


1. -ORDINARY DIFFERENTIAL, COVARIANT AND LIE DIFFERENTIAL

1.1. Ordinary differential d as a contravariant vector field. Let us recall some
well known facts about the ordinary (common) differential:

The co-ordinate differntials {dz* , i =1,...,n, dim M = n} of the co-ordinates {z'} in
a neighborhood U.of z € M ‘are con51dered as covanant basic vector fields in T*(U C M).
They define the s.c. covariant co-ordinate basis at every point 2 € U. On the other
side, the co-ordinate differentials dz’ can be considered as components of a contravariant
vector field d = dz.9;, which is called ordinary differential given in a co—ordmate basis.
The reason for the last interpretation is the followmg

Let:a co-ordinate transformation in M be given of the type

T =2 e bi(ek) = gl.ak +efi(eF) =T (eF) =27 (&%) ) | e |1, 1)

where ¢ is an infinitesimal parameter and &' are components of a contravarlant vector
field £ in a co-ordinate basis (€ =€.8). :

The difference between the new co-ordinates ' and the old co-ordlnates z* for 6 3590
defines the co-ordinate differential dz*(z*) at the point z € M with co-ordinates z*

B (o i S E
iky oy T(EF) -~z L _gpif k
dz*(") = lim . —}1_133666( ) =€(=") . (2)
. The co-ordinate dlﬂ'erentla.ls dz’ appear in this case as components of a contr_a.vana.nt
vector field £, 1nduc1ng an lnﬁnlteSImal co—ordlna.te transfortnation of the type =z +
dri(eh). | e T

Remark 1. The possibility of deﬁnmg co-ordmate dxﬂ'erentxals as components of a con-
travariant vector field is considered in a different variant by [1]. =~ *+ e

The notion of ordinary differential operator d can be introduced on the basis of the
possibility for con51der1ng the covarlant basic vector fields as components ofa a contravarlant
vector field [2].

Definition 1. Ordinary differential operator. The contravariant Vecto}' fieldd =
d=dz'0;=e®eq=d'.0; = d®e, 5 . : (3)

1s called ordinary‘diﬂ'erential operator.l

The basic vectors in T*(M) (dz' and e*) appear as components of the ordinary dif-
ferential d in a co-ordinate or non-co-ordinate basis: - : L

d: fodf=ditf=eeaf, . fECTM),r31. (4)
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The action of the ordinary differential operator on a function f is ca,llfad differentinlz’pn.
The result df of the action of d on f is called ordinary (or total) differential of the function

. The properties of the ordinary differential operator d are determined by the prope rh(‘s
of the contravariant vector fields and by the peculiarities of its construction:
(a) Linear differential operator, acting on functions over a manifold M

d{a.f+ B.9) =a.df +Bdg ,. a,B€ R (or C),
d(f.g) = (df).g + f-(dg) , fgeCT (M), r>1.

(b) The action on a function f can be given in co-ordinate or non-co-ordinate basis

d: f:>df=dzi.3;f:e“.eaf,
fecrmy,rx>1.

Remark 2. df in this case is interpreted as a function over M with values in T* (M),
i.e. df is a covariant vector field (Pfaffian form, one form)

df = (0:f) ).dz' = (eaf).e®

Here 8; f and eq f are components of the covariant ve(ftbr field df in a co-ordinate and

in non-co-ordinate basis.
(c) df is form-lnvarlant under the changmg of the dlfferent types of bases

df =dz'.0;f = Aa T A; pe epf—_qae epf—e e,,f,
Ag P A P =48 .

. (d) dz' is co-ordinate differential of the co-ordinate z* at point z € M.

The co-ordinate differentials {dz'}s.can be mterpreted in two different wa.ys
1. {dz'}, are the components of the contravariant vector field d at z € M;
2. {dz'}, are a co-ordinate basis in the co-tangent space T2 (M)atze M.

Reinaxlk 3. Many éuthors [see for exér‘r?lplek[.?]k, [4] ] define df asa mapping by méans of
the condition ‘
df : £—>df(£) £f  E€T(M ), fECT(M), r>1,df €T*(M),
df(€) = €°0:f = (df )i d=*(610;) = (df), 5’ dl"(a ) = (df)i & .9} = € (df): ,
(df)i = _,

In df the components of the contravariant vector field d are interpreted as basic vectors

of the covariant vector field df. . R
From the definition for df it follows that for f =z
dz*(6;) = oiz* =gF |

which is in accordance with the action of the contraction operator C; on the co-ordinate
basic vector fields dz* and 8; [C(dz*,8;) = C(6;,dz*) = dz* (&) = ¢f], i.c. the contrac-
" tion operator S is identified with the operator C. .

Remark 4. The definition of df, glven by means of the express:on df(€§) = &f, when
§'=C, can be generalized for S ;é C in the form

df : &= df () =£_f , EeT(M), fe C'(M)
§f=80;f=¢€ef, r>1, dfeT"(M)
Cd=fl.E, =g o
S(dz’,aj) = 5(0;,dz* ) = dz‘(a ) = f i-

()

Remark 5. The components of the -ordinary differential d in a co-ordinate basis are
considered as constant functions, ie. (dz') ; = 0.

Action of the covariant differential operator on the ordinary differential

The action of the covariant differential operator on the ordinary differential is deter-
mined by its action on a contravariant vector field and by the pecullarlty of the construc-
tion of d.

- In a co-ordinate basis

Vod=di ;.0; = (dz');;.0; , » )
(dz’)J_Fde:c, o - ®

where (dz');; is the covariant derivative of the covariant differential dz*, considered
as a component of the contravariant vector field d along the 'contravariant vector ﬁeld 0;.
The covariant derlvatlve Vfd will have in'a co-ordmate basis, the form "~

Ved = (dz') a=tiatea. @

Remark 6 If the covariant differential operator V; acts on' a co-ordinateé: basxc vector
field dr? (the other interpretation of dz'), the result of its action is different: from:that
when dr is con51dered as a component of d:

Va dz —P,:J dr Vfdz :‘P' gJ dz S
dz' - basic covariant co—ordmate vector field, : o (8)
Vajdr—adz_o . R

dz’ - component of contravariant vector d

The dlfferences n the action of Ve on dz in the cases of dlfferent 1nterpreta.t10ns of
dz' have to be taken into account when co- ordlna.te dlfferentla.ls are used if, addltlonal
conditions for identification of both the results of the action of VE on d are not required,
Le. if the condition P 7' = 0 is not required. On the.other side, these conditions have to
be in accorda.nce w1th the result of the a.ctlon of the Lle dlfferentla.l opera.tor on dz

In a non- co—ordlna.te basis -

Ve,,d Ve, (e%.e5) = e* /.,ea_d /Weﬂr, : ‘ ©)
€y = ey(e?) H TGP L ,

" Action ’tk)f the Lie differential ope‘rjatbr on th't? ordmary ‘d‘i_ﬂ"erentiq’l‘ ) ‘



- The action of the Lie differential Qpe’ratqr:ou the ordinary differential is determiired
by its action on a contravariant vector field and by the peculiarities of the ordinary
differential.

In a co-ordinate basis .
.Cad 0, Led=—€ ;dz7.0; = (Led').0i (10)

.Ca].dz" =0, dz'-component of the contrava.rla.nt vector d.
On the other side, the Lie derivative of dz’ as a covariant basic vector field is
Lo;dz* = (Pf; +T};)dz* . (11)

The compatibility conditions for both interpretations (taking into account the com-
patibility condition also for the action of the covariant operator) are

Pi=0,T%=0" )

Therefore, the compatibility of both interpretations of the co-ordinate differential dx*
can be fulfilled only in the following cases:

(a) Pik =0,I% =0atagiven point z € M .

(b) Pjr=0, I‘Jk =0 on a given trajectory z(7)in M, T€ R .

- (<) P'k_O I, =0 at every point € M, i.e. when [R({,u)]v=0, V¢, u, vel(M)
(R, w)}p = 0, V&, € T(M), ¥p & T* (M),

Since P and I' cannot vanish simultaneously in (L,.,g) spaces, thesc condltlons can b(‘
fulfilled only in (L,.,g) spaces, where S = C and P = —-T'.

In the general case of differentiable manifolds with different (not only by sign) con-
travariant and covariant affine connections and metric the two interpretations of the co-

.-ordinate differential have to be used separately and independently of cach other without

mixing the contents of the notion of the ordmary differential.

1.2. Covariant differential as a specxa] case of the covariant differential op-
erator. The covariant differential operator along the ordinary différential d defines the
notlon covariant differential

D := covariant different}ia] ,  D=Va= dz'Vs, = e*V,, . (13)

The properties of the covariant differential D are determined by the properties of the
covariant differential operator and by the construction of the ordinary differential d:
(a) Action on a function over the manifold M:’

Df=Vaf =df, fECT(M), r>1 .

(b) Action on a contravariant vector field:

Dv =V =1 ;- dz3.9; .—Du 0 =
=v* g.6f.ea = Dv.e, , UET(M), DveT(M).
Dv' =+ ;.dz7 is called covariant differential of the components of the contravariant
vector field v in a co-ordinate basis and Dv® = v* /ﬂ.cﬁ is called covariant diffcrential of
the components of the contravariant vector field v in a non-co-ordinate basis.

(¢} Action on a covarianl’ vector field:’

Dp=Vap= p,-;_,-.dj.d:ri = Dp;.dx’ =
= Pasd?c® = Dpae™, "peT (MY, DpeT-(M).

Dp; = pij.d? = pij.dei is called covariant differential of the A(tom[)'(in(‘.nts of the
covariant vector field p in a co-ordinate basis and Dp, = paya- d'ar—- Pays-c?-is called
covariant differential of the components of the covariant vector field p in a non- (o-ordmate ’
basis.

(d} Action on a mixed tensor field:

DK = V4K = K p;.d?.04 @ & dz® = DK4 .8, ©dr¥ =
= KA pra-d®ca®eP = DK pea Se B
K€ x" M)

DKA = KA ,;;J-.dj = K4 Bij .dzJ i§ called covariant differential of the ('ompononts
of the mixed tensor field K in a co-ordinate basis and DR = K4 nre- 4t = =hK B/aC @
is called the -ovariant dillerential of the components of the mixed tensor field K in a

no n—(:()—ordinatc basts.

Remark 7. In the definitions of the covariant differential ol components of vector and
tensor ficlds dz* and ¢ are considered as components of the ordinary differential d in a
co-ordinate and a non-co-ordinate basis. For this type of interpretation of dr' and ¢ we
will use the designations d' and d in contrast to the case; when dr' and e aré interpreted
as covariant basic vector fields: To avoid amnbiguity the ml(‘rprvtatmn of dr' and ¢ have
to be explicitly given in every diffcrent case. : PEEE <l

(¢) Action on t.hc (:ont,ravariant vector field d:

Dd=Vad=d ;d.0; = D&.& =d™ ;p.d’ cq = I)d" ;,, , ,
Dd = d j.df =T A Dd = d P = (epd® ro,.d).d

Remark 8. IIw dpph(‘dtlons of the covandnt dt[forentml d“(JW dl[f(‘rpn! mlc‘rpn tatmus
if the covariant differential is (ou.sxdcrcd not as a special case of the ‘covariant (h!f( rential

operator V¢ for § = d , but as a different-from-V 4 operator, whic h in its ac tmu on tensor
fields (‘hangcs their (ovarmnt ranl\ with 1, i.e.

D:K= 1)1( , K e (M), DK € b ,+1(M)“. e
DE = KA pidef ® 04 @de? = K4 yyp.c"Qcac?
(dz* and e are mterpretorl as b(m( vector {'dds)

In the case, where the covariant (llﬂor(‘ntml D is considered as (omrmnt (lllf(\r( ntial
pordtor Vd, its action doeb not, (‘hango (hc covarmnt rdnl\ 1 e. L
D=V4:K=2DK =V4K ; DR ek I(M)

‘This is duc to the fact that the co-ordinate differentials in d are considere d as (ump()~
nents of the ordinary differential d and not as covariant basic veetar ficlds. -



1.3. Lic differential as a special case of the Llc differential operator. The
Lic differential operator along the ordinary differential d defines the notion of the' Lie
differential

.Cd .= Lie differential..

The properties of the Lie differential £3 are determined by lh(‘ properties of the Lic
differential operator and by the construction of d:

(a) Action on function over manifold M:

Laf=df . fECT(M), r>1.

(b) Action on a contravariant vector ficld:

Lyv = —L£,d= [d v] = (.Cdv').a,‘ = (.Cdv“).(:n ,

Latt =0 ]dj_‘db‘, veT(M)y, 4

Lav* = (e5v®).d® — vP (egd®) — Cpy © vdv .

£ is called the Lie differential of Lho components of the contravariant vector field
v in a-co-ordinate basis.

(¢) Action on a covariant vector field:

Lap = (Lapi).dz* = (Lapa).e® ., peTT (M),

Lypi = pij-dd + pj- (PJ +F )dk

Lapi is called the Lie dzﬂemnhal of the components of the covariant vector field pin-

a co-ordinate basis )
(d) Action on covariant basic vector fields dz' and e*:
Lydzt = (P'k + l" £)- d".da:j ,

Lae® = ez =d* + (P[,1 + 1, + Cﬂ., )-d]. & .

The introduction of the notxon of the ordinary differential d as a contravariant vec-
tor field allows another way of introducing notions of the covariant diflerential and Lic
differential. On the other side, the so-defined notion is different from the notion of the
ordinary diflerential df of a function f, which, ha.s found many applications jin the calculus
of (exterior) differential forms.

“2. 'TENSOR DIFFERENTIALS
2.1. Tensor differential as a mixed tensor ficld (ordinary tensor differcntial).
In the previous section we have considered the ordinary differential as a contravariant
vector field d = dz'.0; = ¢®.e4 acling on functions and tensor ficlds. Morcover, the co-
ordinate differentials dz' are considered as componcnts of the ordinary differential in a
co-ordinate basis. They arc not interpreted as covariant co-ordinate basic vector fields
but as constant increments dz of a Tunction f € C"(M):

df (z) = 8 f(z).dz*, dzf e R*, | (dz')k:=0,
d'=dz'.0; = e".eq,dT’, e* € CT(M) .

On the other side, one can construct on the dnalogy of the ordinary differential operator

d a new differential operator d. The. only difference between both operators is that in the

new operator d the co-ordinate differentials are considered as covariant co-ordinate basic
veetor fields:

Definition 2. Tensor differential d. The mixed tensor field

a: dI‘-@ai :g"i~dri®aj =e? ®ea'=gg'ca‘®¢ﬂ ’ ""dz"., e ET‘(M) e

is called (ordinary) tensor dzﬂ'erentzal .

The tensor diflerential d appears as a mixed tensor field of second rank of type 2
[d € ®'(M)] in contrast:to the Kronecker tensor field Kr = g 0; ®@dz' = gf.eo @eP
which is a mixed tensor ﬁeld of second rank of type 1 [Kr € ®11(M)]

The properties of the tensor differential follow from its construction and from the
properties of the contravariant and covariant basis vector fields:

(a) Action on a function

fecr (M),
dz' € T* (M)

B d:f—df,
Cdf = fids € TT(M),

The tensor differential d has also ‘t‘.he property
E(Ef) = f(’,-’j).d:c’t.d:cj.
Proof:

d(df) = (lcia:‘®6 ) (f5- d:cj) = fiji- dr’ ® dzi = 3 (f',,J +_f,,) d:c ®d1:’
=L(fiji+ fii): (dz? ®d:c’ +dz? @ dz') = f(,”) d:z: d:c’ ,

where

fuin =% (f.,,+ i), dofded = L(def @ ded +d:cJ®d:c'),
3 © fECr(M)) 7.2_2» .fl,] f,]z-:«fg' e

(b) Action on a tensor ﬁeld L U e e

L d:K-dK, Keg*(M),, K e ®",+1(M),,~,.
®" 14+1(M) is the lmear (vector) space of affine tensor fields of rank (k l+ 1), w

I\—I\AB(?A®d.‘C chec®e s
dK = (d2* ® 8;)(K4 .0, ® dzB) =
=K"B,.-.dr"opa,,®dz3=21{43‘®aA®dz‘B
dKA g = KA p;.dzt .

PR

dK4 p are called tensor differentials of the components KA 5 1n a co—ordmate bas1s

The tensor differential dK i is a’tensor field only with respect to constant (affine) co-
ordinate transformations. dKA B transform with respect to the basic vector field dz' as
covariant tensor fields of rank 1 under affine co-ordinate transformations. dKA g appear
with respect to the basic vector field dz’ asa set of covanant (afﬁne) tensor fields of rank
1in contrast to dK4 p appéaring as a set. of funcuons over M, .

dK is a tensor field only under affine (llnear) transformatlons of the co—ordlnate z* ) L
e. dK is an affine tensor field of contravarlant rank k and covarlant rank I

t i
e



The ‘action of d on’the components K4 g of a tensor field K is similar in'its form to
the action of d on K45 € C"(M). The difference between both- actlons is due to the
dlﬂ'erent meamngs of the cco-ordinate dxfferentlals d: (1 =1.. - n)

dKAp = KAp,det, " dz' €T (M),
‘-dI’A -—KAB.d:c , o drfeCT(M),r>1.

In a non- co-ordmate basxs

K=KCpec®e? ,
(dK = (e* ® eo)(K€ pec ®eP) =
=(eqKC¢p)e*®ec®el=dKC p Qec @ |
dK€ p = (ea K€ p).€*

d has also the property:
2(21{) = K4 B(,,-,j).d:tj.d:t;" ® 84 @dz? | K4 Bji= K4 Bij -
(c) Linear operator with respect to tensor fields (mcludmg functions)

d(a1\1+ﬂlﬁz)—ad1{1+ﬂd1\2s . )
®BER(or C), Ki€® (M), k=0,1,..., I=0,1.. ,i=12

(d) Differential operator with respect to functions over ‘M . )
d(fg)=dfg+fdg, [g€CT(M), r>1, dfdgeT"(M).

Proof: d(f.g) = (dz' ® &;)(/.9) = d=’ ® &i(/.9) = [B:(S.9))-dz’ =
= (0:f.9 + J.0ig).dz* = (0:.g).dz* + (f.Big).dz’ =
(3fdr')y+f(3-ydr‘) = dfy+fdy, where (3fy)dr = (3fdr)y, dz'g =
dzt.
” () Differential operator with respect to tensor fields with rank > 1 not obeying the
Leibniz rule

4@®5) =1Q®S+Pg0s, dPe 55 =dS°p®Q®c ®d”

or 3 - v
dQ®5)=dQ®S+dr'®Q0aS=dQ®S5+c"®Q® xS
Proof: l

d(Q®S) =d(Q* p.0s ® dz” ® S€ p.0c ® dzP) =
= (dz’ ® 6;)(Q" p.04 ® d=” ®Scuac®d:cD)—
=(Q* p.5p);i.dz* ® 04 ® dz” ® 8¢ ® dz”
(QAB,SCD+QABSCD ))-d7° ® 4 ® dzB ®dc ® e =
=(dQ* 5.5 p +Q* p.dSC p) ® 94 ®dz® Q¢ ® dz” =
:EQAB®8A®d;c ®S€ p.Oc®dz? +dSC p @ QA p.0aA @ dz? ® J: @ dzP =
:3Q®S+HSCD®Q®BC®d:D, QG@’C,(M)‘S€®"'"(M)

The 4omrd(lmn oper,\tor S acting on df dnd on a contravariant vector field £ leads
to the rtldll(nh

S(df.ey=df(e) =&f .
(@) =f;.0:f = f&f = f.s-[’j = fJ‘

Proof:

df(€) = dJ(¢ .0;) —(()fd-‘c')(f’ 05) =¢&. (’fb(dr =61 0 f =
=0f=¢.0f=¢f, =T 6’3—6'-0—61.3;-, Os=J" ;.0 .

Special case: [ =gk,

dr* = diz* .dz! —g"dr —dz-
S(dr*, €) = S(dz*, E)—dr ({) EJ —{‘

2.2. Covariant tons()r dlfforontlal B) the use of the covariant differential operator
Va, (instead of the partial differential operator 9;) we can constr

uct the covariant tensor
diflferential. '

Definition 3. Covariant tensor differential. The operator

D=dr'eV, =c*® Ve

is called covariant tensor differential.
"The properties of the covariant tensor differential T are dete rmined by its construction
and the proporh( s of the covariant dlﬂ'(‘ronllal opcrator dlong a contravariant basic vector

ficld:

() Action on a functmn

D:fDr, Di=df, fec (M), r>1.
Df = (dz* ® Va,)f = dz* Vaj_()j'dr—-dj.

E(Df) = [j;,‘.d-’ﬂ‘ ® d-’CJ N .‘ f,J:f‘],

Proof: E

D(Df) =D(df) = (dz* @ Va, )(f, de)_f,,dx ®d.r1+l" fk dr! Ndﬂ =
:(f.]r-i-[kfk)dl'@d-‘l"’ f,_,,dl‘@)(l.l-’, =f,.

In a non-co-ordinate-basis S
ﬁ(bf) - (caepf + PJ, 8'7.[) € ®e" =Jip1a-€" ® o Spa=caf [ e

(l)) ‘Adtion on a tensor field: sl ,
DK = (d:r QOVJ )I\ =dr' ® V,, KN = dei ® K4 . ()l‘ (,\\‘l"f"
= K pade’ @ 05 9 de” = 1)1\" B del o
K= - KA . 6Acodr" € ok (M), DKAy = K et -
Vo, K= K" ;.04 @ d=" Vel K =KCpeo @l '.f DRC = K o™ |



D(DK)= KA pyy.de? drt e 0y % de?

D appears as an operator increasing the covariant rank of a tensor ficld with 1

D:K DK, Kezgk(M), DKeak . (M).

DK4 j are called covariant tensor differentials of the components K4 g of the tensor
field K in a co-ordinate basis.

((_) Lincar operator with respect to tensor fields:

Dla.K) + B.K2) = a. DK, + B.DK>
Kiewgf (M), i=1.2, a,B€ll(orC).

(d) Differential operator with respect to functions:

Difg)y=Dfg+[Dg=dfg+[dg, figecr (M) .

{e) Differential operator not obeying the Leibniz rule with respect to tensor fields with

rank > 0:
D(Q‘? S)= DQe S+ DPQ

I)ans—l)s p®0Q® dc ®dz? dx'@Q@V;,.S:
=DSCpRQeec®e? =" @Q® V., S ,
Qe (M), Seam (M).

Proof:

D(Q® S)y=D(Q* 5.5C p.0r @ dzP @ dc ® dz”) =
= (Q* 5.5 p); dz’ ®8A®dr”®6c®dx '
(QAB,.SCD+QABSCD,)dI 693,\60(11 ®6c®d1:
—QAB, dz’ ®6A®d:: ®gcpac®dxb+
+5€ pyde' @ Q” p.0a ® dz” ® c ® dzP
—DQ®9+DSCD®Q®6c®dz

2.3. Lie tensor differential. By the use of the Lie differential operator £, (instead
of the covariant differential operator Va,) we can construct the Lie tensor differential.

Definition 4. Lie tensor differential. The operator

E=dr' @ Ly, =" @ L.,

is called Lie tensor differential.

The propertics of the Lie tensor differential are determined by its construction and
the properties of the Lie differential operator along a contravariant basic vector field.

(a) Action on a function:

£ [T, feCT(M), r21, If=dfeT (M),
= (dz* @ £5,)f = dz* L5, f = da’ 3[ fidzi =df =Df ,
Lf=Df=df €T (M).

10

£f) [f,,, (P" +r",) fi).dz? ®dx’ (La.ps)-de* ®@dzi, pj=f;.
Proof: :

EEhH = £(df) - (dz’ ®£a )(f, do¥) = dri ® £a, - 1:1) =
=dz’ @ (f j;.dz? +f, Lo,d?) = e’ @ [fj0-dw? + [.(Ph +T%). do’] =
= s + (PE+TR) Julde' © do? = (£a, p)drieds , p=/;
(b) Action on'a tensor field K € ®" (M) o
£:K-EK,, Ke® (M), ZEKe* (M),
IK=TK*p®0,0dc? EKAp = (Lo, K* p).dz’ .
Proof:

£1\ (d:!: ® L, )(I(A36A®d1:3)—dz ®£a (KAB 6A®d1:3)
=dz* ®(£a.1\ B) aA®d1: (£a KA B) dz? ®6A®d1:
woeet a = ERA B @ 0a @ d2B

T(TK) = (Lo, L0, K4 B) ' @ dz' @ 94 ® dz®

LKA 5 are called Lie tensor dlfferentlals of the components K# g of the tensor field
K in a co-ordinate basis.
In a non-co-ordinate basis

EK=TK°p®ec®e®, IK°p= (£ea1<CD) e
(c) Linear operator w1th respect’ to tensor ﬁelds :

£(a 1{1+ﬂ1{2)—a£1{1+ﬂ£1{2, .
1\,€®k4(M), 1—«1 2 ;aﬂER(orC)

(d) Differential operator w1th respect to functlons
- IUg)=(ENg+ (),

(e) Differential operator not obeying the Leibniz rule thh respect to tensor fields with
rank > 0:

feeC (M), If TqeT*(M).

£QeS)=2Q®S+IPies, .
£Pogps=dr' ®Q® £5,5 =¢® ®Q®£e,S

The proof is analogous to that for D(Q ® S) '

The different types of tensor differentials increase the covanant rank ‘of the’ tensor
fields with 1. It is possible the action of the tensor differentials to be specialized for full
symmetric and full anti-symmetric (skew-symmetric) covariant (or contravariant) tensor
fields. The additional condition for the action of the tensor differentials on these tensor
fields is to map a full symmetric tensor field in a full symmetric tensor ﬁeld and a full
anti-symmetric tensor field in a full antl-symmetrlc tensor field. Because of the structure
of the tensor differentials (they contain a covariant vector basic field and increase the
covariant rank with 1) this condition can be fulfilled only for covariant symmetrlc (or
anti-symmetric) tensor fields. :
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*3.  SYMMETRIC TENSOR DIFFERENTIALS - )
The tensor product of two full symmetric covariant (or contravariant) tensor ficlds is not
a symmetric prodpct and the new tensor field is not a full symmetric tensor field. The
symmetric product of two full symmetric tensor field is defined as [3] (p.89)

BT T . : Y — 3 5 [
Remark 10, We will further consider the action of ,d only on covariant tensor fields.

‘ T'he properties of the symmetric tensor differential (d are determined_ by its construc-
tion and by the action of the tensor differential on covariant tensor fields.

a(aA® ,B) — Sym(,A® sB) = ,A,B,. JA€ s ®k (M) , SBE€ 8 (\l) . i {a) Action on a fllll('[i‘(‘)ll .
Let we now consider the action of the tensor differential on a full symmctric covariant ) Jdf=df . fecT(an.

tensor field ,B. Proof: ; i -
E(,B) - B(A),,'.d:l:i 2 dI(A) = [CQB(A)].CG & fl(A) :
) L .

) Af = Sym(d)) = .S'ymA(('),‘f.(I.r") = f_,i‘b'ym((lr") = fidei=df .

where because of Sym(dr') = dri
de(A) = dzit.... dzt* , &) = ¢al _____ e . B = Bi, _iv s Biay = Bay ok - : o has ;llsp the property

If we additionally impose the condition for the full symmetry on the affline tensor field s d)) = d(df) .
d(,B), then we have to act with the symmetrisation operator Sym on d(, B) using the : (b) Action on‘a covariant tensor field
decomposition formula for the Bach brackets for By;,. i,,i) . ) B _

: s : AB = d(B) .
Sym[t_i(,B)]_z B(A,g).d:pi.d:(") = [e((,BA)]._e"’.c(A) = ‘

> .
= Bli, .ip)-dztdzt o dett = e((,B(,‘_”ak)].e".'e“‘ ..... ek | . Proof:
where » : B3 = Sym(dB) = Sym(Ba;dit ® drt) = I}(AJ-),d,p(" o dpt) =i
1 ) ’ ~ . = Big iy datde® = By dedet = Jd(,B)
[Beayil(ai = Bay) = B, = 5-[Btriucain)i + Biis e + Biiipinsisi)iva T Bem(M). B= I3 qy-datAY
Foot Bisis )iy - o
_ : e where : : : ‘ oy
We can now define an operator;,dbk by the usei,of the tensor diff.ercntial d f—m(l the : A= l}(/\yi)_(l1fl‘_([1:(’1)‘ = [p(“]j'/‘)].p".p(d)‘ Be oe(M) .
symmetrisation operator Sym. It will map a covariant tensor field with rank & in a full - . ) ) : .
symmetric covariant affine tensor field with rank k +1. (s B) = Sym(Ba),i-da’ © deW) = Biaiy-de¥ @ de™ = B oy.det deld) =

. . G = lf(A,,-).d;lf(").(Ix" .
Definition 5. Symmetric tensor differential. The operator - : ] :
. s has also the property

sd=Symod:B— ,HBiz Sym(t_i.B) » : o sd(sdB) = B(/\';‘-j)'d"”j"l"'i'd"?(m :
Be® (M), sdB € 4 @1 (M) . ; :
. 4 X (¢) Linear operator with respect to covariant tensor ficlds
is called symmetric tensor differential. ) :

: sA( I3 + B.82) = a. dBy + B..d B |

Remark 9. Since d contains in its construction a covariant basic vector ficld (dz or c*) B; € k(M) i=1,2, aB€R (or ()
1 (Y — 1,4, ] or .

the symmetric tensor differential can map only a covariant tensor field in a full symmetric

covariant affine tensor field. Contravariant tensor fields cannot be entirely symmetrised Proof:
by the use of ,d: -

t sd(a. By + B.133) = (Sym o d)(a. By + B.12) = Sym[d(a.B) + 3.82)] =

,dC = Sym(ac_‘) = Sym(C’fl ,g:‘ ®0a) = c) .;.da:" ® da) , ' ; ; Sym(n.ﬁBl + ,[3.3133) = a.Sym(;Zlfl) + /3..5'1/111(3[}2) =andBy + d..dly .
. C e (M) . where Sym(a.B) = a.SymB =a. .13 ..
5“ The affine tensor field ,dC is not a full anti-symmetric contravariant affine tensor ficld (d) Differential operator with respect to covariant tensor ficlds
bécause of the existence of different type of indices (contravariant A and covariant i) in a o _ ‘ ' :
co-ordinate (or non-co-ordinate) basis. ’ ’ ' o AN D) = dAB+ AdB, Aco (M), Bew(M) ;
+12
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Proof:

Ld(A 13) = Syn[d(A « B)] = Sym[dA = B+ dz* () B} =
= ((l 1% B)+ ,(drf 2 A d:B) = dAB+dd ‘A (() By =
AAB+ A lde = 8B = dA B+ (AL (dB) =
= ,dA B+ AdB

where the relations are fulfilled:

Symi{A @ B) = ,(A2 B) = (SymA).(SymB) = AB .
Sym(a.B) =aSymB=a,B, a€ll(or(C),
Sym(a.By + 3.8;) = a.SymBy + 3.SymB> = a3 + 3.1y,

Bi€ze(M), i=12, a,3€R(orC),
sdB = Sym(dB) = B(A i) dxM drf = Sym(Ba ;. dz % dzt) =
= Sym(Ba);-dz* ® dzM) = Sym[d(, B)] = ,d(, B) .

If A and B are full symmetric covariant tensor field, 1. e. A= ;A and 3= 83, then
,d acts on themn as a dilferential operator obeying the Leibniz rule

JA(AD ,B) = ,d(,A).sB+ ,A..d(.B),
JAE R (M), sBeE @ (M).

3.1. Covariant symmetric tensor differential. On the analogy of the definition
of the symmetric tensor differential we can define the notion of the cuviriant symmetric
tensor differential.

Definition 6. Covariant symmetric tensor differential. The operator

D=8ymoD

is called covariant symmetric tensor differential. -
"The properties of the covariant symmetric tensor differential ;D are cletermined by its

construction and the properties of the covariant tensor differential:

(a) Action on a function

sDf = Sym(Df) = Sym(df) =
df €T (M),  Sym(f) = id(f
DGDf) = DASf) = frij)-dz’ dr’ .

{b) Action on a covariant tensor field

df feCc (M), r>1,
)}, Sym(dz*) = id{dz?) .

. DB =,D(B),
DB = B(A;;).dzi.d:(") = [e(a BA)],e"‘.c(") .

Proof:

DB = Sym(DB) = Sym(Ba;.dz' @ d=*) = B(ay). dz @ dzM) =
= Bayy-dzt dz = Bauy.deM)dz’ = ,D(.B) ,
Be@x(M), ;3= DB dz(A) |
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et

+D(, B) = Sym(Bay; dz’ ®d1:(‘4)) B(A,) d::(‘@dxA) = B(A i)- dr d::(A) =
= B(A 4)- dz(A) drt .
+D has also the p'ropye'rt:yl) - ] o .
5(,53) = B(A;-j).dri.d:*.dx(f’) = ,(5(53)) i
(<) Lmo;r éperator with respect to covariant tensor fields:

,D(a.B, + B.B2) = a.Sym(DBy) + B.Sym(DBy) = a. DB, + 5., DB
B;e@x(M), i=12, a,B€R(orC).

(d) Differential operator with respect to covariant tensor field:
\D(4®B) = .DA.,B+ ,A,D(.B) .
Proof: k

. D(A® B) = Sym[D(A® B)] = Sym[DA® B+dz' ® A® V5,B] =
= Sym(DA ® B) + Sym(dz' ® A® V4,B) =
=[Sym(D A)]. SymB + [Sym(dx‘)] SymA.Sym(Vs,B) =
sDAB+ ,Adr’ ,(Vo,B) = ,DA,B+ ,A(Vo,B).de' =
= ,DA,B+ ,A.,D(,B),

where
+(Vo,B).dzi = [V,(, B)].dr' = B(c) e d::(c) dr' = - B(c;i)- dz*.dz(©) = ,D(,B) ,
.DA=,B(4), .DB= ,D(,B)

On the ba.sls of the last. relatlon we obtam that

i

D(AG B) = .DA.B+ ;A D(.B) = ,D(:A).B+ ;A D(:B) ..

Therefore, the covariant symmetric tensor differential +D acts on symmetric covariant

tensor fields as a differential operator obeying the Leibniz rule

3.2.

D(A®B)=,D|, (A®B) = ,D(,A. :B) = sD(;A).sB+ ,A,D(,B) .

Lie symmetric tensor dlﬂ'erentlal On the analogy of the definition of the

covariant symmetric tensor differential we can define the notion of the Lie symmetric
tensor differential.

Definition 7. Lie symmetric tensor differential. The operator

sE=Symof

is called Lie symmetric tensor differential.

15



The properties of the Lie s i i i
: h ymmetric tensor differential are determined by its construc
tlgn and t}!e properties of the Lie tensor differential: ned by lls construe:
(2) Action on a function

LB = Sym(Zf) = Sym(@f) =3f , [eCT (M), v
dfeT (M),  Sym(f)=id(f), = Sym(ds') = id(dz’) .

L L£f) = ,£(df) = £3(_pj).d:l;:".dxj , ri=1j, Lo.pj) = ';‘-(-Ea.l)j + £o,p1)

(b) Action on a covariant tensor field

,}—:B = ,—E(,B) .
Proof:

_ +LB = Sym(LB) = Sym((£5,B4).dz’ ® dzA] = L9, B ].dst @ du) =
= Sym[Ls, Ba).dz* ® d:z:(A)] = Sym[£(,B)] = £6(,B,4)vda:(‘4).dx" - ,Z(,B)
Be ®k(M) ) IB = B(A)dI(A) s

»

where

B = Sym(Lo.B4)-dz’ @ dz()) = ‘ca(iBA):d‘”(i ®@drt) = Lo, Bpy.dz'.dzA) =
= £, Ba).dz(4) dz’

£ has also the properties

< _ _ LGEB) = E(I(,B), .
ymoL =Symo LoSym , Symo£oSymoL =SymoLol .

L .L(,LB) = ,E(IB) = Sym(£(ZB)) = ,(Z(£B)) ,
s£(:£B) = £, £6,B).de? dz'.dz) = (£,, £, Ba)(jiay-dzi.dz’ dz(A)

(¢) Linear operator with respect to covariant tensor fields

s&(@.By + 8.By) = a.Sym(£B1) + A.Sym(EB;) = a.,£B, + §.,LB,
Bie®@i(M), i=1,2, a,feR(or C). ’

(d) Differential operator with respect to covariant tensor field

s£(A® B)= ,ZA B+ ,A,E(,B) .
Proof: '
s£(A® B) = Sym[£(A® B)] = Sym[ZAQ B+dz' @ A® £, B] =
= Sym(EA® B) + Sym(dr' ® A® £5,B) =
= [Sym(.CA)].Sg_/mB + [Sym(dz*)].SymA.Sym(£,,B) =
s£ASB+ (Ade' ((£5,B) = ,EALB+ ,A.,(£5,B).dz* =
= LA B+ ,A,Z(,B)

)
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where
(Lo, ) .drt =Ly, "(lf)-d.l'“‘i(".l'i = L'if",‘"é-;..rl:«(“).rl.;-'ﬁ: ,I(‘ 13) .
T = LAY L= LD .
On the basis of the last r(‘lgxlion we obtain that

LA B = LA B+ AL = (£ ) B+ AELBY

Therefore, the Lie symmetric tensor dilferential <L acts on syminet ric covariant ténsor
ficlds as a differential operator obeying the Leibniz rule :

LA i)y = L (A )] = LA = ,I(,,-t),,n + ALY

41 ANTESVMMETRIC TENSOR DIFFERENTIALS (lix‘l‘lill.\'.—\l, l)ll’l~'l{|ll‘l,\'"l'|;\l.$)
The result of the action of the tensor differential d on a full anti-synuuetric tensor field

1 € AR can be found in the form

i - s Y
d(, 1) = :1[“]‘,-.(1.1" wdr? = ."[(']_,,1'“ et 0 A = GaYey -

IT we impose the additional condition that the affine tensor field d(,1) has to be a
full anti-symmetric afline tensor fickd, then we have to act with the anti-syimmetrisation
operator sy on d(q-1) ‘

Asym(d(.\)) = .~lsynz(.‘l[”]j).;_\s_mn(dri ~drh) = "‘H”l.il‘d"'i AdFP =
= Asym(Agpyi)-dat A di? = Apgg)det AdY LA
where . ‘ )
Asym(Apyi) = A - Asym(de’' di") = ds' NdT n
On the other side, the operator Asym anti-symmetrises the tensor product 12 I
Asym(ARB) = ,‘lsym(/\,-l___;k.li',-‘_“j,).d.'r‘" A Adric Adrei /\ A d.r»"" : )
= A[i,...i,‘-Bj!mji].d;l.'i' A Adeicr Adeiv A LA drIt = :

= /\[,‘]m,'k].d;l"' A Adrit A ”[j,.,.j,]-‘l"'jl A Adrit =
= AN B = AsymAA AsymB = (AR D).

From _ _ )
(d(2A)) = Asym(d(aA)) = Appap-dr' A il

and by the use of the (‘.xpr(‘ssim; for Asym(A ® 1) for dA = Agide’ » gl}.r".‘
Asym(dA) = ,(dA) = Asym(/\”'.-.d.r" Qdr’) = .-\[,,‘,-]4([:" AdFD

it. follows that B
n(ﬁ-") = a(d(tl"“)) .

We can now define an operator qd constructed of the operator Asyin and the operator
d in the form (d = Asymod.

.Definition 8. Anti-syunnetric tensor diflerential (external differential). "The operator
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od A~ odA = Asym(dA) . A€up(M). L dAE “ iy (M) .

is called anti-symmetric tensor differential (cxternal differe ntial).
«d maps a covariant tensor ficld of rank & in a full anti- -symunetric covariant affine
tensor field of rank & + 1.

- Remark 11. Since the operator 4 d containsin its structure a covariant basis vector fiekd
dr' or e* [od = Asymod = Asym o (dr' 2 3;) = Asym o (¢® & ¢, )], it cannot act on
contravariant tensor ficlds as an anti-symmetrisation operator which maps a contravariant
tensor field in a full anti- -symmetric affine contravariant tensor field. This is the reason
for considering the action of ,d on covariant tensor ficlds onl_y

The properties of the anti-symmetric tensor dn'for( mtial are determined by its definition

and the properties of the tensor differential:
(a) Action on a function :

Wdf = Asy}n(_ﬁj) = Zj_, Wdf =df = j’i_df.i o JecT (M), Wdf e (M),
Adf ) =df (&)= [if ;8 =€ fi=Ef, E=€.0; .

od has also the property

Proof:
ad(adf) = 4 d(df) = j[,,-,j]dzj Adri=0, because of Jii=Fji-
(b) Action on a covariant tensor field A € @e(M)
«dA = d(oA)

Proof: Il follows from the relation a(dA) = a(d(a ) and the definition of .d.
od has the property

Lemma 9. (Poincaré lemma):

Y|

ad(adA) =0 : ado ad=0.
Proof:
ad(4dA) = ,d(dA) = Asym[d(dA)] = A.sym[d:c’ ® 9;(Ap,; oodx @d; )] =
= Asym[Ap,; j.dz? @ dz’ ®dz?) = A,ij)-dzd /\d:c AdTP =0,
because of Ap;; = =Apji:Apij=0.

(¢) Lincar operator with respect to covariant tensor fields

ad(a. Ay + B.A7) = a..dA; + B.0dA; ,
Ai€@e(M), i=1,2, a,BeR(or ().
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Proof:. L TR

= Asym[a dAl] + Asym|[B. dAz] =a. Asym(dAl) + ﬂ Asym(dAz) =

= a.,dA; + 8. dA2 _
The last relation follows also lmmedlately from the lmearlty of bot.h opérato?s Asym~
and(g) Differential operator with respect. to covariant ténsor fields™ . » 1o 4,
2d(A® B) = 4d(aAN oB) = odAN B+ (=1)* AN .dB 3 B
Ae®k(M), Bed(M), ;dA€ *®xs1 (M), sdB € *®@yr (M)

Proof: -« . . . . . Lo _ syt »

d(A ®B)= Asym[d(A ®B)] = Asym[dA ® B + d:r: ® A ® 3 B]
= Asym(dA) A oB+ Asym(d:c ®A®H; B) oo i :
= 4dAN B+ Asym(dr* @ A® 3;B) . . I

For Asym(d:c ® A ® 0; B) we can find the relatlons

' , As_/m(d:c ®AR 6,-B) Asym(dz:') /\AsymA /\ Asym(a B)
.=dz' A AN [Bg),- dAc] =(- 1)*.4AA Bic,q- di AdZC

= (=1)F AN Asym(dB) = (—l)k.aA A «dB .

T‘hefefore, - ‘ o . .

d(A®B)_ndA/\ B+Asym(d:c ®A®[~)B)
= JdAA B+( 1)“ AN dB

On the other side, fer the relatlon dA = ad(aA) lt. follows that ¢
Wd(A®B) = d,(A® B)] = ad[Asym(A ® B)) = ad(aA A aB)
Putting the last expression in the relation for d(A ® B) weobtain
ad(aA N oB) = dAA ,,B +(=1)*.qAA dB .

By the use of the relations ,dA = ,,H(aA),;HB = ,d(aB) we can determine the action
of od on the external product A A ¢ B of two full anti-symmetric tensor fields', A and B

«d(aAN oB) = [.,E(.,A)]/\ B+ (=1)*aAA[ad(aB)) =i

Therefore, od acts on full antl-symmetnc tensor fields as a differential operator obeying
the rule for anti-differentiation (i. e. the Leibniz rule with respect to the external product
and with a possible change of the sign [(—1)*] in the second term after dxfferentxatlon){
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4.1. Anti-symmetric covanant tensor dlﬂ'erentxal (covariant external differ- ‘ 'l'hvrvforcl

ential). On the analogy of the definition of the anti- -symmetric tensor differential we ! o aﬁ‘,{ ':k\aﬁ(““‘) ) - o ' A & :
can introduce the notion of anti- -symmetric cova.na.nt tensor differential. lnstea.d ofdin . — . . : ’ s
d we can put D and find an operator’ of the type = Asymo D. o 1) has also the property '

Definition 10. ,D = Asym o D is ca”ed antl—symmetnc covanant tensor thTercutml D(aDA) = "‘['*;iiil‘(l’j ANdr AdEY

(covariant external dlﬂ'erentlal) ’ ) . L : e
. (c) Lincar operator with respect 1o covariant l(‘nsor liclds i
oD maps a covariant tensor field of rank k in.a full anti-symmetric covariant tensor

field of rank k + 1 oD {0 Ay + 3.4y )..n oD, 1, + 3 DA,

—_ E i o ' . A e (), =1, 2, fER (or() »
D:A— oDA=Asym(DA), A€k(M), DAE ®ppi(M). | Proot | e
rool: :
(li{emar{: [12D Sufllce the operator , D contains in its structure a covariant basis vector ficld DAy + 3.4.) = \sJII:[ﬁ(n A + 3. \’) lsum[l)(n' \1) + I)( 14y )]
=t ore symoD = A dr? = B
y symo( 1} ® Vs,) = Asymo (e* ® V.. )], it cannot act on . =Asymla. DA+ Asym[3.D Az} = a. \sl/m(l) Ay) + 3. lsl/m(l) 1y ) :
contravariant tensor fields as an anti-symmetrisation operator which maps a contravariant, =a.,DA 3.oaDA v
tensor field in a full antl-symmetnc contravariant tensor field. This is the reason for - T t :
considering the action of ,D on covariant tensor fields only. This case is analogous with ] The lastrelation follows also immediately from‘the linearity of both ope rutor~ lsum
the case of the operator d. and 1.

The properties of the anti-symmetric covariant tensor differential are detcrmms‘d by (d) biffere l“m' OP( rator with respect m covariant ‘“N)r h(‘ld\

its definition and the properties of the covariant tensor differential: - ! ])( \ 2 ) = 1)( AN B)Y= JDAA B+ (—l) 1A, ) B
Acti R ooy ‘ ='a a a = a cas
(a) Action on a function : ‘ - \ENA(”) . li'e(\‘a,(\l) DD \E \wk“(\l) ul)HE\.l«H(‘[
— —_— — — u— —_— N . . —_ P “ A :
oDf = Asym(Df) = Df =df , Df=df=f;ds*, fecCr (_M) , aDf €T (M), Proof: i; '

Df)=df () =fsfPj 0 =€ fi=Ef, E=¢.0 D : T
_ I)(A QD [I),._ Asum[l)(/\ N II ] = Asum[l) \N IJ + rl.x XN 1 AR H I
aD has also the property e ’ ] k \st/m(I)A) AuB+ \sum(d.r QAR ) = :
__; — . ) ' o = AN B+ Asum(d:r ® 4 l(\‘\ Va D). ‘
1 X ( f) f[,J]dIJ/\dz = ’ : ) L NI et
=3(P; - P :) fr-dei Adzt =1 5-Uis ¥ f k.dzi A dz? : ' ] For . \sl/m(d: ® /\ e\ Va H) we can [ind tlw rclatmns TR et
Fii=li, fe C:,(M) r>2. ‘

- “Asym{de' @ A® Va, B) = Asym(dz’) A AsymA A .glsg/rra(V;)_ n) =
(b) Action on a cqva.riant tensor field 4 € k(M) , =drt A a AN B d2 €] = (D DA A Bieapde AdFS =
o - = (=D ad A Asym(DB) = (=1)F .o AA DI .

a_D_A = a—D—(ﬂA) .
Proof: ’ ‘Therefore,
' - PR o ) DA B) = JDAA B+ Asyni(de’ S ARV, B) =
aDA = Asym(DA) = Asym(Apg;inds' ® d:l:_B) = A[B;;].dz’ AdTB . : 4 - aT)'A A+ (_l)k a/\ A uﬁ”
O the other side, o | On the other side, rom the relation (DA = ,D(54). it follows llml
oD (. A) = D — By _ . — _ L ‘
( A) Asym[D( A} = Asym(Appy;: dr' @ dz ) = Agpq.de' AdZ P = JAHADDB) = o Da(A® [))] = D[Asyn(AQ B)] = DLAA B .
) = Ap]-dz* A dz 8., 4 '

because of the probérty of the anti-symmetric Bach brackets ' . I’ulvl’.mg the last exprossmn‘ in the relation for ; D(A ® 1), we obtain

. v aDAN B = DAA B+ (=D AN DB

Asyi = (Al i = Ay - oo alllas JAN o B+ (-] AN DB,
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‘ By the use of the relations ;DA = ,,ﬁ(,,.fl). DB = aﬁ(ali) we can determine the

" action of 417 on the external product , A A 13 of two full anti-symetric tensor ficlds , A
and . [3 ,

: aD(AN oB) = DA A B+ (1) aAA [aD(B)] .

"Therefore, o D acts on full anti-symmetric tensor fields as a differential operator obey-
. ing the rule for anti-differentiation. '

oD maps a full anti-syminetric covariant tensor ficld of rank k in a full anti-symnetric
covariant tensor ficld of rank & + 1.

4.2. Anti-symmetric Lic tensor differential (Lic external differential). On
the analogy of the definition of the anti-symnetric covariant tensor differential we can
_ introduce the nation of anti-symmetric Lic ténsor differential. Instead of 1) i1 o) we can

put £ and find an opecrator of the type oL = Asym o L.

Definition 11. ,£ = Asym o £ is called anti-symmetric Lie tensor differential {Lie ex-
ternal diflerential).

oL maps a covariant tensor field of rank & in a full anti-symmetric covariant tensor
field of rank k + 1

oL:A— LA=Asym(LA), Ae@uM),” JAc ®Qk1(M) .

Remark 13. Since the operator £ contains in its structure a covariant basis vector field
dr* or e [£ = Asymo £ = Asymo (dz' @ £3,) = Asymo (* ® £Le,)), it cannot act on
contravariant tensor fields as an anti-symmetrisation operator which maps a contravariant
tensor field in a [ull anti-symmetric contravariant tensor field. This is the reason for
considering the action of ;£ on covariant tensor ficlds only. This case is analbgous with
the case of the operator D. '

The properties of the anti-symmetric Lie tensor differential are determined by its
definition and the properties of the Lie tensor differential: ‘
" (a) Action on a function

Ef = Asym(EN =T/ =, JEf =df = fp.d
__ Jecm), EreT(n),
LIQ) = ) =[S s = J=Ff, E=E0;.

oL has also the property
oLEf) = Loypiydz? Ndz' , pi=fy
(b) Action on a covariant tensor field A € ®k(M), '
EA=  L(,A) .
Proof:

oLA = Asym(£A) = Asym(£5, Ap.de* @ deB) = Lo, Apyidz* ndz " .
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Oll't,he other side, Lo ’ et b e e
oL(aA) = Asym[£(aA)] = Asyrr;(£$iA{31:dr‘ QdzB) = £3[‘.A[P]]Ad:c" AdZB =
h ‘ = L5, Ap).dz' A dz?, ’ : .

Dbecause of the property of the énti—symmetliic Bach brackets "
Lo, Apy = (Lo, An)iniy = Lo, A5 -

Therefore, - . ‘ >

oL has the property
-, — ; 3 ~ B
£(a£A) = .Cab.‘fa.ABl.de Adz' AdT 7 .
(¢) Linear operator with respect to covariant tensor fields

,af(a.Al + B.A2) = a«aZAl + .B-a—fAZ ’ ol
Aieor(M), i=12, a,BeER(orC). - :

Proof:’
oL(a.Ay + B.Az) = Asym[L(a.Ar + B.42)] = Asym[£(a.A1) + £(B.42)] =)
= Asym[a.LA;] + Asym[B.£A;] = a. Asym(£A,) + B.Asym(£A2) =
) : v = a.q£A; + B LAz . .

The last relation follows also immediately from the linearity of both operators Asym

and £. ) g
(d) Differential operator with respect to covariant tensor fields .

«L(A®B) = oE£(aANA aB) = a£AN B+ (fllk.aA A LB,
Ae (M), Beau(M), LA € @1(M), 2EB € ®41(M) .

Proof: . )

+L(A® B) = Asym[L(A ® B)] = Asym[£A® B +dz' ® A® £, 8] =

‘ = Asym(fA) A B+ Asym(fix‘ QAR Ly B) = .
= E£AN B+ Asym(dz' @ A® £4,B) .

For Asym(dz' ® /‘1;@ £5,B) W<3 can find the rqlatfons

- "Y,)l‘syr‘rzz‘(dx" ® A® £0,B) = Asym(dz') A AsymA A Asyrlp(£€ig) =
= dz' A aAA[£0,Bi.dEC) = (=1)F 0 A A £a, Bopdet AdEC =
= (~1)*.,A A Asym(LB) = (—l)k.aA A oLB, where
-dz* A Asym(Ls,B) =:Asym(dz' ® £5,B) = Asym(LB) = LB .
Therefore, v /

" JF(A®B) = JEAN JB+ Asym(dz' @ A® £5,B) =
o= GEAN GB 4 (F1)FGANGEB L s
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On the other side, from the relation LA = a-f(.;A),hit follows that
«L(A® B) = L[.(A® B) aL[Asym(A @ B)] = o£(cA A B) .
Putting the last expression in the relation for ,£(A ® B), we obtain
aL(aANA aB) = JEANA B4+ (1) AN EB.

By the use of the relations ,£A4 = a_( A), <EB = af(a B) we can dectermine the
action of £ on the external product 4A A 4B of two full anti- symmetnc tensor fields , A
and B

aL(aAN B) = LA A oB+ (- 1)".aAA[a£(aB)} .

Therefore, o £ acts on full anti-symmetric ten_sor fields as a differential operator obeying
the rule for anti-differentiation.
oL maps a full anti-symmetric covariant tensor field of rank k in a full anti-symimetric
covariant tensor field of rank k + 1.
There is a relation between the action of the anti-symmetric Lie covariant differential
oL and the tensor differential d. From

oLA = Asym(£A) = Asym[de’ @ £3;(A)] = Asym[(Ls; Ap).dz! @ dzP)
and the explicit forms of £a, Ap and (£, Ap).dzi

’

(£31.AB) dz? = Ap j.de? + (P§; + T §;).Ac.dz? = dAp + Pp;.do’

where
Pp; = (P§;+T1§;).Ac , dAp=Ap;.ds’, dA= dAp®da®
we obtain _ B < : ) '4
£FA=dA+ P, P = Ppj.dz’ @ dz”
Then,

o£A = Asym(£A) = Asym(dA+ P) = dA+ P,
oP = Ppj).dz? AdZ P i adA = App j.de’ AdED

Special case: S:C:f‘j:_q;:P;k+I“k—0
P=0, LA=4dA, s LA = LdA.

The Lie derivative of a full anti-symmetric covariant tensor field along a contravariant
vector field € can be found on the basis of the Lle derlvatlve of a covariant tensor lield
W e ®« (M)

: £EW = (£EWA).d1:A = (ﬁpr).CB y R
EWa=War bt — S,z B Wpk v+ (PR +TH) Wpe.

The Lie derivative of 4df can be found after direct computation in the form

Le(adf) = {f.8 + 1506 i+ (P + 1) £41)do’
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b,'pr('iul case: 5§ = (7 fij =g4 P I ;k =Bj+T = 0. [)] (p-171):

Leladf) = (f.,f’+f;£1 ).dr —((f,xE’+f,€’ ,)flf"‘(fjf’).rh
= d(f] &)= Wd(f,&) = qd(E)) -

Lf(ﬂﬁj) = od(€f) = ad(Lef) . “becauscof Lef =& .
The Lie derivative of a covariant veetor field p along a contravariant vector field £ can’
be written in the form .

Lep = (Lepi)det = ik-€F + pj.& i+ pj (I lJ ).£5].det .-

In the special’case, when 'S = 7, Lep can be (‘\pr(‘ssc(l by the use of S and ‘,d
Special caser S = (7 f'J-—I]J l” +l',\«—l ,\+l L—O
L(I’ = 2.8(E.0 dp) + A[S(p.€)) = Is(ndp) + ﬂd(zul)
= (igo od+ , doig)p .

Proof: . .
Lep = (pis. £'+m €% ;)det = pi g € .det + £ drt =
= pigE5.det + (px E"), dr' — pe ;i €5det =
= (pis = Prg) €5 dx’ +[S(p.€)).i- dl‘ =
= 2. ppi €5 dt + dS(p. &) = 2.5(E.a dp) + d[S(p.)]-
i EXdr? = Pri- drtgs = dp;\ £ = (dp)e£*
[S(p,€)]s.dr = d[S(p.€)] = A[S(p.9)] -
On the other side, . .
aldp = P, ,] d.r AdaF = = Pli k) d.l Adri
S(€dp) = Pl deF =1 15(,,(11;) , S p)y=Sp.€) =iep .
Therefore, '

Lo = 2.5(6aT) + S0 O] = iclalp) + allicn).

Remark 14 In (I,,1 g)-spaces [in contrast Lo (Ly,g)- spd((s] relations of the type Lo
ad = odo L¢, L oig = ig o L¢ are not fulfilled.
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