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1. INTRODUCTION 

As we have pointed out in previous papers (1), the recent evolution of the mathematical 
models for describing the gravitational interaction on the classical level shows a tendency 
to generalizations (2), (3} using spaces with an affine connection and a metric (the s.c. 
(Ln, g)-spaces). It has been shown (4).- (6) that every differentiable manifold with affine 
connection and metric can be used as a model for space-time in which the equivalence 
principle holds. In (Ln, g)-spaces the connection for cotangent vector fields (as being dual 
to the tangent vector fields) differs from the connection for the tangent vector fields only 
by sign. This fact is due to the definition of dual bases of vector spaces over points of 
a manifold, which is a trivial generalization of the notion of dual bases of algebraic dual 
vector spaces from the multilinear algebra. The (Ln,g)-spai:es can also be generalized 
using the freedom of the differential-geometric preconditions and especially by means of a 
generalization of the definition of dual vector spaces. ln. the last case, if the manifold has 
two different (not only by sign) connections for tangent and cotangent vector fields [the 
s.c. (Ln, g)-spaces) (1), the situation changes and is worth being investigated. On the other 
side, the gauge theories of gravity in (pseudo) Riemannian spaces with torsion (Einstein­
Cartan's spaces) U4 show some peculiarities related to the existence of the torsion tensor 
field (7] - (9). If one uses manifolds with contravariant and covariant affine connections 
and Riemannian covariant metric related to the covariant affine connection as a Levi­
Civita (Christoffel, symmetric) connection (the s.c. Vn-spaces as a special case of (ln,g)­
spaces), then a model of the gravitational interaction (in analogy to Einstein's theory of 
gravitation (ETG)] can be considered. It has been shown that in V 4-spaces the notion of 
spherical symmetry can be introduced and spherically symmetrical metrics of the type of 
the Schwarzschild metric can exist (10). In contrast to the general relativity and to the 
gravitational theories in U4-spaces some new results induced by the existing torsion field 
for the contravariant affine connection could be expected. 

In the present paper the Einstein theory of gravitation is considered over (pseudo) 
Riemannian spaces V 4 , where the contravariant affine connection f is induced by the 
symmetric covariant connection P "f: -f and an invariant function 'P : fjk = - Pjk + 
'P,k·9~- The invariant function 'P = <p(xk) is introduced by the action of the contraction 
operator S on the contravariant and covariant basic vector fields { i.);} ( { e0 }) and { dxi} 
( { e"}). In contrast to the action of the common (canonical) contraction operator C 
on 8, anddxi as C(&;,dxi) = C(dxi,&i) = dxi(&i) = gf used in V4 -spaces and in 
ETG, the action of the new contraction operator S (S instead of C) in V 4-spaces is 
determined as S(&;,dxi) = S(dxi,&i) = Ji, = ',?.g{, 'P E crp,f), r 2: 2. (In the 
common case, where S = C, the relation f = -P is fulfilled and the change of r in the 
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form ~k = qk + 'P,k·g~ induces automatically a,covariantaffine connection P= -f ~ith 
components Ph= -f~k = Pjk- 'P,k·g~.) . ·' · 

The notion of V n-space is introduced. The method of Lagrangians with. partial 
derivative (MLPD) and the method of Lagrangians with covariant derivatives (MLCD) 
arc sketched for the case of Vn-spaces .. The MLCD leads directly' to covariant Euler­
Lagrange's equations and to the energy-momentum. tensors for a Lagrangian theory of 
tensor fields. The Euler-Lagrange equations as a generalization of Einstein's field equa­
tions for a V 4-space and their corresponding energy-momentum tensors are obtained. The 
geodesic equation is found by means of the variational principle. (inth~ standar4 manner). 
By the use of the representation of the contravariant affine connection in terms of gener­
alized Christoffel symbols andan additional tensorfi.eld (generalized contorsion tensor), 
the geodesic equation is compared with the equation of the corr~sponding auto-parallel 
vector field. The Einstein field equations and the geodesic and auto-parallel equations in 
V 4-spaces are compared with these inV4-~paces. .. · . 

2. (PsEUDO) RIEMANNIAN SPACES WITH DIFFERENT {NOT ONLY BY SIGN) 

CONTRAVARIANT AND COVARIANT,AFFINE CONNECTIONS (Vn-SPACES) 

The (pseudo) Riemannian sp~ces with ·different' (not only by .. sign) contravariant and 
covariant affine connections are considered as a special case of (£,:;,g)-spaces.< 

••'\ \ 

Definitio~ 1. (Pseudo) Riemann_ian space with co~travariant, a'!d cova;iant affine con-

nections (V n-space). , . 
A (l,.,g)-space with S(dxi,&j) = /ij•= e'~'.g;, 'P E·Cr(M), r ~-2 and a covariant 

affine connection 'V = P, connected with the covariant metric g {by means of the relation 
'V(g = 0 for V~ E T{M) (or g;i;k = g;i,k + Pfk·9li + Pjk.g;1 = 0)} and defined as a 

Levi-Civita (symmetric) connectionl'is called a Vn-space. ·-: 
' . •" ,. 't 

Remark 1. The definition ofVn-spacecould be made for the general case, where S(dx;, &j) = 
/i j, fi j E cr(M), r'2: 2, and without' the explicit form of Iii· Since' in the present pa­
per we will consider only the special ca8e, where i j = e'~' .g;, 'P E CqM), r ~ 2, the 

(pseudo) Riemannian space is indicated here as V,.-space. 

2.1. General characteristics of a V,.-space. On the grounds of its definition and 
the properties of the (l,., g)-spaces, a V n-space has the characteristics: 

(a) Contraction operator S obeying the relations . . . . 
S(dxi,&i) = f; i = e'~'.g;, So 'V( = 'V( o S,S o £~ = £~ oS, V~ E T(M). 
(b) Contravariant affine connection r. r will have in a co-ordinate basis the com­

ponents r~k : 'V a.&i ~ r~k.&;, r~i ~ T~k ,:, Tiki "f: 0 (Tik; are .tlie components of the 
contravariant torsion tensor T). 

(c) Covariant affine connectiJn P. P will have in a co-ordiriate'basi~ the c~mponents 
Pjk : 'V a.dxi = Pjk.dxi, Pjk - 'pjk = Ujk', =.0 (Ujki are the components of the covariant 

torsion tensor U), (U = 0 follows from the definition of a V,.-space). 
(d) Covariant metric tensor g. g has in a co-ordinate basis the components g;j obeying 

the conditions g;j;k = g;j,k + Pfk·9lj + Pjk.g;r= 0, and g(&;,&j) :==gil= fk ;.[' i·9kl = 

e
2

"' ·9ij· 

--. 
' ~il.t-:,Ci!(;~i':iii.~ii ~l4:Thi'JT I 
i ~;;,!~!i!JX txcne1a~auail 
J 6VJSni10TEKA . 
·~~ --.......-
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(e) Contravariant' metric tensor field g. g fulfils the relations g(dx1 , dxi) := g1i 
Ji k.fi 1·9kl = e2

'P.g
1
i and has in a co-ordinate basis the components g1i ·related to 9ij by 

means of the conditions gif.gjk = Ji 1.fj m .g1m ·9jk = e2'P .g1i ·9jk = g£. It can be proved 
that the conditions for 9ii : 9ij;k = 0 induce the conditions for g1i : g1i ;k = 0. 

From (a), (c), (d) and (e) there follows that 

P
;. 1 IT ( . . . ,. . ) 
jk = -2.g . 91j,k + 9kl,j - 9jk.l . 

From (a), (b) and (c) the relations follow 

; r; '+ ; pjk =- jk 'P,k·9j , 
. i . i 

rjk = -Pjk + 'P,k·9j 
,.,J • 

·r 1 
r 1 rL - 1 r.p · 91 . jk = kj- jk.- 'P,k_-9j- ,J· k' 

R
1 
iik = -P1 iik, 

R
1
;;k = r;k,j- r;i,k + r;,i.r:J:- r;,k.q , 

. P
1 
ijk = Pfk,i- Pfj,k + P;,.k.P[J- P;,.;.P[',: . 

(!) 

(2) 

(:J) 

(-1) 

From the last relations follow that, despite of the difference between the contravariant 
and covariant affine connections r and P, the corresponding· contravariant and covariant 
curvature tensors are different only by sign as in the case of Vn-spaces. 

2.2. rProperties of the Riemann {curvature) tensor R 1 jkl· The Riemann (Rie­
mannian) (curvature) tensor R1 jk) in a Vn-space fulfils the relations 

(a) R 1jkl = -R1;1k· 

(b) Rijkl = -Rjikl· This proper~y can be proved by means of the relations 

g(8m, R
1 
ikl-8;) = -'-g(8;, R 1 mkl-8;) + ([V' a,, 'V'a.]g)(8i, 8m) , 

g(om, R
1 

jkl-8;) = R 1 
jkl·9(8m; 8;) = R 1 jkl·9mi := Rmjkl, 

g(oi, R
1 

mkl-8;) = R 1 
mkl·9(8i.' 8;) = R 1_ mki·9Ji := R]mkl , 

V' 8;9 = 0 ' r j = e'P .gj 

(c) Bianchi identity of the 1. type 

R l '· ::..:_ T .. I + T m T I - 0 
<ijk> = <ij ;k> <ij · mk > = • 

R
1 
iik + R 1 

kii + R 1 iki ::: 0 . 

(5) 

(6) 

The proof follow.s immediately after d!rect computation of T<;j ;k~ + T< 1T .Tmk 1 > by 
the use of (3). · · 

From the last identity follows the symmetry of the Ricci tensor R;j := gi .Rk ijl 

R;; = Rj;. (7) 

(d) Bianchi identity of the 2. type 

R
1 

i<ik;p> ::::: -R
1 
im<i·Tkf m > ::::: -2.R1 i<ik·'P,p> , 

R
1 

iik;p + R 1 
ipj;k + Ri ikp;i::::: 2(R iki·'P,p + R 1 iip·'P,k + R 1 ipk·'P.i) . (8) 
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By the use of the both types of Bianchi. identities and the characteristics of the Vn-
space one can prove the relati~ns: . . · ' 

gf.(e2'P .R1 ijk);p = (e2 'P .R;j);p + e2 'P .<p,p.Rij , 
gf.(e2'P_RI;pj);k=(e2'P.RI;pj);1' . 

Yt .(e2'P .R1 ikp);j = -(e2'P .R;p);i - e2'P .<p,j.Rip , 

gif.(e2'P.R;j);p = [gif.(e2'P.R;j)];p = (e2'P,R);p, 
if ( 2<p Rl . ·) _ ( 2<p if Rl . ·) (9) g . e . •PJ ;I - e .g . 'PJ ;I , 

gif.(e2'P.R;p);i = (e 2'P./1.R;p);j- e2'P.<p.j.ii:R;p, 

( 
2<p iJ Rk ) ( 2<p iJ R ) _ 2( 2<p Rl< ) e .g . ipj ;k - e :J . ir__;j - - e . p ;k , 

where RiP = g1i .R;p , 

leading to the identity 

2 ~ 1- j 
[e 'P.(RJ;- 2.R.g;));j=: 0, R = gki:Rkl , (10) . . 

which can also be written in the form 
~ 1- j •. , ~ 1-. 

(RJ;- 2.R.g;)J = -2.r.p,j.(RJ;- 2.R.fli) . (11) 

2.3. Length of a contravariant or a covariant vector field and the cosine 
between two vector fields of the same type. The (p;eudo) Riemannian spaces 
with different (not only by sign) contravariant and covariant affine connections are spaces 
with metric transport of the vector fields .. The scalar product of two contravariant vector 
fields is independent of the transport of the covariant metric tensor field g 

V'((g(u,v)]=g(V'(u,v)+g(u,V'{v), u,vET(M). 

The rate of change of the length lu of. a contravariant vector field u under met~ic 
transport is determined (see the chapter about the length of a vector field and cosine of 
the angle between two vector fields) by the relation. 

. 1 ' : 
~lu = ±t:".g(\7 {u, u) for 1., =/:. 0 . 

In the special case of parallel transport of u along~ (V' (U = 0) the length of the veCtor 

u does not change 
~lu = 0. (12) 

The length of the vector u does not change under auto-parallel transport \7 u u = 0 

'l!lu = u1 .8;lu = 0 . (13) 

The rate of change of a cosine between two contravariant vector fields depends only on 
their transport ~long a contravariant vector field and not on the transport of the metric 
tensor g. In the spacial case of a parallel transport of two vector fields u and v along a 
contravariant vector field~ (V'{u = 0, 'V'(v =.0) the cosine (and respectively the angle) 

between u and v does not change 

~[cos(u, v)] = 0 . (14) 

The same statements are valid for the length of a covariant _vector field and for the 
cosine of the angle between two covariant vector fields. 
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3. LAGRANGIAN THEORY OF TENSOR FIELDS OVER Vn-SPACES 

A Lagrangian theory of tensor fields has three essential structures: the Lagrangian density, 
the Euler-Lagrange equations and their corresponding energy-momentum tensors. 

The Lagrangian density can be considered in two different ways as a tensor density of 
rank 0 with the weight q = !; depending on tensor fields' components and their first and 
second covariant derivatives: 

(a) as a tensor density L, depending on tensor fields' components and their first (and 
second) partial derivatives (and the components of a contravariant and a covariant affine 
connections), i. e. 

L = -FJ;.L(g;j, 9ij,k, 9ij,k;y yA B, yA B,i; yA B,i,j) 

where L(xk) = L'(xk') is a Lagrangian invariant, 9ij are the components of the co­
variant metric tensor field 9, VAn are components of tensor fields V or components r~k 
(or Pjk) of an affine connection r (or P), dg = det(9ij) < 0, 

y.A . = avA_ B VA .. = a2vA B 
B,• ax• ' B,•,J axJaxi 

· (b) as a t~nsor densit:{L,'depending on tensor fields' col)1ponents and their first (and 
second) covariant deri~atiyes~ i. e. · ' · 

L = ~-L(g;j, vAn, vA n;i,· vA ll;i;j), 

where L(xk) = L'(xk') is a Lagrangian invariant, 9ij are the components of the co­
variant metric tensor field g; VA B are components of tensor fields V =VA n.eA Q9 ell = 

· VA ·IJ.aA ® dx8 with finite rank, A, B, ... are multi-indices: A= i1 : .. ik, B = jJ ... jJ, k, l E 
N. . 

The Euler-Lagrange equations can be obtained by means of the functional variation of 
a Lagrangian density and of these of its field variables considered as dynamic field variablr.s 
(in contrast to the non-varied field variables considered.'as fixed and non-dynamic field 

. variables). 

The corresponding energy-momentum tensors can be found by means of the Lie vari­
ations (Lie derivatives) of a Lagrangian density and all of its field variables (dynamic and 
non-dynamic field variables). By means of Lie variations (change of the field variables 
by draggings-along of the tensor fields and their covariant derivatives) the corresponding 
energy-momentum tensors can be found. 

There are two possible methods for the application of a Lagrangian formalism in find­
ing out the Euler-Lagrange's equations as field equations and the corresponding energy­
mome-ntum tensors in a field theory over differentiable manifolds with contravariant and 
covariant affine connection and metric: method of Lagran9ians with partial derivative 
(MLPD) and method of Lagrangians with covariant derivatives (MLCD). These two meth­
ods corresponds to the two different ways (a) and (b) of considering the dependence of 
the Lagrangian density on different field variables. 

In the first method (MLPD) a tensor density of rank 0 and weight q = ~is considered as 
;a Lagrangian density L depending on tensor fields' components and their first (and second) 
partial derivatives along co-ordinate basic vector fields. By means of the corresponding 
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functional vanatwn of Land the' field variables (tlH; components of tensor field~ with finite 
rank, their partial derivatives and the components of the affine connections (if they are 
considered as independent of the metric) , 

JL 
iJ C(f iJL ~. {)L . aL ) 
_v_ -u_gg .Jg;i.L + -FJ;[-.Jg;i +-a .... J(g;i.d + -

8
-_-. -.J(g;j.k.z + 

llg;j ag;j g,],k ' 9•J.k.l 

lJL ,1 aL A ) ' aL J(V'\ ' ·)] +--.JV IJ + ---.J(V IJ,i + 'JFA . B.•.J 
aF"n aV"B,i ( B,i,j 

ar iJL aL aL 

iJ\1'1 JJ,i - iJ(\f" 11,i) ' iJ\fA B,i,j - a(\1" B,i,j) 

the Euler-Lagrange equations follow aft.er using the Stokes theorem on a comnion diver­
gency term (separated from JL) and imposing boundary conditions on the variations of 
the dynamic field variables. This ;s the. canonical. (classical, conventional) approach for 
considering a field theory by means' of a Lagrangian formalism. One of the main assump­
tions here is the commutatwn of the functional variation .with the pal'lial deril'aln-cs. i. 
e. 

J(VA B,i) = (J\/A n),i , J(gij,k) = (JgijJ:k ,..J · 
. . 

In differentiable manifolds without· affine connections (or in functional span·s), this 
assumption is a priory fulfilled on the grounds of the independence of the functional 
change of the form of a function from the change of the maps (or the co-ordinates) 
over the manifolds. But in the case of differentiable manifolds with afTine connPctions 
this assumption leads to relations between the COVariant derivatiVPS and thC' functional 
variation. In this case as necessary and sufficient conditioits (for cxampk) for 

J(V" Il,i) = (J\I"n),; 

appear the conditions 

where 

J(VA IJ;i) = (JV" Il);i + Vc IJ.JI'~; + \1'1 v.JPD /li, 

vA B;i·= VA B,i + r~;.vc n + PH;·V" v , 
f~; = -Sck·Al.It , Pfl; = -Snk IJI_p(; , 

5 Bi __ '"'l i, ik i 1 ik-t ik+l ir 
Am - . L,k=l 9j• ·.Qm ·9j1 ... gi•-1 ._qjk+l ... gj, 

A= jJ ... jz, B = it ... iz. 

The quantities (multi-contraction symbols) SAm /Ji ol)('y the following rC'lation~ 
(a) Sm Aj .S,~k Cl = -gl.Sllk Cj, dim M = n, l = 1, ... , N, 

(b) Slli Bj = -N.nN-1·9f' 
(c) Sn; Ai = -N.g~, ' 
where 

A _ j1 im-1 im. im+l' j1 
.Q]J- 9;1 ... .Q;~-1 ·9;~ ·9;~+1 ... .Q;, 

is defined as multi-Kronecker symbol of, rank l 

g~ = I ik = jk (for all k simultaneously), 
=0 ik-::/=jk,k=l, .............. l. 
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The proof, of ~he above statement follows immediately from the equality 

el(V" n;;)- (elV" JJ);; = el(V" n,;)- (elV'1 n),;+. 
+ vc 8 .ell'~; + V" o.elP{l, . (15) 

A sufficient condition for the application of the method of Lagrangians with partial 
derivatives is the commutation relation between the variation operator el and tl;e Lie 
differential operator along a contravariant basic vector field 

el o £a, = £a, o el , (Hi) 

· or the commutation relation between the variational operator ·eland the Lie differential 
operator along an arbitrary given contravariant .;ect~r field ,; · 

el o £€- £fo el = £d€ for V,; E T(M) (17) 

In the second method (MLCD) a tensor density of rank 0 and weight q = ~ is consid­
ered as a Lagrangian density depending on tensor fields~ components and their first (and 
second) covariant derivatives along basic vector fields. By means of a functional variation 
(change of the functional structure of the field functions without changing their tenso­
rial. character). of the field variables (the components of tensor .fields and their .covariant 
de~i vati ves) · · 

· · elL DFd;, . 8L 8L oL . . . 
---

9 
.elg;j.L + Fd;,[-.elg;i + ~-el(g;j;k) + -

0
-.-.. -.el(g,;;k;t) + 

09ij , 09ij Y9•;;k 9•;,k,l 

8L . . iJL A · . • oL '(V" )] +--:elVAn'+--A-.el(V B;i)+ oVA . .. u B;i;j , 
oV" n DV n,; B;•;; 

DL 
iJVAn;i 

DL 

o(V" n,;)' 
DL oL 

oVA B;i;j o(VAB;i;j) , 

the covariant or canonical Eu.ler-Lagrange equations follow. Sirice in Vn-spaces 9ij;k = 
0 and 9ij;k;l = 0, elL will have the form 

elL 
DFd;, oL 
--.elg;i.L + .j=dy[~.elg;i + 

09ij U9ij 

oL oL .A iJL A . ·)] +--.elVA n + --A-.el(V n;;) + iJVA ... el(V B;•;; · 
oVA n iJV B;• B;•;; 

In the case, when additional conditions are imposed on the affine connections, the 
type of the Euler-Lagrange equations and their corresponding (Ln,g)-spaces depend on 
the separated by the variation term and the conditions on the affine connections for 
transfmming this term in a common divergency term necessary for the application of the 
boundary conditions for the variations after the use of the Stokes theorem. One of the 
main assumptions here is the commutaiion of th~ functional variation with the covariant 
derivatives, i. e. 

el(VA B;i) =(elVA JJ);i , el(gij;k) = (elg;/);k . 
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In this case as necessary and sufficient conditions for 

el(VA B;i) =(elVA B);i 

appear the conditions 

el(V" n,;) =(elVA n),i- Vc n.elf~;- V~ v.elPD Bi 

The proof of the statement follows immediately from (15). 
A sufficient condition for the application of the method of Lagrangians with covariant 

derivatives is the commutation relation between the variation operator eland the covariant 
differential operator along a contravariant basic vector field 

·el o 'V a, = 'V a, o el , (18) 

or the commutation relation between the variatiorr operator el and the covariant dif­
ferential operator along an arbitrary given•contravariant vector field,; 

elo'Ve-'Veoel='Vde forV,;ET(M). (19) 

In the case of the MLCD the affine connections appear as non-dynamic fields variables 
(elr;k = 0, elPjk = 0) and the variation commutes simultaneously with the partial and the 
covariant derivatives of the tensor field components. At the same time elRi jkl = 0 and 
elPijkl = 0. . . ' 

The use of the MLCD requires the use of covariant (and form-invariant) methods only, 
related to the applications of the covariant differential operators and the Lie differential 
operators to tensor fields and their covariant derivatives. 

4. EINSTEIN'S FIELD EQUATIO,NS AND ENERGY-MOMENTUM TENSORS OVER 

. V4-SPACES 

4.1. Einstein's field equations. The Lagrangian density for obtaining the Euler­
Lagrange equations and their corresponding EMT-s for a material distribution and its 
gravitational field in V,;-spaces is given in an analogy with the Lagrangian density for the 
gravitational field and its sources in V4-spaces 

L = L9 + Lm = Fd;,.(L9 + Lm) , 
L 9 = "-~o .(R -·>.); a= ±2, x:o = const., 

Lm = Lm(9ij, VA B, VA B;i, VA B;i;j) · 

The variation of the Lagrangian density L 'c~n be written in the form 

elL= el9 L + elvL';' , el9 L = el9 L9 + el9 Lm ,' elvL = elvLm,. 

(20) 

(21) 

The variation of the Lagrangian density L9 with respect to the components 9ij of the 
metric g can be found in the form · 

~ el9 L9 . el9 L9 _ · . t7- 1 ik "1 1 - . -r 
el9 L9 - ~.elg;j, where~- -y-d9 .--.[g .g1 .Rkt- -.(R- >.).g 1 ], 

ug,1 ug,1 a.x:o 2 · · 
(22) 
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by means of the relations: 

a..,r-:rr; 
ag;j 

agki 

ag;j 

1 lTd iJ {)R - {) ( ki r, m ) - {Jgki R 
-
2
.y-ug.g , -a --a g .gm.R ktr --a . kt, 

g;j g;j g;j 

1 -- - -
--(gki .gil+ gkj .gil) . 

2 

The Einstein equations in V4-spaces follow in the form 

i 1 '- i _ ( 1 'JgLm _ a.Ko 2 OgLm ) 
R i- -(R- >.).gj- a.Ko. CT.-,-.gjk)- --.(- CT.-,-.gjk · 

2 y-d9 ug;k· 2 · y-d9 ug;k 

After introducing the abbreviations 

~ ~ 1- . 
G' i = R' i- 2R.gj , 

.J 

2 ogLm 
i - -- . ---.gjk ' mg•hTi --~ og;k 

(2a) 

(24) 

(25) 

where Gi i is the Einstein tensor and mg•hTj i is the symmetric EMT of Hilbert for 
Lm in V 4-spaces, the equations (24) will have the forms 

i >. i a.Ko . T i 
G i + ;;,·Yi = --2-·mg•h i 

~ a Ko · >. · 
G'j = _ __:_

2 
.(mg•h1J' + --.gj) · 

a.Ko 

Taking into account the identity in the forms 

2··~ 1-j 
[e 'P.(R3 ;- 2.R.g; )b =: 0 , 

~ 1-. ~ 1-. 
(R3 ;-

2
.R.gf};j = -2.cp,i.(R3 ;-

2
.R.gf) , 

the covariant divergency of the Einstein tensor will have the forms 

diiJ = -2.<p,j.di; J. (e 2'P.Gi i);j =: 0. 

From the first form of the identity follows the covariant divergency of mg•hTj i 

. >. . . >. . 
(mg•hT; 3 + --.gf);j = -2.<p,j .(mg•hT; 3 + --.gf) , 

a.Ko a:Ko 

(26) 

(27) 

(28) 

(29) 

(30) 

and from the second form of the identity follows the covariant conservation law for 
mg•h1J i 

2 . >. . 
[e 'P.(mg•hT; 3 + --.gf)b = 0. 

a.Ko 

In the case, where >. = 0, the last expressions will have the simple forms 
2 . . . 

(e cp·mg•hT; 3 );i = 0 1 (mg•hT; 3 );j = -2.'P,j·mg•hT; 3 • 

(31) 

(32) 

The Euler-Lagrange equations for the non-metric fields VA B can be .found m an 
analogous way as the Einstein equations. 

From the relations in the MLCD of~k = 0 and oPjk = 0, there follows that (Jcp),; = 0. 
Therefore, ocp could be only arbitrary constants: ocp = const. E R (or C) and the variation 
of 'P allows only translation: tp = 'P +a, a= ocp. 
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4.2. Euler-Lagrange's equations for the nor1~mctric tensor field~ \fA B·. After 
variation of the Lagrangian density L with respect to the co.Inponents oft he non: metric 
tensor field ~"1 l1 the Euler-Lagrange equations for .\lA,B can be found. Since. \'A B arc 
only clements of Lm, the variation is restricted on Lm. By the use of the standard variation 
in the MLCD one would find tht> relations 

_ _ r-Td [ OvLm <l!A •i . 
o,.L-ovLm-y-ug.' 8VAn·~' [J+,d ;•,, (3:~) 

o,, Lm DLm ·aLm ) 8Lm ) 
c\"\fA = 8\fA -: (~ ;i +({)\fA .. ;j;s 

l1 B. , B;• , .. , lJ;t;J 

. (34) 

·i _ [ i!Lm _ iJLm iJLm ) 8 rt 8Lm 1 ,t . 
,.J - ()\lA . (iJj!A .. +{)\fA , . ),J · \ B +({)\'A .8\ nb 

/J;t li;•;J lJ,.];I B,J,I 
(:l5) 

The introduction of the boundary. conditions for the variations 8\''1 
ll 1(1',)= 0: and 

their first covariant (or partial) derivatives (H'AB);i (or (8\'A IJ),;, because of oqk.= 0 

and cSP]k =OJ: (8\IA n),i !(V,)= 0, on the shell of the 'volume\~, (n = 4) in which the 

actionS=./~ .. /,.dw is det.ermined; requires the application of tlH· Stokes theorem'[ll]. 

This is connected with the transformation of the term v.ii ;i in a comm~n div~rgency t('rlll 

v.i' .• Since 
•i . ··i (i' k I k ) •i 

vJ ;i = vJ .i + ki + Yk·gl;i ..J • (36) 
,. !"•. 

as the necessary and-sufficient condition for v.ii ;i =. ;,ji ,i for t:tW1'1di (regardkss to its 
explicit form) appears the rondition for (Ln, g)-spaces 

(
,,.. k 1 k l .; · 0· 
1 ki + 9k·9t;i ·vJ = ''. (37) 

For V,.-spaccs (n = 4) it will ha~~ the form 

'P,i·vji = 0, (:~8) 

and for V ji, it follows that 'P,i = 0, i. e. cp = const. This cas(' kacb to til(' common 

V,,-spaces. '' 
If we take nse of the explicit form ofji, then 8vLm can be writ.!('IJ in the form 

OvLm 
IT ( 8vLm nrA ·i ) 

y-u9 . 8\fAIJ.uv n+ v] ;i = 
IT ( OvLm B) A r-T -d) v-ug. JFAn +PA .o\1 n+(v-d9 .,.J ,; (:In) 

where 

lJ OLm ' OLm OLm ()/,,. 
PA =q;.[~VA -('JVA. +(!\fA };j]+('li·'l.i-'li;j)-~ 

( IJ;i ( IJ;i;j IJ;j;i ( H:.i:i 

OvLm_ iJLm _ (~). ( iJLm ) .. 
8\1 '1 JJ - iJVA IJ . lJVA IJ;,i ;• + iJI' '1 IJ;i;j ;J,I ' 

~~- ·i . iJLm o\IA 
,,) - v) +'I;· ''\I ,1 .. · II 

(J II;• i.l 
l/i = i..p,i' 
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.; _ ( fJLm . ( fJLm fJLm ) ] oVA ( {)£, 1 ,1 ) 
v) - ~- {)VA . +[)VA .. ;J . lJ + ()VA .o\ 1J ;i 

, B;t 8;1;; B;;i' IJ,;,, 
(~0) 

The covariant Euler~Lagrange equations for VA lJ follow in the form 

OvLm 
oVA =-PAEJ for\foVA [J IJ. (~I) 

4.3. Energy-momentum tensors. By means of the Lie variation of the Lagrangian 
density L and the covariant !\'oether identities valid in V n-spaces the energy-monwnt urn 
tensors (EMT-s) for all tensor fields which components appear in the structure of the 
Lagrangian density can be found. The covariant~,Nocthcr identities can he written in the 
form 

F; + O; i ;i = o , O;.i - , 1i i = Q; i (~2) 

F; are the components of the volume force density, 0; i are the components of the 
generalized canonical EMT (GC-EMT), ,T; i are the components of the symmetric EMT 
of.Belinfantc (S-EMT-8) and Q; i are the components of the variational EMT of Euler­
Lagrange (V-EMT-EL). In the case of the ETG L 9 and Lm lead to different quantities for 

.all (dynamic and non-dynamic) variables. L9 = "~• (R- ..\) is considered as a Lagrangian 
·invariant responsible for the existence of the gravitational field induced by a material 
distribution described by Lm = Lm(9i]' v~ [J, VA B;i, vA B;i;j)· On the other side, Lm 
'~s a functiOn of 9ij take part in the determination of the EMT-s for 9ii. In this way, every 
EMTdecomposes in terms constructed by means of L9 and Lm. (The first subscript at 
the left side of a quantity shows the Lagrangian invariant of its composition (9 : L9 or 

,m,: Lm); the second subscript at the left shows the field variables to which a quantity 
'corresponds (9 : to 9ii, c : to Ri jkt, v : to VA B); The third subscript (if any) at the left 
shows the type of the quantity itself(, : symmetric): 

0; j = ggOi j + gcOi j + mgO; j + mvOi j , 

,T; j = gg•T; j + gc•T; j + mg,1i j + mv•T; j , 

Q; j = ggQ; j + gcQ; j + mgQ; j + mvQ; j 

F; = 99F; + gcF; + mgF; + mvF; . 

(~3) 

(44) 

(45) 

(46) 

Using the. decompositions of 0; j, 'T; j, Q; j and F;, the covariant Noether identities 
can be written in the form 

(ggO; j- gg•T; i) + (gcOi i.-;- gc•T; i)+ 
(mgO; j- mg•T; i) + (mvB; j- mv•T; i) =: 
=: ggQ; j + gcQ i j + mgQ; j + mvQ; j , 

99 F; + gcFi + mgF; + mvF;+ 
+(ggO; j + gcOi j + mgOi j + mvOi i);i =: 0 . 

(47) 

(48) 

The explicit form of the different energy-momentum tensors connected with the La­
grangian density L can be found for the components 9ii of the metric tensor, for the 
components R;jkl of the curvature tensor and for the components VA B of the non-metric 
tensor fields V. 
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4.4. Energy-momentum tensors for the metric field 9ij and the curvature 
R' jkl' The energy-mbmentum tensors for 9ii and Rijkl can be determined on the basis 
of the structure of L9 and Lm~ The general structure of the different EMT-s for 9ii and 
R' jkl is the same as for the components VA B of the non-metric tensor fields V. One has 
only to substitute VA B with 9ij (B = ij, A to be omitted) or Ri ikl (A= i, B = jkl) (s. 
the next subsection). · 

-· . 1-. -j . l-'-' 
g9 0; 1 = 9 g,T; 1 = --(R- ..\).9f , gcB; = gcs1i 1 = --(R- .A).9f 

Cl/f. 0 • · ' . Ctlf. 0 · 

mgO; j = mgsT; j =- Lm·9{ , 

- · 2 · - · 2 · -} 8Lm 
99Q; 1 = --.Rr 1 

, 9cQ; 1 = ---.Rr 1 , m9 Q; = -2.-
8 

·9ik, 
Ctlf.o Ctlf.o 9jk 

-- . 1-·- . 
ggF; = gcF; = (Lg·9fb = a:o .(R.gf);i , mgFi'= (Lm·9f)J, 

4.5. Energy-momentum tensors for the non-metric tensor fields vA B• 

Symmetric energy-momentum tensor ofBelinfante mvs1i i for VA B 

mv&T; j = vTi j- 9{.Lm, 

v T; i = v T; ik k = 9im·v Tmik k , v T; jk k = 9~-" T; ik 1 , 

,.,., jk - ( -v kj": rm +' -v km rj -v jm rk) v'i l-9'[;n·v• r· 1·9 v& r 1·9 -vs r 1·9 , 

- k' - 'k 1 - k·. - 'k 
v•Vr 1 1=vsVr 1

• 1=2(vVr 1 1+vVr 1 1), 

v Vr kj I = v• Vr kj I + va Vr kj I , 
'. /i ' .. , 

- k' 1 - k' - 'k 
vaVr 1 1=2(vVr 1 1-vVr 1 1), 

v Vr kj I= vQr kj_ I- vPr kj I 

vPr kj 1 Aj [ {)L c 
Scr . {)VA . V B + 

B;k 

{49) 

{50). 

{51) 

(52) 

1. 

{53) 

{54) 

(55) 

(56) 

{57) 

{58) 

{59) 

8L {)L c 8L c · 
+.({)VA +{)VA ).V B;m- ({)VA .V n);m];l + 

B;k;m B;m;k B;k;m 

{)L A 
+( "''" .V B;r);l, {60) 

B;j;k 

vCJrkj_l 
Dj {)L A . ' {)L {)L A 

Snr -.[{)VA .V D +({)VA +{)VA ).V D;m-
B~ B~~ B~~ 

{)L A 
-( """ .V n);m];l, {61) 

D;k;m 
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S Aj _ '"' J ik i1 h-t ik+t i 1 

Cm --; ~Yj.·9m·9j.··:·9j._ 1 ·9j•+•···9j 1 ' 
. k=1 . 

VA B;i = e;VA B + r(5;.vc B + Pf];.VA D = 
=VA s,i+r(5;.Vc n+Pfj;.VA D, 

r(5; = -Scm A.i .rjl , Pg; = -Scm Aj .PJi , 

(62) 

(63) 

(64) 

2. Generalized canonical energy-momentum tensor mvlii j for VA 
canonical energy-momentum tensor for V"A B· 

B· mvfi j is the 

mvO; j = mvf; j - ;J<; j - v W; jk k , (65) 

mvli j 
8£ 8£ 8£ 

[8\'"A . - ( 8 \'"A + 8 VA . h].VA B;i + 
B,J B,k;J B;J;k 

( 
8£ A. . 

+ mrA .\'" B·d·k-g1 .Lm 
B;k;j ' I I ' 

(66) 

j _ (S An VC S Dn VA ) 8£ Rm 8£ VA '1' I 
vKi - Cm · B- Bm -. D . 8 VA . · n1k + 8 \'"A · B;l· 1 ik , 

B~~ B~J 

T;/ = -~/ = rj;- r:i- C;i k (in a non-co-ordinate basis), 
. T;/ = rj;- r:i (in a co-ordinate basis), 

- "k I - "k I =njk 
vW; 1 k=9k·vWi 1 1=9k·9;"rn;·vW I 

=w jk - -v jm nk -v km nj -v jk nm - =w kj 
v I - v• n 1·9 - v• n 1·9 - va n 1·9 - - v I 

3. Variational energy-momentum tensor of Euler-Lagrange mvQ; i for VA B 

- · D · A A· C Ov L 
mvQ;l=(Ssi L.V v-Sc; J_V n).oV"An 

4. Volume force density mvFi for V"A B 

mvFi O~vAL B _vA B;i + vW; , 

.W; . k i L 
.S;- vSk 1 .T;i + 9i;i· m , 

vSi = W; jk k;j + V m kj.Rm jik- Qm kj .(gj ;k;i- gj ;i;k + 9';,n-1ik n) , 

vQr kj 
Dj 8£ A 8£ 8£ A 

Snr .[8VA .v D + (8VA + 8VA ).V D;rn-
B;k B;k;m B;m;k 

8L' A ] 
-( <nrA .V D);m , 

D;k;m 

1 _ [ 8Lm ( 8Lm ) ] A 8Lm A 
vSk -

8
VA . -

8
VA . ;I .V B;k + 8 VA .. \'" B;l;k 

B,J B;J;I B;I;J 
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(67) 

(68) 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 

(76) 

5. GEODESIC AND AUTO-PARALLEL EQUATIONS IN'V~-SPACES 
The geodesic and auto-p~rallel equations for the general case of (Ln, g)-spaces are consid­
ered in [12]. In this section the main results will be specialized for the ca:se of 1771 -spaces . 

By mrans of the line:element ds ,the length s of a curvr in a. manifold .• \/ can be 
found between point Jlt and point p 2 in M with the c~rrespm1ding .co-ordinates x7 and 
;z·nk ~ 1, .... n) . . ·· · ···. · · · 

'1P2 s = ds +so , 
PI • 

-~o =canst. (77) 

The <•xtn•tnum of the length s is to be determined using the standard variational 
method with variation of the co-ordinates. From the variation of ds2 = _gi]d:riJxi. where 
d;z·i = di, i.e. d:ri arc considered as components of thP ordinary diffPrential. 

o(ds2
) 

28(ds) 

2ds.o(ds) = (gi]).k.oxk.dxidxi + 2gil.dxi.o(dxi), 

( ) 
< k dxi .d j dxi '(d i) 

_g~ k.UX .-d . X +2_g-
1 
..• -d .u X , 

l] ' s J s 

(78) 

from where (under the commutation condition o(dx') = d(ox')),.the variation of s 
follows [I :1] in the form 

1P2 {P2 dxi . 
o ds = ln o(ds) = _giJ·T·o:rl if,1 + 

Pl Pt S 

I 1P2 
· dxi dxi dxi dxi d2xi +- [(_g~),k.-.. -d :.._ 2(_g~k),1·.-d .-d - 2g~k.-d, ].o;rkds = 0. 

2 P• '1 ds s • s s ' s-

Under the boundary cor;ditions oxi lrt = 0 and oxi 1r2= 0 and for arbitrary oxk thP 
equation follows · 

d2 xi I · . dJ:i dxi 
9if· ds2 - 2[(9i]),k- (.qrr},j- (_g]k),;]. ds -~ = 0 . (79) 

After multiplication with _gkl and summation over k the last equation. will havp th<· 
form 

d2xi I . ik . chi dx1 

ds2 + 2·9 . . [(g]k),l + (gik),j- (g]t),k]-~- ds = 0 . (80) 

If the abbreviation 

-.- 1 ik 
{jz} = 2:9 .[(g]k).t + (gik),j- (g]tl.k]' (81) 

. is introduced, where {j1} are called gcnemlized Christoffel symbols of scco11d kiwi 111 

V,.-spacc, then the equation takes the form 

d2xi -.- dxi dx1 

-d 2 + {J'·zl.-d .-d = 0 (82) ' s s s 

and iH calkd equation of geodesic (.qcodr•sic cquatio11) in a V,.-sp;H'<'. If W<' liS<' I h<' 
abbreviation 

--- dJ:i dxk 
G; = {~d·J;""· d., ' (1':1) 
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the geodesic equation will take the form 

d2xi . 
ds2 + c~ ~ 0. (81) 

On the other side, the equation of auto~ parallel transport of the contravariant vector 
field u = d/ds = (dxifds)fJ; = uifJ; along the curv~ with parameter (length) sis equation 
of the type 'V u u = 0 and in a co-ordinate basis will have the form 

or the form 

where 

d2x 1 dxk dxi 
-d 2 +fkj·-d .-d =0. s s s 

d2xi .i 

ds2 + ri = 0 

. dxk dxi 
r~ = rkJ·Ts·-;J; 

(85) 

(86) 

(87) 

The components rij of the contravariant affine connection I' can be represented by 
means of the generalized Christoffel symbols of second kind for r and other additional 
t'erms in the form 

rki = {L} -ski I , (88) 

where 
c i 1 il ( T m "' m ~ m) ·>kj = 2·9 · 9m·"f· jt + 9-m]· 1 kt + 9-mi· kj (89) 

arc the components of the generalized contorsion tensor S. By the use of the explicit 
form of Tjki : Tjki = g~ ·'P,j- g) ·'P,k, they take the form ' 

·\ 

-5 k k kl 
ij = 9j ·'P,i - g ·9if·'P,l 

I 

(90) 

l1y means of the representation of rij the equation of auto-parallel transport can be 
writt~n in the form 

or in the form 

where 

d2 xi -. - dxk dxi - . dxk dxi 
-d 2 + {ki}.-d .-d - Skj ~.-d .-d = 0 ' s s s s s 

d2xi 
ds2 + Gi:::: yi 

-. ' - .. dxk dxi . . _. 
T 1 

- s . I - - r~- G'- 7' 1 

- kJ · ds · ds ' -

(91) 

(92) 

(93) 

The difference between the geodesic and auto-parallel equation is obvious. T = 'fi.8; 
is a contravariant vector field. Since only the symmetric part of Skj i has to be taken into 
account in the tc~m T i, T i will have th~ explicit form 

. dxi dxk 
-· ( i l .c g-)-.-, T' = 'P,l· 9k·9j -g · jk 'ds ds (91) 
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and the auto-parallel equation will have on its right side a term describing a force 
induced by the gradient of the scalar'field rp. · · · ' 

Therefore, the action of the contraction operatorS induces ari additional force, related 
to the contravariant torsion tensor T and different from zero for the parallel transport' of 
contravariant vector fields. · · 

In thespecial 'case, when the contravariant connection T is chosen to be zero on the 
ciirve xk(s), i.e. r}k(x1(s)) = 0, (fi(x~(s)) =. 0), then the geodesic equation will ~ave the 
form · · · 

d2x( -· 
--=-T' 
ds2 

and the auto-parallel equation will take the form 

d2xi 
ds2 = 0. 

(95) 

(9_6) 

The last equation can be interpreted as -an 'equation for thc(trajectory of a fr~e moving 
particle in ~ontrast to the geodesic equation. ' . ,. · · .· ... ·· 

If the relation between the contravariant-affine connection f a:ncl. the covariant affine 
connection P is used in the form r~k + Pjk = g};k• then the geodesic equation can be 
written in the form 

d2xi ; dxi dxk , i . dxi dxk 1 -; _ 
-2--Pjk·-d .-+gj·k·-d .-+T -0. 
ds s ds ' s ds ~ ', i 

(97) 

For the auto-parallel equation it follows 

d2xi .. · dxi dxk. . . dxi dxk 
P •. , . + • -o -d 2 - jk·-d .-d 9J·k·-d .-d - . s s s ' s s (98) 

Now, if one chooses in analogy to' the' ca.Seof f(xk(s)) ='0 the vanishing ofP o,n.the 
curve xk(s), i.e. P]k(x1(s)) = 0, then the geodesic equation andth~.auto-paralleleqmition 
will have a different form from that in the case of f(s) = 0, which will depend on the 
explicit form of 9J;k = <p,k·9} 

d2xi . dxi dxk -. 
-d" +gJ'·-k--d· -d +T' s· · s s 

d2xi . dxi dxk 
--+g'·k--ds2 J; · ds · ds 

0 (geodesic equation), (99) 

'o (auto-p'arallel equ~tion). (100) 

When Pjk(x1 (s)) = 0 (and therefore PA _=;= 0), then g};k ,= fc if j,k , and the geodesic 
equation· and tlie auto-parallel equation can be written in the form · 

d2xi d<p dxi , -; 
ds2 + ds ·-;[; + T 

d2xi drp dxi 
-+-­ds2 ds · ds 

0 (geode~ic equation~, . (101) 

0 (autO-parallel'equation). (102) 

The structure of the generalized Christoffel symbols of second kind {}k} for the case 

ofVn-spaces shows that the functions Jii(xk) = e'l'(x">.g} have to be taken into account 
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in the consideration and applications of the geodesic equation. The same is also valid 
for the auto-parallel equation. It is obvious that in the case where Pjk(x1 {s)) = 0 the 
auto-parallel equation can. not be interpreted as an equation of the trajectory of a free 
moving particle (ifthe affine parameter s is not changed)' in contrast to the case, when 
r}k(x1(s)) = o. Therefore, in Vn-spaces [as in the general case of (Ln,g)-spaces] the 
equivalence principle will be valid only for the case of vanishing the contravariant affine 
connection in the auto-parallel equation and it will be not valid in all other cases without 
changing the parameter s of the considered trajectory. 

6. EINSTEIN'S AND GEODESIC EQUATIONS IN V4- AND V4-SPACES 

6.1. Einstein's equations. The relations between the Einstein equations in Vn- and 
these in Vn-spaces (n = 4) can be found on the ground of the relations between the 
main structure of both types of spaces. In Vn-spaces the contravaraint affine connection 
r is connected to the covariant affine connection j5 on the basis of the action of the 
contraction operator C: C(dxi,8j) = dxi(Bj) =g) and considered as a symm~tric (Levi­
Civita, Christoffel) connection 

r i - j5 i - {i } -- {i } - 1 im ( ) jk - - jk - jk - kj - 2·g · gmk,j + gjm,k - gjk,m {103) 

where {;d are the Christoffel symbols of second kind in Vn-spaces. From {1) and {2) 
there follows that 

P i = e2"' p-i. = -e2<p r i. = -e2<p {i. } Jk . Jk . Jk . Jk ' 
ri - 2<p r i + i - 2<p' {i } + i jk- e · jk 'P,k·gj- e · jk 'P,k·gj 

(104) 

The Riemann (curvature) tensor R} ijk in Vn-spaces is determined by ITieans of {}d 
in the form -z _ -z • -z -z -m -z -m _ 

R iik- r ik,i- r ii,k + r mj·r ik- r mk·r ii_-
= {\k},j- {\J,k + {~j}.{i'k}- {~k}.{:j} = _pl ijk. 

(105) 

The Riemann (curvature) tensor R1 ijk in Vn-spaces can be expressed by means of the 
Riemann (curvature) tensor in Vn-spaces through the relation 

R 1 ijk = e
2"' .(R 1 ijk + Q1 ijk) , Q1 ijk = e- 2"'.R1 ijk- R1 ijk (106) 

where 

Q1 ijk = (e2"' -1).({~J.{i'k}- {~d.{ij}) +2.cp,m.(gj.{\d -gj;'.{\j}). {107) 

Q1 ijk are components of a tensor field. They can vanish at a point or on a trajectory 
in Vn, where the affine connection f(xk(s)) is chosen to be zero. In this case R1 ijk = 
e2"' .R1 ijk· On the other side, Vn and Vn could not simultaneously be flat spaces (R1 ijk = 
'-, . l 0, R ijk = 0) If Q ijk i 0. 

If we introduce the abbreviations for the case of Vn-spaces: 

...... i _ ik ...... ik l - m 
R i - g .Rki = g .gm .R kil , 

- .. k -, 
R = g'3 .g1 .R iik (108) 
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Qij = /k .Qkj = gik .g:n .Qm kjl ' Q = gii :gf .Q' ijk . 

{;ii = fli ~"-~.kg} (Ei;1stcin'~,tensor in Fn·~paces), 
(109) 

(110) 

then the Einstein tensor ci j in v n·Spaces can b<; expressed by means oft hP Einstein 
tensor in V,,-spaces . 

cii = c·1"'.(Gi i + qG_i j) ( ,j Qj 1 ; Q 
q ' j = j - 'j·flj· .. (Ill) 

Therefore, the Einstein equations in Vn-spaces (n=1) can be written in terms of the 
Einst<~in equations in Vn-spaccs as 

G-; ..\ -4,o ; _ a.Ko -4"' T 1 c~ 
j + 2.c ·flj- --2-.e ·mg•/1 1 - q ' 1 (112) 

A comparison with the Einstein eqt~ations in V,1-spaces (11 = 4) 

G
-; ..\ ; a.n:a 

7
,; 

{ + "'j·flj = --2-·mg.•h j (II:!) 

shows that the consideration of the last equations in V 4 -spaces induces an additional term 
q(;i 1 on the right side of the equations and an .. additional factor [dep<>nding onthe scalar 
field <p(xk)] to the fundament'al constants Ko and ..\ dependingm1 the scalar field y(.rk). 
If we now introch1ce the function~ . ' ' ' · . · ' ' '· · 

3:(xk) = ~.e-4<p(x•) 

then ( 112) will t~ke tht; form , 

Ko(xk) = Ka.c-4,o(x•) 

-; >: 1 a.il:a · ; . ('i 
G i+ 2·gi = ...,T·mg•hTi - q' i 

i 

(!H) 

(115) 

and we will have E.!_nstein's equations in. V,,-spaces (n = 4) with cosrnologic~d and 
gravitational functions..\ and Ko instead of the cosmological and gravitational constants..\ 
and n: 0 and with an additional gravitational source indun•d by an invariant function [t lw 
scalar field cp(xk)]. · 

6.2. Geodesic equation. The geodesic and auto-parallel equations are identical in a 
co-ordinate basi~ in V4~spaces. The geodesic equation can be writt<·nin t hP ·form · 

. . . 
d2 x; -. dxi dxk ·d2 xi . · dxi d;rk 

d- 2 + rJk·-d- .-d- = d" + {jd. d.,.· d.,. = 0 · s s s s s s 
( IW) 

In Vn·spaces the square ds2 = flij.dxidxi of the line element. ds is conformal to ds2 = 
.Qij .dx;dxi in Vn·spaces 

ds2 = r 2"'.ds2
• (Ill) 

Both types of equations (gcod~sic and auto-paral.ld) in V,-spacC's are diffNcnt 

<p~,; -.- cf2-J d2:k 
-
1 2 + {\}.-.-- = 0 (geodesic equation), 
( s 1 ds d.~ · (111') 
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d2 xi -. - dxk dxi - . dxk dxi 
-d 2 + {ki}.-d .-d - Skj'.-d .-d = 0 ' s s s s s 

{119) 

d2 xi . dxi dxk 
or -

2
- + fjk.-.-d = 0 {auto-paralell equation). 

ds ds s 
(120) 

By means of the relation between the affine connections in Vn- and Vn-spaccs tlw 
geodesic and the autoparallel equations in Vn-spaces can be written in terms of the affine 
connection in Vn-spaces and the scalar field cp [s. {82) 7 {94)) 

d2 xi 2,- i dxi dxk 
J-l + e .r jk·-=·-d-us ds s 

2'1' im dcp dxi 
e.cp,m.e .g -2 d_.-d_ 

_,; s s 
(geodesic equation), 

dxi dxk 2 dxi dxk dxi dxk ~ 
e = 9'7;--·-d = g(u, u) = e "'·Yik·-d .- = Yik·-d- .-d- = r:, 

J ds s s ds s s 

d2,.• d j d k 
"' 2'1' f' X X 

dS2 +e · ;k· ds· ds 
dcp dxi 

- ds· ds 

(auto-parallel e_quation). 

(121) 

(122) 

The geodesic and auto-parallel equations differ from the geodesic equation in Vn­
spaces. The additional terms are induced by the scalar field cp. If we chose r Jk (xk (s)) = 0, 
then both equations described the motion of a particle under different forces caused by 

the scalar field cp 

d2xi 

dS2 
d2xi 

dS2 

2'1' im dcp dxi ( d . . ) 
e.cp,m.e .g - 2 ds· ds geo es1c equation , 

dcp dxi . 
- d-· d- (auto-parallel equatwn), s s . 

and are not equations of a free moving particle in a Vn-space. 

7. CoNCLUSIONS 

{123) 

(124) 

In the present paper the main structures of Einstein's theory of gravitation are considered 
over (pseudo) Hiemannian spaces with different (not only by sign) contravariant and co­
variant affine connections. The covariant affine connection is determined as the common 
symmetric (Levi-Civita) connection and the metric is the common Riemannian metric. 
The contravariant afiine connection induced by the covariant affine connection and the ac­
tion of the contraction operator S appears in a co-ordinate basis as a non-symmetric affine 
connection with torsion tensor induced by the existing scalar field (invariant function) <{;. 
This scalar field changes the whole structure of the Einstein field equations although in 
their form they are analogous to these in the common (pseudo) Riemannian spaces with 
one affine connection and Riemannian metric. The difference between Einstein's equa­
tions in the spaces with one and the spaces with two affine connections is shown in explicit 
form by expressing both types of equations in a (pseudo) Riemannian space with one affine 
connection. In such a space the geodesic and auto-parallel equations from a space with 
two connections do not a:ppear as .equations of free moving particles. Additional terms 
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induced by the scalar field cause 'the exisl<'ncc of forces due to the torsion'tt:nsor field 
of the contravariant affine connection· in tlie space with fwo coimections.· The presented 
model for describing the gravitational interaction appears as a model lying between the 
models in Einst.cin-Cartan spaces and these in Riemannian spaces. Further considerations. 
are necessary for finding out the range of vitality of the,consideredin this chapter _model. 
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M_!lHOB C., KonapoB A., ):{HMRTpoB E. 
( L , g )-npoCTpaHcTBa. 

n . -
06max TeOpRH OTHOCRTeJihHOCTR Ha V4-npOCTJ>l 

Pe3yJihTaThi nccne.!lOBaHnii npocTJ>aHCTB c K1 
aqxpHHHhiMR CBH3HOCTHMR crieURaJIR3RpOBIDihl 

·C MeTpR'IeCKRM nepeHOCOM R C TeH30pOM KOH" 
.D.O)pRMaHOBhl npOCTpaHCTBa C KOHTpaBapRaH1 

. BapmtHTHOH (CRMMeTJ>R'IeCKOH) CBH3HOCTHMR ll 
3HHWTeHHa paCCMOTJ>eHa Ha 3TRX npOCTJ>aHCTB; 
pa-JlarpamKa n TeH30phl aHeprnn-nMnynhCa 
:;liiHWTeHHa R TeH3opaMR 3HeprnR R RMllYJihCa I 
Bax 6e3 KpYlJeHH:H. feo,lle3R'IeCKRe R aBTOnapaJIJ 
BaX HOBOro THna paJJIR'IHhl B OTJIR'IRe OT CJIY'Jrul 
6e3 KpYlJeHRH (c O.!lHOH CRMMeTpH'IeCKOH CBH3HC 

Pa6oTa BhinOJIHeHa B Jla6opaTOpnn Teopen 
6oBa 011.5U1. 

Coo6meuue Ofu.eJlHHeuuoro HHCTHryTa liJlepHLI 

Manoff S., Kolarov A., Dimitrov B. 
( L n , g )-Spaces. General Relativity over V4-Spa 

The results from the considerations 
with contravariant" and covariant affine connec 
for the case ~f ( L n , g )-spaces· with metric tra 

g .. ·k = 0 imd J/ = e~ · g.i (the s.c. (pseudo)Rierr 
ij, 1 1 . 

and covar~ant symmetric affine connections). 
is considered in (pseudo)Riemannian spaces· \1 

contravariant and covariant affine connections 

Lagrange equations and the corresponding energ 
obtamed and compared with the Einstein equati 

The geodesic. and autoparallel equations in V~ 

equations in contrast to the ca<;e of V4-spaces. · 
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