities and the (;haljacteristics of the V-
space one can prove the relations: : ‘ ' .

g (€22 R iji)p = (€% Rij)ip + €20 0,0 Rij. =
o 9 -‘(62“"-3' i)k = (e*.R! it : ‘
9F(*° R ikp)ij = —(€°-Rip)yy — €205 iy, .
7.2 Rij)p = [g7 (% . Rij)lyp = (2 B)p -
- 9'7.(e*%.R ipj)y = (ezw-yij-Rl ipi)it . O
!Jij-(ejv-Rip);j = (ezv-.‘l.ij;Rip);j — .. Lip s
(22,97 R ip) — (€29 .9 Rip)j = —2(e*.B* )k
where R/ P = g9 .Rip

leading to the identity '

I T
2. (B i — 3 RgDl=0, R=g"Ru, - (10)
whicH can also be written in the forrh : ’ \ .
: ¥ 1 _— ; “ ¥ ‘ v 1 o) ] N E
(R — -2~Rgf)J ==2.p;(R ;- 5R9{) . . (11)

2.3. Length of a contravariant or ‘a covariant vector field and the cosine
between two vector fields of the same type. The ‘(pseudo) Riemannian spaces
with different (not only by sign) contravariant and covariant affine connections are spaces
with metric transport of the vector fields. The scalar product of two contravariant vector
fields is independent of the transport of the covariant metric tensor field g~

Velow,0)] = 9(Veu,w) +0(u, Vo) , wvET(D). -
The rate of change of the length l, of a contravariant vector field u under metric

transport is determined (see the cha;;ter about the length of a vector field and cosine of
the angle between two vector fields) by the relation. :

= g(Vewu) for L £0.

In the special case of parallel transport of u along ¢ (Veu = 0) the length of the vector
u does not change . ‘

fa=0. ' Y
The length of the vector u does not-change under auto-parallel transport Vyu =0
uly = v 8l =0 . ' (13)

The rate of change of a cosine between two contravariant vector fields depends only on
their transport along a contravariant vector field and not on the transport of the metric
tensor g.- In the spacial case of a parallel transport of two vector fields u:and v along a
contravariant vector field £ (Veu = 0, Vev =.0) the cosine (and respectively the angle)
between u and v does not change I o o :

E[cos(u,v)]:d. o (14

The same statements are valid for the length of a covariant .vector field and for the
cosine of the angle between two covariant vector fields:



'3." LAGRANGIAN THEORY OF TENSOR' FIELDS OVER V,-SPACES
A Lagrangian theory of tensor fields has three essential structures: the Lagrangzan den sity,
the Euler-Lagrange equations and their correspondlng energy-momentum lensors.

The Lagrangian density can be’ consldered in two different ways as a tensor density of
rank 0 with the weight ¢ = 2, dependlng on tensor fields’ components and their first and
second covariant derivatives: )

(a) as a tensor density L, dependlng on tensor fields’ components and their first (and
second) partial derivatives (and the components of a contravariant and a covariant affine
connections), i. e.

L = /=dg.L(gi5, ik, Gijk L VA, VAp: VA B,ij) »

where L(z*) = L'(z* ’) is a Lagranglan invariant, g;; are the components of the co-
- variant metric tensor field g, V4 p are components of tensor fields V or components I'; i
(or P},) of an affine connection T (or P), dy = det(g,J) <0,

VA g
ozt

62V‘4
O0zI 8zt

(b) as a tensor den51ty L dependlng on tensor ﬁelds components and thelr first (and
second) covarlant derlvatlves ie.

o V_d Lg'J’V BIV Bz,V Bii; ))

o o
V&Bi= s ViBi;=

where L(z* ) = L’( k! ) is a Lagrangian invariant, g;; are the components of the co-

variant metric tensor field g, VA B are components of tensor fields V = VA ey ® ¢B =
TVAR.04 @ dB w1th ﬁnlte rank A B . are multi-indices: A = 11 g, B=yg1..5, k1€
N T R

The Euler-Lagrange equatlons can be obtained by means of the functlonal varlatlon of
a Lagrangian density and of these of its field variables considered as dynamic field variables
(in contrast to the non-varied-field variables considered-as fixed and non- dynamic field
_variables).

The corresponding energy- momentum tensors can be found by means of the Lie vari-
ations (Lie derivatives) of a Lagrangian density and all of its field variables (dynamic and
non-dynamic field variables). By means of Lie variations (change of the field variables
by draggings-along of the tensor fields and their covariant derivatives) the corresponding
energy-momentum tensors can be found.

There are two possible methods for the application of a Lagrangian formalism in find-

‘" ing out the Euler-Lagrange s equations as field equations and the corresponding energy-
“* momentum tensors in a field theory over differentiable manifolds with contravariant and
* covariant affine connection and metric: - method of Lagrangians with partial derivative
(MLPD) and method of Lagrangians with covariant derivatives (MLCD). These two meth-
ods corresponds to the two different ways (a) and (b) of considering the dependence of
the Lagrangian density on different field variables.

In the first method (MLPD) a tensor density of rank 0 and weight ¢ = 5 is considered as
““a Lagrangian density L depending on tensor fields’ components and their f'rst (and sccond)
partial derivatives along co-ordinate basic vector fields. By means of the corresponding

functional vanation of L and the field variables (the components of tensor fields with finite
rank, their partial derivatives and the components. of the affine connectlons (if they are
('onsx(lorcd as independent of the metn() :

o,/ oL * oL sy, o O ‘
SL = M0 sg L+ /~d, [ égu Bonn B(gizx) + Trins 3(gi00) +
311 A aL Aoy O AT
+E’TE"W 5+ B’VA—U;"S(V Bs) + 503 oV )] i
’ oL ) )
WA, VA VAR (Vi)

the Buler-Lagrange oquatlons follow after using the Stokes theorern on a common dn’er-
geney termn (separated from 6L) and imposing boundary conditions on the variations of
the dynamic field variables. This s the, canonical (classlcal conventional) approach for
considering a field theory. by means of a Lagrangian formalism: One of the main assump-
tions here is the .commutation of the functzonal variation with the pmtml derivatives: 1.
c. .
6(\/A~y,i) = (JVA )i 6(g,Jk) (Jq,J) Vi e T e

In difTerentiable manifolds without affine _connectlons (or in functional spacos) this
assumption is a priory fulfilled on the grounds of the independence of the functional
change of the form of a function from the change of the maps (or the co- ordinates)
over the manifolds.” But in the case of differentiable manifolds with afline connections
this assumption leads to reldtions between: the covariant derivatives and the functional
variation. In this casc.as neccssary and sulficient conditions (for mdmplo) for

5(V ni) = (6V*8);
appear- the conditions

(5(VA g;,‘) = ((5VA n);,‘ + V,C u.(sl‘éi + V_'? D.(SP‘D Biy @

LN

where ) :
VAB‘!'-:V BI+I‘ Vcn+} \/ D,
; ' :
rg; = _SCk Al l,, ) Pg. —9nk b Pk,
~ Tk=1 Tk43 iy
'sAm - Zk lg_u ‘7:7: g_n Iixr Tiegr 95 ?

A=jij, B=1..4.
The quantities (multi—contraction symbols) Sam B obey. the Tollowing relations
('d) SB,' AjASAk("—-—gl Snk Cj dlmM-n l—l N
(b) Spi B_j =-NaM-lg,
(c) Spi ' = —N.gf, !
where R ; J~+‘ C
ap =90 g q,m gintal)
is defined as multi-Kronecker symbol of, rank l

g;‘, =1 ix = jx (for all k simultaneously),
=0 ix#E k=1, .



The proof, of the above statement follows immediately from the cquality

BV pa) = (VA 5)s = (VA 1) = 6V ) o 5
+VC 56T + VAL SPR (15)

A sufficient condition for the apphcatlon of the method of Ldgrangmns with partial
derivatives is the commutation relation between: the variation operator § and the Lie
differential operator along a contravanant basic vector ﬁeld

60£6,:£6.°6» (l(l)

" or the commutation relation between the varlatlonal operator § and the Lie differential
operator along an arbltrary glven contravanant vector ﬁeld E

5

“ ‘ - (SOL'E LEO(S“'LQE fOl‘VEG[‘( ) ‘ (l7)

In the second method (MLCD) a tensor density of rank: 0 and-weight ¢ = £ is (onsld—
ered as a Lagrangian density depending on tensor fields! components and their first (and
second) covariant derivalives along basic vector fields. By means of a functional variation
(change of the functional structure of the field functions without changing their tenso-
rial character) of the ﬁeld variables (the components of tensor fields and their covariant
derlvatlves)

o a SY Naryiid oL oL
=i 0L 691] L++/-d [ 691] a (s(g,_] k) + 3 'J(Qij;k;l) +
A Gijik 1
———‘L ) ,,_BL, A ‘;,,GL oA
+(9VA B WAy ovA gy '6(V B;')‘+ W'J(V Bl

VA p, = d(VAp:)' VAR  d(VAgi,;)’

' the covariant or canonical huler-Lagrange equatlons follow. Since in V,-spaces Gijik =

0 and gijky = 0, JL will have the form

1

d,/' dq
L = ag,J L+/—d [5” B9 +

OL oL

A ——— —
SV B+6V J(V Bii) + GVAH,"

(9L
+(3VA S B;i;jll .

In the case, when addltlonal condltlons are 1mposcd on the affine conne(‘tlons the
type of the Euler-Lagrange equations and"their (‘orrespondmg (L., g)-spaces depend on
the separated by the variation term and the conditions on the affine connections for
transforming this term in a common divergency term necessary for the application of the
boundary conditions for the variations after the use of the Stokes theorem. Onec of the
" main assumptions here is the commutation of the functional varialion with the covariant
derivatives, i. e.

§(VA ) = (6VA H);i. o O(gijw) :'(Jg.-,-‘);k

In this case as necessary and sufficient conditions for
C8(VABs) =(6VA )
appear the conditions '

J(VA B,i) = (JVA B),i - VC B~‘5,Fé‘; - V/\“D.JPD Bi .‘
The proof of the statement follows immediately from (15). .
A sufficient condition for the application of the method of Lagrangians with covariant
/ derivatives is the commutation relation between the variation operator § and the covarlant
¢ differential operator along a contravariant basic vector field’

JoVa_.:Va'.OJ,=» cropet o d s s (18)

or the commutation relation between the variation operator § and the covariant dif-
ferential operator along an arbitrary given'contravariant vector field £

Jovf—vfoa_v“ forVEeT( Yoo '(19)

In the case of the MLCD the affine connections appear as non—dynamlc ﬁelds varlables
(JF‘k =0, i = 0) and the variation commutes simultaneously with the partial and the
covariant der1vat1ves of the tensor field components At the same tlme JR’JH =0 and
8P =0. ' - P
- The use of the MLCD requires the use of covariant (and form-lnvarlant) methods only,
related to the applications of the covariant differential operators and the Lie differential
operators to tensor fields and their covariant derivatives.

4. EINSTEIN S FIELD EQUATIONS AND ENERGY MOMENTUM TENSORS OVER

' , V 4-SPACES SR
4.1. Einstein’s field equations. The Lagrangian density for obtaining the Euler-
Lagrange equations and their corresponding EMT-s for a material distribution and its
gravitational field in V,;-spaces is given in an analogy with the Lagrangian density for the
gravitational ﬁeld and its sources in V4—spaces

L= L +L,,._,/—dy‘(Lg+L,,.),
CLg= ann (R ‘A), o ee= %2, ko= const., R (20)
L -—-Lm(guy VAg, VA, VApai). o

The variation of the Lagranglan denSIty L 'can be wrltten in the form
JL_6L+JL,,,,6L JLy+6Lm,6L_JL @)

The variation of the Lagrang1an den51ty L w1th respect to the components g,J of the
metric g can be found in the form ' :
Y . 4,L
A = g ik
o bglig = 3 '
[ - 5

=_\/—

.6gi5 yvhere

Ru—é R-2.67), (22



by means of the relations:

dv/—d 1 :— OR 8 Kl
-9 5.\/—dg.gj , 3 g9

— T m B
= R =—.Ru, 23
8gi; 3911 35— (9" 9B kir) = Bgi; K (23)
0" _ .l mow, ma
—_— = —=(g". g5i.g% .
o 079" +¢".g"%)
The Einstein equations in Vfléépaceé fblléw in the form
1 a.K 2 4§,L
R i— = R A).g; = a.k = —0 gm
( ) g] 0. (\/—; ég k ng)

(—E'@T'gjk) . (24)

After introducing the abbreviations
2 dLnm
V—dg 4gik ik

wheﬂa G;j is the Einstein tensor.and mg,th‘ is the symmetric EMT of Hilbert for
L., in Vy4-spaces, the equations (24) will have the forms

(25)

- = 1— ., :
G’J‘ = R’J - ERg; ’ mgsh71j' ==

- A o 'cg = a.Kg A
G1j+ —2-.gj = 5 mgshTI ’ G'J = : (mQShT '+ a.xg qJ) : (26)
Tai(ing into account the identity in the forms B
[ (R ; - Ry. Ny =0, (27)
(8~ L)y = 20,07 - L) (25)
the covanant divergency of the Emstem tensor will have the forms
GFis= 295G, . (e G =0. ‘ (29)

From the first form' of the identityfoll'o”\rzvs the covariant divergency of ,,;g, aTj i

A A s
(mgsnTi? + — g.),J = —2 P (mgshT + — g,) o (30)

and from the second form of the identity follows the covariant conservation law for
mgshT

N :
2 p
(€. (mgsh Ti 7 + m-gf)];j =0. - (31)
In the case, where A = 0, the last expressions will have the simple forms
(€ mgshTi ) = 0, (mgehTi )y = =2.9,j.mgen i 7 - (32)

The Euler-Lagrange equations for the non-metric fields V4 p can. be .found in an
- analogous way as the Einstein equations.

From the relations in the MLCD JI"k =0 and JP’k = 0, there follows that (§p),; = 0.
> Therefore, d¢ could be only arbitrary constants dyp =const. € R (or C) and the variation
of ¢ allows only translation: = ¢ + a, a = de.

10

4.2. Euler-Lagr dll[.,( s ¢ qudtmm for the non-metric tensor ﬁ(,lds VAg. After
variation of the Lagrangian densny L ‘with: respect® to the cémponents of the ton-metric
tensor field V4 ; the Lulcr—Laﬂrango equations for. VA4 3 can be found. Sm(‘e VA g are
only clements of L,y,, the variation is restricted on L By the use of the standard variation
in the MLCD one \\ould find the rclatlom ~- I

é,L

AL =Sln= VRIS @
8, L L.  OLm OL. S
wom o m_ m . . m i (34
VAp  OVAp, '(@Vf‘g;,)"f(Bl(fg;.-,)‘," ( )
o (’)Lm _ (‘)Lm 6Lm A A 6L rA . ‘ a5
v = [(‘)‘/A B (5\/,\ + avA B,._)U]'év 1B-+,((')VA i ) ) (‘;O)

The introduction of the boundary, conditions for the variations VA g f(viy= 0: and
their first covariant (or partial) derivatives (8V4ig).i for (8V 4 B).s, because of 8T%,. = 0
and ‘51);k =0]: (6VA ) I(V y= 0, on the shell'of the volume.V; (n = 4) in which the
action § = .l‘v L.dw is determired; reqmreb the- apph(‘dtlon of the Stokes theorem’ {1l
llns is conno(t((l with the Lr(mbformatlon of the term UJ Jina common dl\ergon(‘\ term
w3t i Since S v

‘uj‘;—uj',+,(’1"m +geat) . ‘j‘(3<§_)
- as the nccessary. and suflicient condition for o G = =33 4 for cwn;_] (regardless'to its

explicit fonn) appears Lho;on(lmon for (Ln, )- Spd(‘(‘b

(Flu +‘Ik fl:;)u.l —-0 . (37)

For V,-spaces (n=4)it will havé Lhc form

pivi =0, @)
and for V j¢, it follows that ¢ ; = 0, i. e (,D =const. ’l‘his ba:io lecads to the common
Vi -spaces. Oy
If we take use of the explicit form OfJ then 4, Lm can be written in the form
6'.’ Lm .1
éuLm = \/_dg(é_"/'rév B+ v} ;i):

8y Lm — Lo )
= ,/—dg.(év BY.oVA p 4 (V=dgvd) i - (39)

where .
OLn *, 0L OLm ol
P B: - LI il . e IR [N I YY) = .
4 1 [(')VA Bii ((')VA Biis + ava 1;] ,)J] + (0s-45 = 0iy) VA py
Sylm  Olm (')l,m ) 4 Ol )
VAR T 9VAy (av ; (d\"‘ e
_ dl,,,, A .
o= +"’W_.‘W‘n,‘ 7 =9,
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-1 _[ aLm; A ( aLm ¥+ _aLm E
o T lgvag, T VA, T aVA gg.

’)L"l
)l 6VA b + (5

FrAa SV iy (0)
; LB .

The covari”aAn't'Euler-'Lagrange equations for V4 g follow in the form

Sy Lm B A : . - '
Tz :——!PA for Vé6VAp . (41)

4.3. Energy-momentum tensors. By means of the Lie variation of the Lagrangian
density L and the covariant Noether identities valid in V,-spaces the energy-momentum
tensors (EMT-s) for all tensor fields which components appear in the structure of the
Lagrangian density can be found. The covariant Nocther identities ean be written in the
form — R

» F,'+0,' J___U 0,- - T,‘JEQI-J. (42)

v F; are the components of the volume force density, 0;7 are the components of the
‘generalized canonical EMT (GC-EMT), sTi 7 are the components of the symmetric EMT
of;Belinfante (S-EMT-B) and ;7 are the components of the variational EMT of Euler-
Lagrange (V-EMT-EL). In the case of the ETG L and L., lead to different quantities for
.all (dynamic and non- dynamlc) variables. Lg = Mn —L_{(R— ) is considered as a Lagrangian
“‘invariant responsible for the existence of the graVItatlonal field induced by a material
distribution described by Ly-= Ly (g, VA g, VA i, VA pij). On the other side, L
‘as a function of g;; take part in the determination of the EMT-s for gij- In this way, every
-EMT:decomposes in terms constructed by. means of Ly and. L. (The first subscript at
the left side of a quantity shows the Lagrangian invariant of its composition (g : Ly or
'm.: Lm); the second subscript at the left shows the field variables to which a quantity
‘corresponds (4 : to gij, ¢ : to R"j‘k,, v 1 to VA 'p); The third subscript (if any) at the left
shows the type of the quantity itself (s: symmetric)i

007 = gl g3+ mgli I 4 i (13)

L T = g T+ gc,T '+ mgs T T+ moeTi (44)
Qi i = ggQi gCQi mgQ, vai 7 i (45)

Fi= ,F + g Fi + ,,,gF + moFi . (46)

Using the.decompositions of 0; 7, ,T; 7, @; J. and F,, the covariant Noether identities
can be written in the form

( _9 . i QQST ) + (gt:ﬁ i- ; gcsTu j)+ )
( 0 7 _ mgsT J) + (mvo i- mvsT ) = (47)
= QSIQI QCQ i + mgQ, va, 3

gg[' +cht+mgF +va+
+( 01+g6911+m99 +mv0 J),J—'O

- The explicit form of theldlfferent energy-momentum tensors connected with the La-
grangian density L can be found for the componcnts g;; of the metric tensor, for the
components R'JH of the curvature tensor and for the components V4 g of the non-metric
tensor fields V.

(48)
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e, 2

4.4. Energy-momentum tensors for the metric field g;; and the curvature
' ;1i-  The energy-momentum tensors for g;; and R! ikt can be determined on the basis
of the structure of Ly and Ly,: The® ‘general structure of the dlﬂ'erent EMT-s for g;; and
R jgt is the same as for the components VAgof the non- metrlc tensor fields V. One has
only to substitute V4 B w1th gij' (B 1], A to be omitted) or' R ji; (A =i, B = jkl) (s.
the next subsection). ’ o

_ . . . 1. — .
990i T = gg0 T J = ok, (R '\ 9: ) gn:‘9 = gcsTt ’ :—a_rco(R_. '\)-9{ v (49)
mg0id = mg Tl =—Lamgl, . (50):
. 2 o 2
9@ = ar, BRI 0 Qp 7 = Tany T ) mgQJ 3gix A Giky (51)
7l — i '1. —_ N —_ PR
cgeFi = geFi = (Lg-yf);j = E‘;"(Rg{)a ymgFi'= (Lm-!]:l);jr (52)

4.5. Energy-momentum tensors for the non-metric tensor fields V4p. 1.
Symmetric energy-momentum tensor of Belinfante y,,7; 7 for V4 g

-
vﬂj:v‘ﬂj““:gl’m-vTﬁfjkk, TJ gva (54)
Y T' * L= g;ﬁ'(v’v'; ‘kJ ;"grm ‘*‘( vsVr :  vs Vr jm :.grk) ) (55)
VSV; ki 1= vaVrijk 1= %(UV,- kj ‘l + uV,- ik l) y , : (56)
T = WV M GV, e
- Ll :
vaVr =50V M=V (58)
er H 1= UGF k‘il - vﬁr ki [ . (59)
P, ki i aL
vPr kj = r AJ. v ve
1 Sc [6VA - v B+
aL 8L oL ‘
+ + 'VC = (e c .m'
.(6VA B - OVA B;m;k) B (6VA Bik;m V® B)mla + .
oL ., ’ . -t
+(WV B;r);l , » (60)
JO-5, = S Pip S yay .
F ! BF [aVA Bk D+ (BVA Bikam +'6VA B )V Dim
aL i : s
~Gva gV Pl | -
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[ ‘ .
i i Cod ik i ! .
= T Zg-}g'g;":'gh gJ: : ng+i gjl; ’ : (62)

VA pi=e;VA g+ T4V g+ PRVAD =

63
ZVA 5 i+ TAVC 4 PRVA b, (63)
Féi = —SCm Al F;’:‘ H Péqz = ——SC"I Ad PJz 3 (64)

. ical ¢ 7 A I
2. Generalized canonical energy-momentum tensor ,,,0; J for VA B. moli 7 is the
canonical energy-momentum tensor for V4p

mu_o_i i= mu?i i i/‘I{i i I/Wi ik k s (65)
o dL oL oL A
A - %]V i+
muti : [6V4 5 (6VABI: +6VA B;j;k)'k] B
oL i .
— VA Bk —g L, . (66)
+(6VA Bik:j - B )’k g - ‘ R
oL o oL Ao
] Dn /A m . 3
. | JKii =(Scm An yC o Spm PRV D)mR nik + EZ o V2 pa Ty
' (67)
T, =Ty k= F" - I‘" C;; * (in a non-co-ordinate basis),

1_1 7 (68)

T k= I‘" - I‘“ (m a co-ordinate. basw)
i3k =g W R =gl T . (69)

. ) _ . . Y
u_Wka = usvn Jm I'g"k — vsVn km l~g"J —vaVn Ik l.gnm = _uW_m J [ (70)
" 3. Variational energy-momentum tensor of Euler-Lagrange ,,,@; 7 for V4 p
@i 7 biy4 As ; 4.VC p) 5L (71)
mu @i :(SB; =. D — OCi . B VA 5
4. Volume force density muFifor VA g

- oL . .
mvFi = —5_‘;’4—3_"/14 Bi+ Wi, o (72)

US{ = —Wi gk ki + Vm kj.Rm jik — am kj~(g;" HX g;n ik + g_;'r;'n'Tik") 3 (74)

oL .4 oL oL

A ki Dj__ Y~ VA D —
WQ, 5 = Sp '[BVA B;k.V p+ (6"" p— +5va B;m;k) D;
oL
G gV 2I) 7o)
wm
. 0L, OLm A Lm a4
wSe? = 57 o (avABj_l);l]'V Bik + my Bk - (76)
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abbreviation

- T N P VAL EOY 0 Dots) PSRt TR
5. GEODESIC'AND AUTO-PARALLEL EQUATIONS IN V,,~SPACES. .
The geodesic and duto—parallel equatlons for the general case of (L., g)- -spaces are consid-
cred in [12]. In this'section the main results will bo specialized for the case of ¥ ,,-spacces.
By mcans of the linc.clement. ds the length,s of a curve in_a manifold /M can “be
f()und between point py and pomt p2 in' M with Lhc correspondmg co- ordmatos :cl and

ke =1, N ) . R e R
2 ipa O VR TET TS e b
s :/ ds + sp so = consl. (77)
P1 i

The extremum of the length s is to be determined using the standard variational
method with variation of the co-ordinates. From the variation of ds? = q-dr d.rJ. w here

drt = d' i.c. dr' arc considered as components of the ordinary dlfforentlal
§(ds*) = 2ds.d(ds) = (gﬁ).k.ﬁz d'dr? + 2g5.dz’ ' §(dr) 7(78)
dl‘i . . d:[i . '
— — k27 —_
25(ds}) = (g5)x-Sx I dr? + 2g. e S(dr?)

from where (under the commutation condltlon J(dr ) = d(8z')) the variation of s
follows [13] in the form '

P2 P2 d
5/ ds:/' J(ds)—g” T bad P+

P P
1 [P . dz* dxl dz? dr! d*z?
- =) kim——— = 2gz) jo—— - — 29 Srt.ds =
a3 [ o) e T o) S = e S s 0.
Under the boundary conditions Jr’ Ipl— 0 and 6: ips= 0 and for arbltrdrv d:r" the

equation follows

Cd% 1 ‘ oodat ded .
.m~p~2[(fl,,) (fl.k).J (y,k)]ds —-=0. (79)

After multiplication with g~ and summatmn'over k the last cquation; will have the
form -

d?zi dzd dzt '
= t3 y”‘ ((g5z)a + (95).5 ~ (g5 k] === =0 . (80)

ds = ds
If the abbreviation ‘
= 5.0% o)+ (9).5 — (g ] (81)

is introduced, where {‘,} are called generalized Chrﬂtoj](l symbols of second kind in
V,,-space then the equatlon takes the form

d?’z'  — dzf drt v ‘ o
o i =0 o (82)

and is called cquation of geodesic (geodesic cquation) in a V,-space. If we use the

J Vi dat drk ’ -
LG = ik -(—l? R , (h.‘)
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the geodesic equation will take the form

d*z’ . . :
I G = A (84)

On the other side, the equation of auto—pa.rallel transport of the contravariant vector
field u = d/ds = (dz'/ds)d; = u'd; along the curve with parameter (length) s is cquation
of the type V,u = 0 and in a co-ordinate basis will have the form

d2z  dz* doi -
g Yy gy =0 (85)
or the form g ,«‘
“xt ; )
— 4+ =0 86
=0, (86)
- where de i .
=5 dz
—F,U ds 4 (87)

The components I'i; of the contravariant affine connection T' can be represented by
means of the generalized Christoffel symbols of second kind for T and other additional
terms in the form )

Ti; =14} — Sk ¥ (88)

where )
Sk = 5-9"-(.‘]5{;7}:"1 + 97T ™ A 9y T ™) (89)

are the components of the generalized contorsion tensor S. By the use of the explicit

" form of Ty TJk = GkP,i =95 Pk they take the form

Sk =diei-dMamer. (90)
i

By means of the representatlon of I‘ . the equation of auto-parallel transport can be
“written in'the form” ) 0

d?z K odgd i dz* dxi
= J e S e = = 91
a5t Tl gy TR gy g =0 ®1)

or in the form

dz i i i 99
—d—2—+G =T : . (92)
.. where e Lok e .
Tiz=5,; 8% piogi_7i, 93
oK s ds : (93)

The difference between the geodesic and auto-parallel equation is obvious. T=T"9
is a contravariant vector field. Since only the symmetric part of Sk;* has to be taken into
account in the term T¢, T¢ will have the explicit form

_. . ; dz? dz* ’
T' = puloig; = 9" )~ 5 (94)

.16

and the auto-parallel equation will have on 1ts rlght SIde a term descnbmg a force
induced by the gradient of the scalar’ field . ) -

Therefore, the action of the contraction operator S induces an addltlonal force, related
to the contravariant torsion tensor T and dlﬂ'erent from zero for the parallel transport of,
contravariant vector fields. = '* v o S :

In the special ‘case, when the contravariant connection T is chosen to be zero on the
curve z*(s), i.e. I" $(@H(s)) =0, (I(z(s)) = = 0), then the geodesic equation will have the
form o AR et i e : [RETERRY

d2zt ; =i R L T e e
 ds? _’_T " 4 ‘ (95)
and the auto-parallel equation will take the form o ‘ '
d?z S ‘ e
ds =0. P co el Co (96) :

The last equation can be mterpreted asan equatlon for the traJectory of a free movmg
particle in contrast to the geodesic equation '

If the relation between the contravariant- affine connection T’ ‘and the covarlant affine
connection P is used in the form I‘Jk + Pk = !], 4 then the geodes1c equatlon can be
written in the form

d?z? ; dzd dzF dz? dz*, ... :
S _pl S SCWTEL. e (g7
a7 P gyt v T =0 )
For the auto—perallel equation it follows G
d%zt i,""d:cj d:c‘f CiG ~‘d:c-’. dz* = '
&7 " e Ve gy =0 (%8)

Now, if one chooses in analogy to the case’of I'(z*(s)) = 0 the vanishing of P on the
curve = (s), i.e. P;k( !(s)) = 0, then the geodesic equation and the .auto-parallel’ equatlon :
will have a different form from that in the case of F( ) =0, whlch will depend on the
explicit form of gJ £ =Pk gJ

% . dad do* T
(fis~ + g5k da; (;:s +Ti ="9 (geodesic equation), * ‘ 7 (99)
d’zt - dz? dz*

PTSRE Lar r

"0 (auto-parallel equetion)}’ (100)

When ij( (5)) = 0 (and therefore P_ = 0), then gJ = A ' f! ik ,and the geodesic
equation and the auto-parallel equation ca.n be written in the form ’

d*z’ d<p dzi-,

e + - ds ds T’ = 0(’geodesic'eqilation‘)ﬂ’,:kk ' /‘ ; ;(101)
2|v i . S 3
‘fis + %% =90 (auto—parallel equatlon). ‘ , (102)

The structure of the generahzed Chnstoﬂel symbols of second kind { k) for the case

of V,.-spaces shows that the functions f’J (zF) = evl=* ).gJ have to be taken into account

17



in the consldera.tlon and appllcatlons of the geodeslc equatlon The sa.me is also valid
for the auto-parallel equation. It is obvious that in the case where P' «(z'(s)) = 0 the
auto—pa.ra.llel equation can.not be interpreted as an equation of the trajectory of a frec
movmg particle (if the affine parameter 5 is not changed) in contrast to the case, when
I (z!(5)) = 0. Therefore, in V,-spaces [as in the general case of (L Ln,g)-spaces] the
equzvalence prmczple will be_valid only for the case of vanishing the contravariant affine
connection in the auto-parallel equation and it will be not valid in all other cases without
changing the parameter s of the considered trajectory.

6. EINSTEIN’S AND GEODESIC EQUATIONS IN V4- AND V4-SPACES

6.1. Einstein’s equations. The relation$ between the Einstein equations in V- and
these in Vy-spaces (n = 4) can be found on the ground of the relations between the
main structure of both types of spaces. In Vj-spaces the contravaraint affine connection
Tis connected to the covariant affine connection P on the basis of the action of the
contraction operator C : C(dz?, 8;) = dz'(9;) = _qJ and considered as a symmetric (Levi-
Civita, Christoffel) connection

. . ) . 1. .
=—Pho={k={}= §-g'm~(ymk,j + gimk — Gikm) » (103)

where {_‘7k} are the Christoffel symbols of second kind in V,-spaces. From (1) and (2)
there follows that

Pj‘k — eZw Ps — _Gth F'i — _eth {'k}

Fi ey I‘i + __.e2tp{ }+ (104)
k= ‘Pk g] k Pk g] .

The Riemann (curvature) tensor R'ijk in V, -spaces is determmed by means of {5}
in the form

151 ] —
R.,k—F,k, T L F"L ©(105)

= i = G+ }{} {’k}{ }——Puk-

The Riemann (curvature) tensor R ijk In Va-spaces can be expressed by means of the
Riemann (curvature) tensor in V,-spaces through the relation

Rlie=e(R' e+ Quin), Qe =" R i — Rl (106)
where
Q ik = (% — 1).({n;}- {7} = Lne -1 + 2.0, (07 {1k} - (5D - (107)

Q' ijk are components of a tensor field. They can vanish at a point or on a trajectory
in V,,, where the affine connection F(z" (s)) is chosen to be zero.  In this case Rk =
e R! ijk- On the other side, V. and V, could not simultaneously be flat spaces (R’ jjx =
0, R ik = 0) if Q' 456 # 0.

If we introduce the abbreviations for the case of V,-spaces:

Ri;=g"% Rej=g"* gh - R™ kst , R=g".gf R ik, (108)
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Q' = 9“‘-Qk'- =9* g Q k1, Q=g%gf.Q . (109)

PR B :
GV l P - E R r}J (Lmstcm s Lensor in V}, -spaces) C (110)

3 1
then the lwnatem lmsor G E; in V,-spaces Lan b(' ¢ xprcsscd bv mcans of the Linstein
l( 1sor in V;, :,pa((‘s : - :

Gy =G5 446 :,—Q'-—jgjcz SRR (1)
Therefore, thc Einstein equations in 7 ~space:, (n =4) can be w rmon in terms of the
Einstein equations in V, -spaces as

~: /\_,.-‘(LK.()_ J _
Gt g = 5 ““’.mg,l,Fj'j'qG'"j. (112)

A comparison with the Eillstéinfeqll'ations in Vy-spaces (n = 4)

,; A a.K '
G + 505 =~ 2°mg.h1‘ : (113)

shows that the consideration of the last equations in V- -spaces induces an additional term
7t on the right side of the equations and an additional factor [dependmg on the scalar

hold (%)) 1o the fundamental constants kg and A dcp(‘ndmg on the \(‘dldr ﬁcl(l y(-l' ).
If we now mtroduce the functlons

Mzk) = et | Ro(z*) = No.c-"v’(f‘) . (11‘4)
then (112) will take the form = -

i /\ i ' Q.EQ : - i
G".’iv+ '2‘~gj=f-—2f~1ng3h71j'4 G ' (113)

and we will have LEinstein’s cquations in, Vy-spaces (n = 4) with, cosmological and
gravitational functions X and % %o instead of the cosmological and gravitational constants A

and £ and with an additional gravudtlonal source induced by an invariant function [the
scalar field p(z*)]. ‘

- :
6.2. Gcodesxc cquatlon Thc geodesic dnd a.uto pdrallel equatlons are identical in a
co-ordinate basis in Vi:spaces. The geodesic equatlon can be wnt!en in Ihe form

d?zt . d:c dz* _;"Adz:c'A dzi: dr¥

N1

&zt & je)- d"'ds_‘o" .y(”ﬁ)

In V,-spaces the square ds? = =95 d:c'd:cJ of the hine element ds s (oul'ornml to d5* =
gij.dz*dz? in V,-spaces

ds? = ¢?0.d52. oL ey
Both types of cquations (gcodosn( and aito- pamll(‘l) in V7, -spd((\ ar( (llﬂ(‘rvn(
JTEF L — Y (11 ’ 7 . :
ds? {Jk} T de T =0 (geodesic vquatlon), ‘ (l 18)
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&7 8l dat dol o i det do (119)
AR UL R e B e
d?zt . dzi dzF At 120
P2 22 = (auto-paralell equation). ( )
or ooz +liw gy gy = 0 (auto-paralell eq )

By means of the relation between the affine connections in V- and V,-spaces l.vh(‘.
geodesic and the autoparallel equations in V,,-spaces can be written in terms of the alline

connection in Vi-spaces and the scalar field ¢ [s. (82) + (94)]

d*z owi dzd dz* 29 iM_Qd_w.d_Ii (121)
w Ty T oeeme T T R
) (geodesic equation),
i ‘ i dz* dg? dz*  _
dr? dz* o dzldzt | er ar o
e =gy gy = I u) =€ ik T T = Gik e =
ds? T k4 ds ds" ds

(auto-parallel gquation) .

The geod;esic and auto-parallel equations ‘differ from the geodesic gqiuatizn in V-

‘ ‘sp.aces. The additional terms are induced by the scalar field . If we chose I'} (2% (s)) = 0,

then both equations described the motion of a particle under different forces caused by
sthe scalar field ¢

i

d?z! 2p im _ odp dz' desic equation), (123)

gz T eemeTd ?d;' 75 (geodesic eq ) )

d*z! dp da’ ) - : (124)
= - to-parallel equation),

7= = ~ & gz (euto-parallel equation)

and are not equations of a free moving particle in a V,-space.

: 7.. CONCLUSIONS ‘
In the present paper the main structures of Einstein’s theory of.gravitation are consuiiered
over (pseudo) Riemannian spaces with different (not on_ly b.ykSIgn) c?ntravarlant‘an co-
“variant affine connections. The covariant affine connection 1s determm.ed as ’t}Te common
symmetric (Levi-Civita) connection and the metric is t.he common Rlem'anman metric.
The contravariant affine connection induced by the covariant afﬁne connection and. the ac-
tion of the contraction operator S appears in.a co-ordinate basis as a.non—_symmetnf: affine
connection with torsion tensor induced by the existing scale.lr field (lnvan_ant function) 2
“This scalar field changes the whole structure-of the Einstein ﬁeld.equatlgns althOUghA]E
their form they are analogous to these in the common (pseudo) Rlernannlfin spac’es wit
one affine connection and Riemannian metric. The difference be:twee.n Emste}n s cqua-
tions in the spaces with one and the spaces vyith two affine .con‘nect.lons is shovyn in expfl;c1t
form by expressing both types of equations in a (pseudo) Riemannian space with one a utl}(]z
connection. In such a space the geodesic and auto-parallel equat.xons from a space wi
two’ connections do not appear as.cquations of free moving particles. Additional terms
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induced by the scalar field*cause the existence of forces due to the torsion:tensor field.
of the contravariant affine connéction”in tlie space witl {wo connections.” The presented
model for describing the gravitational interaction appears as a model lying bclwmnihc;
models in Einstein-Cartan spaccs and thesc in Riemannian spaces. Further considerations
arc necessary for finding out the range of vitality of the, considered in this chapter model.
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