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1. -ORDINARY DIFFERENTI~L. COVARIANT AND LIE DIFFERENTIAL 

1.1. Ordinary differential d as a contravariant vector field. Let u.s recall some 
well known facts about the ordinary (common) differential. 

The co-ordinate differntials { dxi , i = 1, ... , n , dim M = n} of the co-ordinates {xi} in 
a neighborhood U.of x EM are considered as covariant basic vector fields in T*(U C M). 
They define the s.c. covariant co-ordinate basis at every point x E U. On the other 
side, the co-ordinate differentials dxi can be considered as components of a contravariant 
vector field d = dxi .8;, which is called ordinary differential given in a co-ordinate basis. 
The reason for the last interpretation is the following: • 

Let a co-ordinate transformation in M be given of the type 

x; = x; + c-.e(xk) = g~.xk + c-.e(xk) = x'(xk) = / (xk) ', I c I« 1 , (1) 

where c is an infinitesimal parameter and ei are components of a contravariant vector 
field e in a co-ordi~ate basis (e = e.a;). 

The difference between the new co-ordinates xi and the old co-ordin~tes xi for c -t 0 
defines the co-ordinate differential dxj(xk) at the point X EM ~ith c;.;;rdinates xk 

. xi(xk)-x; 1 · · 
dx'(xk) =lim =lim -.c-.e'(xk) = e'(xk). 

£"-+0 £ £"-+0 £ 
(2) 

The co-ordinate differentials dx; appear in this case as components of a contravariant 
vector field e, inducing an infinitesimal co-ordinate transformation of the type xi= xj + 
dx;(xk) . . 

Remark 1. The possibility of defining co-ordinate differentials as components of a con­
trava"riant veCtor field is considered in a different variant by {1}. 

The notion of ordinary differential operator d can be introduced on the basis of the 
possibility for considering the covariant basic vector fields as components of a contravariant 
vector field (2]. · · · . . ·· ' 

Definition 1. Ordin'!ry differential operator. The contravariant vecto~ field d 

d = dx;.8; = e".ea = d;.8; = d".ea, (3) 

is called ordinary differential operator. 

The basic vectors in T*(M) (dx; and e") appear as components of the ordinary dif­
ferential d in a co-ordinate or non-co-ordinate basis: 

d: I::? dl = dx;.8;/ = e".eal, IE C;(M) , r {i . 
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•, f' .• . ~ ... ·'~''' '";l't ~·: ...,...,'l""n' l ~ -~- ·•• :, .• --~'-'h,. ..-:u.,.,. , ll • .&•t.Ui ~ • l 

•• 1 ... , ... ,.,o:- 1!c~ .... ,.,'"' .. ~"··lt f ~--:-.- "t·~·.~t...::;.-. ti- i.,-•"l•·Jil~»Jl.ilUQ 

SViSJJtlOTE:HA .. 
~- ---

(4) 



The action of the ordinary differential operator on a function f is called differentiation. 
The result df of the action. of don f is called ordinary (or total) differential of the function 

f. 
The properties of the ordinary differential operator d are determined by the properties 

of the contravariant vector fields and by the peculiarities of its construction: 
(a) Linear differential operator, acting on functions over a manifold M 

d(a.f + (3.g) = a.df + .B.dg , 
d(f.g) = (df).g + f.(dg) ' 

a, (3 E R (or C) , 
f,gECr(M),r~l. 

(b) The action on a function f can be !?iven in co-ordinate or non-co-ordinate basis 

d: f => df = dxi.8;J = e01 .eaf, 
f E cr(M) , r ~ 1 . 

Remark 2. df in this case is interpreted as a function over M with values in T* ( IH), 
i.e. df is a covariant vector field (Pfaffian form, one form) 

df = (8;/).dxi = (e 01 f).e 01 
• 

Here 8;/ and e
01

/ are components of the covariant vector fteld df in a co-ordinate and 
in non-co-ordinate basis. 

(c) df is form-invariant under the changing of the different types of bases 

df = dxi.8;J = Aa. i.A; fi.e 01 .epf = ge.e 01 .epf = e<>.e,.,J, 
A a ; .A; fJ = ge . 

(d) dxi is co-ordinate differential of the co-ordinate xi at point x E M. 
The co-ordinate differentials { dxi}x can .be i11terpreted in two different w'!-ys: 
1. { dxi}x are the components of the contravariant vector field d at x E M; 
2. { dxi}x are a co-ordinate basis in the co-tangent space T; (M) at x E M. 

Remark 3. Many authors [see for example [3], {4} J define df as a mapping by means of 
the condition 

df: ~ -t dJ(e) = U, ~ E T(M) , f E Cr(M) , r ~ 1:, df E T*(M) , 
df(~) = ~i8d = (df);.dxi(~i8j)' = (df);.~i.dxi(8j) = (df);.~i.g} = ei(df); 

(df); = 8;/. . 

In df the components of the contravariant vector field d are interpreted as basic vectors 
of the covariant vector field df . . 

From the definition for df it follows that for f = xk 

dxk(8;) = 8;xk = gf , 

which is in accordance with the action of the contraction operator Con the co-ordinate 
basic vector fields dxk and 8; [C(dxk,8;) = C(8;,dxk) = dxk(8;) = gf}, i.e. tlJC contrac­
tion operatorS is identified with the operator C. 
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Remark 4. The definition of df, given by means of the expression df(~) = ~J, when 
S = C, can be generalized for Sf: C in the form · 

df: ~ -t_d/(0 = f.J, ~ E T(M) , J E cr(M) , 
f.J = ~j .8Jf = {a.eaf, r ~ 1 , df E T*(M), 

(I = Ji k -~k , ~o: = r fJ ~~fJ , 

S(dxi,8J)=S(8j,dxi)=dxi(8J)=fi J. 

(5) 

Remark 5. The components of the ·ordinary differential d in a co-ordinate basis are 
considered as constant functions, i.e. (dx;),j = 0. 

Action of the covariant differential operator on the ordinary differential 

The action of the covariant differential operator Oil the ordinary' differential is deter­
mined by its action on a contravariant vector field and by the peculiarity of the construc-
tion of d. • 

In a co-ordinate basis 

"Va;d= d; ;J·8; = (dx;};j.8;, 
( dxib = rij .dxk ' (6) 

where ( dxib is the covariant derivative cif the covariant differential dx;, considered 
as a component of the contravariant vector field d along the·contravariant vector field 8j. 
The covariant derivative "V {d will have, in a co-ordinate basis, the forrri 

"V {d = ( dxi);j -~j .8; = rij .dxk -~j .8; . (7) 

Remark 6. If the covariant differential operator "V { acts on a co-ordinate basic vector 
field dx; (the other interpretation of dxi}, the result of its action is different' from that 
when dxi is considered as a component of d: 

•: 

"Va1 dxi =P~i.dxk, \l{dxi =~P~j~i.dxk, 
dxi - basic covariant co-ordinate vector field, 

. . "V a;dxi = 8idxi = 0 , 
dx' ~ component of contravariant vector d . 

(8) 

The .::liifer~nce~ in the action of "V { on dxi in the c~ses of differe~t inte~pietations of 
dxi have· to b~ tak~n into account ~hen co~ordinate differentials 'are. ~~~~d, i(additional 

' . . . ~ . 
conditions for identification of both the results of the action of "V { on d are not required, 
i.e. if the co~dition Pjk = 0 is not required. On the other side,. these conditions have to 
be in accordance with the result of the action of the Lie differential operator on dxi. 

In a non-co-ordinate basis · ·· · · · ' · 

\l e,d = \l e,(e01 .ea) = e01 iTCa;= d01 h·ea 1 

. . C
01 'h = e..,.(e 01

) + r;;..,.:efi . (9) 

Action ~! the Lie diff~rential operator on the ordinary differential 
' ' ' ' ' ' 

':'·! 
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· The action of the Lie differential op~rator on the ordinary differential is deti:rrnirH'd 
by its action on a contravariant vector field a~d by the peculiarities of the ordinary 
differential. 

In a co-ordinate basis 

£ad= 0, £€d = -~i ,j·dxi.l)i = (£€di).8i 
£a;dxi = 0 ~ dxi - component of the contravariant vector d . 

(10) 

On the other side, the Lie derivative of dxi as a covariant basic vector field is 

i i 1 k £a;dx =(Pk;+f10 ).dx. (II) 

The compatibility conditions for both iriferpretations (taking into account the com­
patibility condition also for the action of the covariant operator) are 

· Pjk = o , r~k = o . (12) 

Therefore, the compatibility of both interpretations of the co-ordinate differential d~·i 
can be fulfilled only in the following cases: 

(a) Pjk = 0 ' r~k = 0 at a given point X E M . 

(b) Pjk = 0, r~k = 0 on a given trajectory x(r) in M, T E R. 
.. . (c) Pjk = 0 'r~k = 0 at every point X EM, i.e. when (R(C u)]v = 0, v~. u, v E 'J'(M), 
.(R(~, u)]p = 0, V~, u E T(M), V p E r•(M). 

· Since P and r cannot vanish .simultaneously in (Ln,g)-spaces, these conditions can be 
fulfilled only in (Ln,g)-spaces, where S = C and P = -r. 

In the general case of differentiable manifolds with different (not only by sign) con­
travariant and covariant affine connections and metric the two interpretations of the r.o­

ordinate differential have to be used separately and independently of each other without 
mixing the contents of the notion of the ordinary differential. 

1.2. Covariant differential as a special case of the covariant differential op­
erator. The covariant differential operator along the ordinary differential d defines the 
notion covariant differential 

D := covariant differential , D '= 11d = dxi11a, = C
0 11ea . (I :1) 

The properties of the covariant differential D are determined 'by the properties of the 
covariant differential operator and by the construction of the ordinary differential d: 

(a) Action on a function over the manifold M: 

Df = 11d/ = df, IE C'(M), r 2: 1. 

(b) Action on a contravariant vector field: 

Dv = 11 dV = vi ;j .dxi .8; ;= Dvi .Oi = 
=v" /13·ef3.ea=Dv".ea, vET(M), DvET(M) 

Dvi = vi ;j .dxi is called covariant differential of the components of the contravariant. 
vector field v in a co-ordinate basis and JJv<> ~ V 0 /f3·ef3 is called covar·iaut diffcn:ulial of 
the components of the contravariant vector field v in a non-co-ordinate basis. 
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(c) Action on a c:ovariant' vector field: 

Dp = 11 dP = Pi;j .di .d:ri = /Jp; .dxi = 
=J!o/!i·'fil.c" = 1Jp0 .c", p E T"(M). !Jp E T"(.\1) 

Dp; = Pi;j .d1 = Jli;j .di) is called covm·iant differential of the ·cornpcincnts of the 
covariant vector field p in a co-ordinate basis and /Jp0 = Pof;3·d;J = Po{J·e3 is called 
co!larianl differential oft he components of t.he covariant vector field pin a non-co-ordinate· 
basis. 

(d) Action on a mixed tensor field: 

[)J\ = v dl\ = /\'1 ll:j·di .8,1 0 d:rll = D/\'1 n-OA ~~ d1·n = 
= /\'1 JJfn·d"r,t ;>-.'ell= D/\'1 JJ-"A X ell . 

I\ E ~)k 1(J\I). 

f) 1\ '1 
ll = 1\ A ll;j .di = 1\ A ll;j .dJ:i i; called covariant differential of t I If' components 

of the· mixed tensor field 1\ in a co-ordinate basis and D/\'1 /J = l\'1111 ,.d" = /\'1 ll/n·r" 

is called t.he ·ovarian! dif[erential of th<' romponcnts of the mixed tensor field /\ in a 
non-co-ordinate basis. 

Ren1ark 7. In tire definitions of t.lw cm'ariant differential of components of 1n·tor awl 
tensor fields dx' and r" are considered as components of the ordinary diffen'ntial d in a 
co-ordinate and a non-co-ordinal.!' basis. For t.l1is type of interprdat.ion of dJ·i and c" we 
will usc the designations eli and el" in contrast. to t./re case, when d:ri and r" ari' int.rrpreiC'd 
as COI'ariant. basic vector fidds: To avoid ambiguity tire interpretation of el.r·' and c" han' 
to he explicitly given in every different case. 

(e) Action on the contravariant. vector field d: 

!Jd= .v dd = di ;j .d.iiJ; = J)di .lJ; = dn 111 .d11 .c, = J)d'' .f·, , . 

Deli= di :i·di = l'ii.dk.di, Dd" = d" /f3·d'1 = (c11d" + I'~wd1 ).dd 

Remark 8. The applications of tire ~~variant'ciiffcrential allow cliff;,r;i;t inter/;rct at im1s, 
if Ore covariant differential is considered not il$ ·a special nL'" of t.lu; cm·ariant diffen:nt ial 
operator 11 ( for~= d , but. as~ diffcrcnt-from-11 d operat.or. which iil it; actioi1, 01~. tensor 
fields clJanges their covariant rank witlr 1, i.e. 

/J: K => /JJ{ , K E rzlt(M) , Dl\ E e:-:l t+t (M) 
/)I\= J(A IJ;j·dxi ® OA 0 dxll =I< A IJ/n·c" N C,t (:>) c 11 

(dxi and e" arc intc_rprcted as basic l'cdor fields). 

In the case, where the covariant. differential [) is considered as covariant dif[crc'nt ial 
operator 11 d, its action doc~ not change the covariant rank; i.e. 

D = 11d: /\ =>fJJ( = 11dl\. 1\ , IJJ\ E·(:>)k t(,\1) 

This is due t.o the fact that. the co-ordinate differentials in d arc consickrcd as compo­
nents of the ordinary differential eland not as covariant basic vcctcir fields. 

5 



1.3. Lie differential as a special case of the Lie differential operatm·. Tlw 
Lie differential operator along tlw ordinary differential d ddin"s t hP · Hntioll of t lw Lie 

differ..,nt 1al 
l:.d ::= LiP dilf<'r..,ntial , 

The properti"s of the Lie differential l:.d ar" determined by the propPrti<'s of the Li<' 
differential opera to.- and by thP construction of d: 

(a) Action on function over manifold Af: 
£df == df . f E Cr(l'vl) , r ~ 1. 
(b) Action on a contravariant vector field: 
l:.dv == -£vd == [d, v] == (£dv').D; == (l:.dv").c,. 
l:.d"; == v; >i .di == dv; , v E T(.\-1) , -' 
£dv" =(cl3v").d1l-vi1 .(ef3d")-C{J--, ".vf!.d•. 
l:.dvi is called the Lie differential of the components of the contravariant vector fidd 

v in a-co-ordinate basis. 
(c) Action on a covariant vector field: 
l:.dp == (l:.dp;).dx' = (£dPa)-=" , p E T"(Af) , 

l:.dPi == Pi,j·di + p1 .(Pjk + r1k).dk , 
£dPi is called the Lie differential of the components of the covariant vector field p in 

a co-ordinate basis 
(d) Action on covariant basic vector fields dxi and e": 

£ d i - (J>i +' l'i ) dk d j d X - jk jk , . X , 

£de~'= [-e!id" + (i>;;..., + r~..., + c(!_.., <>).d"'].efl 
The introduction of the ii'otion of the ordinary differential d as a contravariant vec­

tor field allows another way of introducing notions of the covariant differential and Lie 
differential. On the other side, the so-defined notion is different from the notion of t.fw 

ordinary differential df of a function /, which has found many applications in the calculus 
of (exterior) differential forms. 

2. TENSOR DIFFERENTIALS 

2.1. Tensor differential as a mi~ed tensor field (ordinary tensor differential). 
In the previous section we have considered the ordinary differential as a contravariant 
vector field d = dxi .D; == e" .ea acting on functions and tensor fields. Moreover, the co­
ordinate differentials dxi arc considered as components of the ordinary differential in a 
co-ordinate basis. They arc not interpreted as covariant co-ordinate basic vector fields 
but as constant increments dx; of a function f E cr(M): 

df(x) = D;J(x).dxi, . dxi Elln, , (dxi),k := 0, 
d==dxi.D;=e".ea,dxi, e" ECr(M). 

On the other side, one can construct on the analogy of the ordinary differential operator 
d a new differential operator d. The only difference between both operators is that in the 
new operator d the co-ordinate differentials arc considered as covariant co-ordinate basic 

vector fields: 

Definition 2. Tensor differential d. The mixed tensor field 
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-d- d i ""a - _j d i""' 8· - a""' - fJ """' - x '<" ; - !J;. x "" J.- e ""ea.- g0 .e ""e{J dxi, ea E.T.~(M) . 

is call~d (ordinary) tensor differential. . ... 
The tensor differential d appear'~ as a mixed tensor field of ~~cond ·rank of type 2 

[dE @ 1 
1 (M)) in contrast to the Kronecker tensor _field Kr:::::: g{ .ai@ dxi == g~.e"@ efl 

which is a mixed tensor field of second rank of type 1 (Kr E ¢91
1 (M)). 

The properties of the t~nsor differential· follow from its construction and from the 
properties of the contravariant and covariant basis vector fields: ' 

(a) Action on a function 

d: f--)- df' f E Cr(M), 
df = J,;.dx; E r•(M) , dx; E r•(M) . 

The tensor differential d has also the property 

d(df) == h:.n·dx;.dxi. 

Proof: 

d(df) = (dxi@ 8;){!,j.dxi) == /,j,i·dx;@ dxi = ~-U,i,j + /,j,;}.dx;@ dxi = 
= ~-U,i,j + /,j,;}.~.(dxi@ dxi + dxi@ dx;) = f(,i,j)·dxi.dxi , 

where 
. ' .. ' .. .\ 

!(,i,j) = ~-U,i,j + /,j,;} , dxi.dxi = ~.(dxi@ dxi + dxi@ dxi) , 
/E cr(M) , r ~ 2, /,i,i.= J,i,i. 

(b) Action on a te~sor field 

d:K-tdK, KE®k1(M), dKE,A®kl+t(M), , . 
A @k 1 + 1 (M) is the linear (vector) space of affine tensor fields of rank (k, l + 1}, 

K=KAn.8A¢9dxB=Kcn.ec@eD, 
df{ == (dx;@ 8;}(J<A B·8A@ dxB) = 

== KA n,;.dxi@ a A® dxB =(if{ A B ® aA ® dxB ' 
(jJ<A B =[{A B,;.dxi . 

dKA n are called tensor differentials of the components K1 n in a co-ordinate basis. 
The tensor differential dK is a tensor field. only with respect to constant (affine) co­

ordinate transformations. dK A B transform with respect to the basic vector field axi as 
covariant tensor fields of rank 1 under affine co-ordinate transformations. dK A B appear 
with respect to the basic vector field dxi as a set of covariant ·(affine) tensor fields of rank 
1 in contrast to dK A B appearing as a set of function~ o~er M,, .. 

dK is a tensor field only under affine (linear) transformations of the co-ordinate xk, i. 
e. dK is an affine tensor field of contravariant rank k. and covariant r~nk /. 
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The action of d on'the components J{A B of a tensor field J< is similar in its form to 
the action of don J{AB E cr(M). The difference between both actions is due to the 
different meanings of the co-ordinate differentials d:z:; (i = I; .. , n): 

dl{A B = J(A B,;.dx;, dx; E T*(M) , 
df{A B = gA B,;.dxj , dxj E c•(M) ' r? I 

-.1 

In a non-co-ordinate basis 

K = Kc v .ec ® eD , 
d[{ = (e" ® e0 )(Kc v-ee® eD) = 

= (eaKc v).e" ® ec ®en.,= df{c v ® ec ® eD , 
df{c D = (e0 Kc v).e" . 

d has also the property: 

-- ,A . 'i B 
d(dK) = I~ B(,i,j) .dx1 .dx ® OA ® dx , [{A B,j,i = /(A IJ,i,j · 

(c) Linear operator with respect to tensor fields (including functions) 

d(a.K1 + /3.K2) ;= a.dK1 + fJ.dK"t , 
a,{JER(orC), K;Ers} 1(M), k=O,l, ... , I=O,I .... ,i=I,2. 

(d) Differential ()perator with respect to functions over M . 

d(f.g) = df.g + f.dg , J,g E c•(M) , r? I , df, dg E T*(M) . 

Proof: d(J.g) = (dxi ® o;)(f.g) = dx; ® o;(f.g) = [8;(/.g)].dx; = 
= (od-9 + f.o;g).dx; = (o;f.g).dx; + (J.o;g).dx; = 
= (Dd-dx;).g +f.(o;g.dxi) = df.g + f.dg, where (o;J.g).dx; = (o;f.dx;).g, dx;.g = 

g.dxi. 
(e) Differential operator with respect to tensor fields with rank > I not obeying the 

Leibniz rule 

d( Q ® S) = dQ ® S + dPq 0 s , dPq es=dSc v®_Q®Dc®dxD. 

or 

Proof: 

d(Q ® S) = dQ®S +dx; ®Q®o;S = dQ®S+c" ® Q0 eaS·. 

d(Q ® S) = d(QA B-OA 0 dxB ® sc v-Dc ® dxD) = 
= (dxi@ o;)(QA B-8A 0 dx 8 @ SC D-Oc@ dxD) = 
= (QA n.sc v),;.dxi ®a;,_® dx8 ®De® dx 0 = 

= (QA n,;.Sc v + QA n.Sc v,;).dxi ®a A® dx8 0 De® dxD = 
= (d.QA B·sc v + QA B-dSc v) ®a A 0 dxB ®De 0 dxD = 

= dQA B ® OA ® dxB ® sc v-Dc ® dxD + d.sc v 0 QA B-OA® dx 11 0 De 0 dxiJ = 
= dQ ® S + dSc D ® Q 0 De® dxD , Q E ®k t(M) , 8 E 0m ,.(M) . 

8 

TIH' .-on tract ion op<'rator S acting on df and on a contravariant vcc:tor fidd f. IPads 
to t IH' rdat ions· 

S(df, t.) = df(t.) = (J . 

df(Di) =I; i-Dd = c'Jf = J,;.l i = f.J. 
Proof: 

df(O = df(t,i .iJi) = (i};f.dx')(t.i .Di) = t_i .iJ;J.S(dx', iJi) = t_i f i .l};f = 
= {'.iJd = t_i.~J = (J, f.= J; i·fi.D; = {.D; = t_i.iJ;. iJ; = f; i-D; . 

Special mst:: f = :rk . . 

dxk = iJ;xk .dxi = gf .dxi = dxk. 

S(J:rk,l;) = S(dxk.O = dxk(t.) = Jk 
1
.f.l = {f_ 

2.2. Covariant tensor differential. Oy the usc of the covariant diffcrmtial operator 
V';J, (insl•;ad ()f the partial differential operator 8;) we can construct the covariant tensor 
differential. 

Definition 3. Covariant tensor differential. The operator 

D = dx' 0 V' a, = c" 0 V' c .. 

is called covariant ln1sor differential. 

The properties of the covariant tensor differential 75 <HI' dd.ermined by its construct ion 
and the propC'rtics of the covariant differential operator along a cont.r;n·ariant basi<· vector 
field: 

(a) Action on a function 

75: J ~ 75!, DJ = df, J E Cr(M) , ,. ? I 
DJ = (dx; 0 V' a,)J = dx'.V' a,!= iJ;f.d:r' = df. 

15(15 f) = fJ;i .dx; ® dxi , li = f.j . 
Proof: 

' ' 
75(75!) = 75(df) = (dx; 0 V'a,)(J,j.dxi) = f.i,i-dx; 0 d;ri + 1~;;-f.k-dJ-; ~ dJ·i = 

= u.j.i + Pkf.k).d:ri ~ dxi = !;};i-dx_i 0 ,{2,i ' /.j =I) . 
In a non-co-ordinate basis 

IJ(DJ) = (cae{Jf + PJa·f-tf).e" ® e13 = ffiJ!a·c" CV c1', 

(b) Action on a tensor field: 

J,,, =<·,,f. 

75K = (dx; 0 V'a,)K = dx; IX> V'a,l\. = ,i:r; ~ /\'1 fl;i·iJ,, Nd:r/J :::;= 

= J\A u-;.dxi 0 a A 0 d:ru = DI\'1 uNa;, N d:ru . ' 
1\ = J(A u-il~ 0 clxTJ E Nk t(M) , ' 75K'1 n.= K" ll:;_dJ·i . 

V'il,l\ = /\'1 TJ;i-OA 0 dxTJ , V' •. .f\ = Kc 0 .i-c N c11 ; , 75Kc IJ = /\_,. 
01

,_, ... . 
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, D(Dl\) = K'' IJ:r;J .dx1 0 d:r' '% DA ';'?. d:r 11 
• , 

T5 appears as an operator increasing the covariant rank of a tensor li<'ld with I: 

IJ: 1-\-+ Iii-\ , K E :zk I(JJ) ' Dl\ E 0k I+ J(.\1) . 

DJ{" IJ arc called covariant tensor differentials of the components]{'' u of tlw tensor 

field ]{ in a co-ordinate basis. 
(c) Linear operator with respect to tensor fields: 

D(a.K1 + 8.K2) = a.DK1 + f3.DK2 , 
K;E0ki(M), i:::;JI,2, o,/1EH(orC). 

(d) Differential operator w1th respect to functions: 

D(f.g) = 75 f.g + t.Tig = df.g + f.dg , f,g E C(M). 

(e) Differential operator not obeying the Lcibniz rule with respect to tensor fields with 

rank> 0: 

Proof: 

D(Q 0 S) = 75Q 0 s + 75Pq :. s , 
75 Pq 0 s = 75sc v 0 Q 0 Be 0 dxD = dx~ 0 Q 0 \1 a, S = 

= J5SC D 0 Q 0 ec 0 eD = e"' 0 Q 0 \1 ea S , 
Q E 0k 1(M) , S E 0m r(M) . 

D(Q 0 S) = D(QA IJ.sc D·{)A 0 dxB 0 De 0 dxD) = 
= (QA IJ.sc D);;.dx; 0 {)A 0 dxiJ 0 Be 0 dxD = 

= (Q" B;i·sc D + QA IJ.sc D;i).dx; 0 {)A 0 dxB ®Be 0 dxD = 
= QA n;;.dxi 0 OA 0 dd:8 0 Sc D·{)C 0 dxD+ 
+ sc D·i .dx; 0 QA B .a A 0 dxn 0 Be 0 dxiJ = 

= nq' 0 s + 75sc /) 0 Q ®.Be 0 dx/) . 

2.3. Lie tensor differential. By the use of the Lie differential operator £a, (instead 
of the covariant differential operator \1 a,) we can construct the Lie tensor differential. 

Definition 4. l-ie tensor differential. T!Je operator 

£ = dx' 0 £a, = e"' 0 £.Q 

is called Lie tensor differential. 
The properties of the Lie tensor differential arc determ~ned by its construction and 

the properties of the Lie differential operator along a contravariant basic vector field. 
{a) Action on a function: 

£: f-+ E! ' f E cr(M) ' r ~ 1 I £f = df E T"(M) J 

'E! = (dxi 0 £a,)!= dxi.£a.f = dx;.8;J = J,;.dx; = df = Df, 
'E! = /Jf = df E T"(M). 
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£(£!) = [!,;,; + (Pj;+ rf;).f,k].d7; ® dxi = (£a,p;).dx; ® dxi , Pi=!,; . 

Proof: 

£{£!);_£(d.!);;, (dx; ® £ 8 .)(/,i.dxi) = dxi ® £;,(/,;.dxi) = 
= dx; ® (f.;;;.dxi + f.i·£a,dxi) = dxi ® [!,i,i·dxi + /,k·(P}'; + rf;).dxi] = 

= [f,i,i + (Pj; -t.'rf;).f.k].dx; 0 dxi = (£a,Pi).dx; ® dxi , p; = f.i . 

(b) Action on' a tensor field /{ E @k 1 ( M): 

Proof: 

£:]{-+£I<' K E ®k 1(M), £K E ®k 1+ !(M) , 

'EK = £KA B@ OA@ dx8 , £KA B = (£a,KA B).dxi. 

£K;, (dx;@ £a,)(KA B·OA@ dxB) = dxi 0 £a,(KA B·OA@ dxB) 
= d:r; ® (£aJ<A B).8A ® dxB = (£a;I<A B).dx; ® OA 0 dxB = 

= £KA B @OA ®dxB. 

£(£K) = (£ai£~J{A B ).dxi 0 dxi@ OA@ dxB . 

£KA B are called Lie tensor differentials of the components ]{A B of the tensor field 
]{ in a co-ordinate basis. 

In a non-co-ordinate basis 

- - C D £[{ = £1{ D ® ec 0 e , EKe v = (£.J<c v).e"' ·. 

(c) Linear operator with respect to tensor fields: 

£(a.Kt.+ /3.K2) = o:.£K1 +/1.£K2 '· 
K;E®ki(M), i=1,2, o:,/1ER(orC). 

(d) Differential operator with respect .to functions: 

E(f.g) = (Ef).g + t.(£g) , f,g E Cr(M) , £j, £g E T*(M). 

(e) Differential operator not obeying the Leibniz rule with respect to tensor fields with 
rank> 0: 

'E(Q ® S) = 'EQ 0 S + 'EPq 0 s , 
'EPq 0 s = dxi 0 Q ® £a,S = e"' 0 Q 0 £~aS. 

The proof is analogous to tqat for D(Q 0 S). , . 
The different types of tensor differentials increase the covariant· rank 'of the tensor 

fields with 1. It is possible the action of the tensor differentials tci be specialized for full 
symmetric and full anti-symmetric (skew-symmetric) covariant (or contravariant) tensor 
fields. The additional condition for the action of the tensor differentials on these tensor 
fields is. to map a full symmetric tensor field in 'a full symmetric t~nsor field and a full 
anti-symmetric tensor field in a full anti-;ymmetric tensor field. Because of the structure 
of the tensor differentials (they contain a covariant vector basic field and increase the 
covariant rank with 1) this condition can be fulfilled onlY:for covariant symmetric (or 
anti-symmetric) tensor fields. 
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3. SYMMETRIC TENSOR DIFFERENTIALS 

The tensor product of two full symmetric covariant (or contravariant) tensor fields is not 
a symmetric prodpct and the new tensor field is not a full symmetric tensor field. Till' 
symmetric product of f.wo full symmetric tensor field is defined as [3] (p.89) 

,(,A 0 ,B)= Sym(,A 0 ,B)= ,A.,B , ,A E '0k (M), ,JJ E '0t (.\!) 

Let we now consider the action of the tensor differential on a full symmetric covariant 

tensor field ,B. 

d(,B) = B(A),;.dx' 0 dxlA) = [eaB(A)].e"' (>) l:\A) 

~' 
where 

dx(A) = dx1' ..... dx1• , e(A) = e"'' ..... e"'• , B(Al = lJ;, ... i. , FJ(A) = IJ,., ... .x. · 

If we additionally impose the condition for the full symmetry on the a!line tensor field 
d(,B), then we have to act with the symmetrisation operator Sym on d(,B) using tlw 
decomposition formula for the Bach brackets for B(i, ... i.,i) 

Sym[d(,B)] = B(A,i)·dx1.dx(A) = [e(aBA)].e".e(A) = 
= B(i, ... ;.,i)·dx1 .dx11 ..... dxh = [e(aBa, ... ,.)].e0 .ea1 

..... c"• , 

where 

[B(A),;](Ai) = B(A,i) = B(i, ... i.,i) = t·[B(i 1 ... ;._,;.),i + B(i 1 i 2 .. i._ti),i• + ll(i 1 i, ... i._,i.i),i•-• + 
+ ... + B(;,;, ... i.i),it · 

We can now define an operator ,d by the use of the tensor differential d and the 
symmetrisation operator Sym. It will map a covariant tensor field with rank k in a full 
symmetric covariant affine tensor field with rank k + 1. 

Definition 5. Symmetric tensor differential. The operator 

,d = Sym o d: B -+ ,dB = Sym(dB) , 
BE 0k(M) , ,dB E A 0k+1 (M). 

is called symmetric tensor differential. 

Remark 9. Since d contains in its construction a covariant basic vector field (dxi or c"') 
the symmetric tensor differential can map only a covariant tensor field in a full symmetric 
covariant affine tensor field. Contravariant tensor fields cannot be entirely symmetrised 

~y the use of ,d: 

,dC = Sym(dC) = Sym(CA .i.dxi 0 a A)= C(A) ,;.dx' 0 a(A) ' 

C E 0k(M). 

; The affine tensor field ,dC is not a full anti-symmetric contravariant affine tensor field 
because of the existence of different type of indices (contravariant A and covariant. i) in a 
co-ordinate (or non-co-ordinate) basis. 
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Re1uark 10. \\'(• •nil further consider tlw action of .• d only on cm·arianl lf•nsor field;;. 

Th<• propnt iPs of t.IH' synlm<'t ri<· t <'nsor dilfcr<'nt ial .• d are determined. by its const rnc­
tJon and by tIll' act ion oft lw tensor dilfcrc•nt ial on nwariant tensor liPids. 

(a) Action on a function 

Proof: 

.,df = df. f E Cr(.\1). 

.• df = Sym(df) = .'iym(iJif.d.r;) = J.; .. "i.IJIII(dJ·i) = f.;.d.r; = df. 
l)('nllis<' of ,<.,'ym(dJ·;) = dJ·; . 

.• d has also t h<• propPrty 
.• J(.,dn = d(df) 

(b) Action on a covariant tPnsor field 

Proof: 

whPrc 

.• diJ= .• J(.,JJ) 

.• JIJ = S'ym(JJJ) = Sym(IJA.i·dJ·1 C0 lh·'t) = /J(,\.i)·cf.rU :·c d.r'1l = 
= /J(A,i)·fiJ:'.dJ·('I) = /J(,\,i)·dJ:('t).dJ·i = .. J(.,IJ), 

IJ E ~0k(M) . .• IJ = JJ(A)·lf.r('t). 

.• d!J = JJ(A,i)·lil:i.dJ:('\~ = [r(n/J.-I)].r".c( .. t), /J E cvk(.\1) 

.• d(., /J) = Sym(JJ(,\).i .dJ·i 0 dJ:(A)) = JJ(A,i) .dx(i C0 d.r'1 ) = /J(.·I.i) .d.1·; .r!J·( .. t) = 
= JJ( .. t,i)·dJ:('t)_cfx;. , 

.• d has also the property 

- - . . (I) 
.• d(.,d!J) = JJ(A,i,j)·d3:1 .dr'.d.r ' 

(c) Linear operator with respect. to covariant tensor fields 

.• d(n.JJI + {i.IJ2) = o.,,dl31 + ;J ..• d/J~ , 
/J; E C\lk(M),. i = 1,2, o,;J Ell (or C). 

I' roof: 

.• d(a.IJ1 + ;3./h) = (Sym o d)(a./Jl + !'i.IJ2) = S'ym[d(o./Jl + 3./J~)J = 
.'iym(n.dll, + {i.dlJ2) = n.Sym(d/Jt) + rJ.S'ym(dJJ2 ) = o .. ,d/J• + d ..• d/12. 

wla•re Sym( n. /J) = n .Sym/J = o ..• H . 

(d) Dilfercnt.ial opnator with respect to mvariant knsor fields 

.• d(.-1 N H)= ,d;\.,,IJ + ,...t. .• d/J, .-\ E 0ok{ .\I) , H E ,,:t( .\I) 
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Proof: 

,d(.-1 :-: /J) = Sym[d(A z /Jl] = Sym[d:l :.; lJ + d2·' ~·': .·1 :-: i), /J] = 
.• (dA Z H)+ ,(dx; Z A ·Z iJ;IJ) = ,dA.,IJ + dx; __ ,A.,(iJ;IJ) = 

,d:l.,JJ + ,A.,(dx; r..; o;FJ) = ,di\.,JJ + ,A.,(d/J) = 
= ,dA.,B + ,A.,d/J . 

where the relations arc fulfilled: 

Sym\A 0 JJ) = ,(A Z B)= (SymA).(SymH) = .• A.,JJ . 
Sym(o.B) = o.SymB = o.,IJ , o E H (or C), 

Sym(n.IJl +/1./h)=o.Sym!Jl -;t-[J.Sym/J2 =o. .. ,/Jl +:J.,JJ2, 
IJ; E Zk(M) , i = 1;"2, o., /J E H (or C), 

,diJ = Sym(dB) = B(A,i)·dx(Al.dx; = Sym(JJA,i .dxi ~ dx'' J = 
= Sym(IJ(A),i·dxi ®dx!Al) = Sym[d(,IJ)] = ,d(,JJ) . 

If A and lJ arc full symmetric covariant tensor field, i. c. A = ,A aud JJ = ,IJ, then 
, J acts on them as a differential operator obeying the Leibniz rule 

,d(,A 0 ,B)= ,d(,A).,B + ,A.,d(,B) , 
• A E • Zk (M) , , BE '01 (¥) . 

3.1. Covariant symmetric tensor differentiaL On the analogy of the definition 
c1f the symmetric tensor differential we can define the notion of the cc.v;.riant syrnmf'lric 

t<~nsor differential. 

Definition 6. Covariant symmetric tensor differential. The operator 

,D=Symo75 

is called covariant symmetric tensor differentiaL 
The properties of the covariant symmetric tensor differential , 75 are determined by its 

construction and the properties of the covariant tensor differential: 
(a) Action on a function 

JJt = Sym(Df) = Sym(df) = df I f E cr(M), r ~I , 
df E T*(M) , Sym(f) = id(f) , Sym(dxi) = id(dxi) . 

,D(,Df) = D(df) = fc;;j)·dxi.dxi . 

(b) Action on a covariant tensor field 

Proof: 

,DB= .D(.IJ) I 

,DB= B(A;i)·dx;_dx!A) = (c(aBAJ].t!".c(A) . 

,DIJ = Sym(DB) = Sym(BA;i·dxi 0 dxA) = IJ(A;i)·dx(i 0 dxAl = 
= IJ(A;i)·dx' .dx(A) = B(A;i)-dx(A)_dxi = • D(,B) , 

lJ E (-;ik{M), ,IJ = B(A)·dx(A), 
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where 

;l5(,B) = Sym(B(A);i·dxi ®dx(A)) =B(A;i)·dx(i 0 dxAl~ B(A;i)·'dxi.Jx(A)·= 
= B(A;i)·dx(Al.dxi. . 

_,IJ has also the propeity._ 

,D(,DB) = B(A~J)·dxi.dx;.dx(B) = ,(D(DB)). 

(c) Linear operator with respect to' covariant tensor fields: 

J5(o..B1 + {J.B2) = a.Sym(DB!) + {J.Sym(DB2) = a.,DB1 + {J.,DB2 , 
B;E®k{M), i=l,2, a,{JER(orC). 

(d) Differential operator with respect to covariant tensor field: 

Proof: 

where 

,D(A 0 B)= ,DA.,B + ,A.,D(,B) . 

,D(A 0 B)= Sym[D(A 0 B)]= Sym[DA® B +dx; ®A 0 "ila;B] = 
= Sym(DA ~B)+ Sym(dx; 0 A 0 '\1 a; B)= 

= [Sym(DA)].SymB+ [Sym(dx;)].SymA.Sym("ila;B) = 
,DA.,B + ,A.dxi.,("ila;B} = ,DA.,B + ,A.,("ila;B).dx; = 

= ,DA.,B + ,A.,D(,B) I 

,("ila,B).dxi = ["ila,(,B}].dxi'= B(c);i·dx(C)_dxi = B(c;i)·dxi.dx(C) = ,D(,B), 
,DA = ,D(,A) I ,DB= ,D(,B) . 

On the basis of the last relation we obtain that 

,D(A IS· B) = ,DA.,B + ,A.,D(,B) = ,D(,A).,B + ,A.,D(,B) .. 

Therefore, the covariant symmetric tensor differential ,75 acts on symmetric covariant 
tensor fields as ~ differential operator obeying the I,eibniz rule 

,D(A 0 B)= ,D[,(A 0 B)]= ,D(,A.,B) = ,D(,A).,B + ,A.,D(,B) . 

3.2. Lie symmetric tensor differential. On the analogy of the definition of the 
covariant symmetric tensor differential we can define the notion of the Lie symmetric 
tensor differentiaL 

Definition 7. Lie symmetric tensor differential. The operator 

,£ = Symo£ 

is called Lie symmetric tensor differential. 
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The properties of the Lie symmetric tensor differential are determined by its construc­
tion and the properties of the Lie tensor differential: 

(a) Action on a function 

,£f = Sym(£1) = Sym(df) = df, IE cr(M) , r 2: I , 
df E T*(M) , Sym(f) = id(f) , Sym(dx') = id(dx') . 

,£(,£!) = ,£(df) = £a,,Pj)·d;'.dxi , Pi= /,j , 1 . 
£a,,Pj) = 2.(£a.Pj + £a,P;) . 

(b) Action on a covariant tensor field 

,£B = ,£(,B) . 

Proof: 

,£B = Sym(£B) = Sym[(£a,BA).dx' 0 dxA] = [£a<,BA)].dxU 0 dxA) = 
= Sym[£a,B(A)·dx' 0 d:z:(A)] = Sym[£(,B)] = £a,,BA)·dx(Al.dx' = ,£(,B) , 

BE 0k(M) , ,B = B(A)·dx(A), 

where 

,£(,B)= Sym(£a,B(A)·dx' 0 d:z:(A)) = £a,,BA):dx<• 0 d:z:A) =£a,, BA)·dx'.d:z:(A) = 
= £a<,BA)·dx(Al.dx'. 

,£has also the properties 

,£(,£B)= ,£(,£(,B)) , 
Sym o £ = Sym o £ o Sym , Sym o £ o Sym o £ = Sym o £ o £ . 

,£(,£B)= ,£(fB) = Sym(£(£B)) = ,(£(£B)) 

-- - j ; ~l- j ; ~) ,£(,£B)- £au£a,BA)·dx .dx .dx - (£aJa,BA)(jiA)·dx .dx .dx . 

(c) Linear operator with respect to covariant tensor fields 

,£(a.Bt + f3.B2) = a.Sym(£B!) + (3.Sym(£B2) = a.,£B1 + {3.,£82 , 
B;E0k(M), i=l,2, a,f3ER(orC)". 

(d) Differential operator with respect to covariant tensor field 

Proof: 

,£(A 0 B)= ,£A.,B + .A~.£(, B) . 

,£(A 0 B) = Sym[£(A 0 B)] = Sym[£A 0 B + dx; 0 A 0 £a, B] = 
= Sym(£A 0 B)+ Sym(dx' 0 A 0 £a, B)= 

= (Sym(£A)].SymB + [Sym(dx')].SymA.Sym(£a,B) = 
,£A.,B + ,A.dx'.,(£a,B) = ,£A.,B + ,A.,(£a,B).dx' = 

= ,£A.,B + ,A., "I(, B) , 
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wh<'r<' 

.• (.til,/l).dJ·1 = .ta.fl(n·dJ·(c)_,[J.i = .tii,.Jlc;.d.r(CJ_,/_;.1 = ;E(.,/J). 

.• E.-t = .• T(.:I). ,IJJ = .. I(, H). 

On I h<' basis nf t h<' last relation \\'<' oht a in I hat 

.E(.t :·: JJ) = ,T.t.,/J + _,.·t.,T(,H) = .• T(. •. I).,H + .. .-t.,I(.,/J). 

Th<'r<'fow. I h< l.i<· synmwt ric tensor dilf<'r<'llt ial ·' T acts on symnwt ric cm·ariant l<;risor 

li<'lds as a dilf<'r<'LI ial OfH'rator obeying tlw Leihniz rul<-

_T:(.I :-Ill= ,I[.(.L·: /J)] = ,I(..I.,/J) = .E(,.I) ..• H+ ,.l.,I(,/J). 

·I .\'\TI-SY.~niETltl(" TE'\SOH lliFFEitE'\TL\I.S (EXTEH:'\AI. lllFFEHE:'\TIALS) 

Tlw result of the ;;ctiml of tlw leusor dilfurc·utial don a full anti-synurwtric l<'nsor liPid 

,,.IE .\N(.\1) cau h•• found in tlw form 

a c .. ·I) = .-I[JlJ.i .dJ·' :,~ dr 11 = .·lrn .. _, .... :.; ;-: 11 
• .-\[<'].<> = ( ".-1[1"] . 

lr \\"e impos<' th!' additioual mudition that th!' affine tensor fidd d(.,.l) has to lw a 
full ant i-symml't ric a !fin!' t<•nsor lid d. then \\"<' han· to act with the ant i-synmwt risat ion 

OJH"rator .-lsy111 on d(.,.-1) 

.-\.,ym(d(a:\)) = .·\sym(J\[IJ],i ) . .-hym(dJ·' ~ dr 11 ) = .·l[[ll].i] .dJ·; 1\ ,u 11
' =' 

= .. 1.-ym(:I[JIJ,i ).dJ·' 1\ d.r 11 = .-t 111 ,;1.r!J·' _/\ <lr 11 . 

wlwr<' 
.-lsym(.-I[J,J,i) = :l[n.•J , .-\.•ym(d.r' ~ dr

11
) = dJ.i 1\ dr 

11 
. 

On the other side, t.hc operator Asym ant.i-s)'lllllll'lriscs th<• lt'nsor product .-1 Y //
1 

.-\sym(il N /J) = .tlsym(A;, ... ; •. H;. ... j 1).dJ·'• 1\ ... /\ dJ·1
• 1\ ,[J-.it 1\ ... /\ d.r.i• = 

= :1[i, ... ; •. Hj, ... j;]·dJ:1• 1\ ... /\ dx'• 1\ dxh 1\ ... /\ dJ·.i•. = 
= A[i, ... ;.J.rll·;, 1\ ... /\ dJ:1• 1\ llu, ... j,J·dJ·i• 1\ ... /\ dJ·.i• = 

=a A 1\ a/J = A.,ym,\ 1\ i\symH = ,,(.-\ (0 H). 

Frolll 
a(d(al\)) = :\sym(d(u.-1)) = i\[ll,i]·d.ri 1\ di /I 

ami by the use of t.hc exprcssim~ for !hym(:\ 0 H) for d.-\= .-lu_;.tlJ·; 8 d.r·
11

. 

Asym(dil) = .,(dil) = Asym(Au,;.dJ·' ~ dru) = .-l[/l,i]·rlr
1 

1\ dr 11 

it. follows t.hat. 
,,(dA) = .,(d(.,il)) . 

\Ve can now define an operator ad cons I ructcd of t.lw op<'rator .-\.'.'1"' and tIll' np<'rat or 

d in t.lu' form ud = .-\sym o d. 

. Definition 8 .. '\nti-symurcl.ric l.r•usor diffi·n·ulial (<•xl.<'fllill diffcrcut_i:~l). Tire "l"'r:rtor 
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;J: A--> adA= Asym(d!l) , A E c·:k{.\4) . ,d.·\ E ":·:k+r (.\!) . 

is called anli-symmtdric lr:nsor difjl:n:nlial (r:.z·/r:mal rlifjl:n:nlial). 
ad maps a covariant tensor field of rank k in a full anti-syrmnet ric covariant a !litH' 

tensor field of rank k + I. 

Remark 11. Since the operator ad contains in its structure a cm•ariant. basis \'c<·tor fidd 
d:r' or f:

0 
{ad= Asym o d = Asym o (d:r' ;~ ();) = Asym o (c" •Z t,)J, it <"illl/wt act 011 

contra\·ariant tensor fields as an an/.i-symmetrisatio11 operator wbic:h rm1ps a c:on/r;n·aria11t 
tensor field in a full anti-symmetric affine c:o!ltral'ariant tensor field. This is the reaso11 
for considering the action of ad on CO\'ariant tensor fields only. 

The properties of the anti-symmetric tensor differential are dPI.ermirrcd by its ddirrit ion 
and the properties of the tensor differential: 

(a) Action on a function 

ad/= Asym(df) = df, ad!= df = f.;.d•·;, f E cr(M) , ad! E '/'"(M) , 

ad/(~)= df (0 = J.;./i j·~j = ~i_/,; = U, ~ = ~i_iJ; 

ad has also the property 

ad(ad/) = 0. 

Proof: 

ad( ad/) = ad(df) = /r.i,jJ·dxi 1\ dxi = 0 , because of /,i,j = /,j,i . 

(b) Action on a covariant tensor field A E 0k(M) 

,dA = ad(aA) . 

Proof: It follows from the relation a(dA) = a(d(aA)) and the definition of 
0

d. 
ad has the property 

Lemma 9. (Poincare lemma): 

ad(adA) = 0: ad 0 ad= 0. 

Proof: 

ad(adA) = .d(dA) = Asym[d(dA)] = Asym[dxi 0 ()i(An,; 0 dx; 0 dxiJ)] = 
= Asym[An,i,i·dxi 0 dx; 0 dxn] = A[n,i,jJ.dxi 1\ dx; 1\ dx H = 0 , 

because of An,i,i = An,j,i : A[JJ,i,j) = 0 . 

(c) Linear operator with respect to covariant tensor fields 

ad(a.Ar + {J.A2) = a.adAr + /3.adA2 , 
A;E0k(M), i=l,2, a,/3ER(orC). 
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Proof:· 
'·' _l 

ad(a.A.r + {J.A2) = A~ii~[d(~.Ar'+ {3.A~)J = Asyrn[~('c;.A~) ~d(fJ.A2)J = ... 
. ='Asym[a.dA1J + Asym[,8.dA2] = a.Asym(dAt) + {3.Asym(dA2) = r 

= a.adAr + {3 .• dA2 . 

.£ 
i_·,.T' 

The last relation follows also immediately from the linearity of both operators Asym:' 
and d. 

(d) Differential operator with respect. to covariant tensor fields' 

ad( A 0 B)= ad(aA 1\ a B)= .dA 1\ aB + (-l)" .• A 1\ adB, 
A E 0k(M) , BE ®t(M) ,· adA E a ®t<+r (M) , adB E a ®t+r (M) . 

Proof: 

ad(A .®B) = Asym[d(A ®B)] :;:: Asym[dA ® B + dx; ®A® a; BJ = 
= Asym(dA) 1\ aB + Asym(dx1 ®A® 8;B) = 

= adA 1\ aB + Asym(dxi ®A® 8;B). 

For Asym(dx; ®A® 8;B) we can find the relations 

Asym(dx; ®A ®8;B) =,Asym(dx;) 1\AsymA AAsym(8;B) = 
= dx; 1\ aA 1\ [B[cl,i·dXcJ = (-l)k .• AI\ B[c,iJ·dx; 1\ dxc = 

= (-1)" .• A 1\ Asym(dB) = (-l)k .• A 1\ adB. 

Therefore, 

ad( A® B) = adA./\ aB + Asym(dxi ®A® 8;B) =;: 
=adA/\ .B+(-I)" .• A/\ adB. . 

On the other side, from the relation adA = ad(aA), it follows that · 
. ' 

ad(A ® B) = .d[a (A® B)] = ad[Asym(A ®B)] = ',d(aA 1\ a B) . 
-- '''/., 

Putting the last expression in the relation for ad( A® B), we obtain 

ad(aA 1\ a B) = adA A aB + ( -1)" .• A A a dB . 

:c .. 

); 

By the use of the relations adA::;: ad(aA), adB ~ ad(aB) we can determine the action 
of ad on the external product a A 1\ aB of two full anti-symmetric tensor fields'aA and aB 

ad(aA 1\ a B) = [ad(aA}] 1\ aB + ( ..,.1)" -aA 1\ [ ad(aB)J . 

Therefore, ad acts on full anti-symmetric tensor fields as a differential operator obeying 
the rule for anti-differentiation (i. e. the Leibniz rule with respect to the external product 
and with a possible change of the sign [( -l)k] in the second term after differentiation)., 
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4.1. Anti-symmetric covariant tensor. differential (covariant ~xternal diffi!r­
ential). On the analogy ofthe definition of the anti-symmetric tensor differential we 
can introduce the notion of anti-symmetric covariant tensor differential. Instead of d in 
ad we can put D and find an operator of the type aD= Asym o D. 

Definition 10. aD = Asym o D is called anti-symmetric covariant tensor differential 
(covariant external 'differential). 

aD maps a covariant tensor field of rank k in a full anti-symmetric covariant tensor 
field of rank k + 1 

aD: A-t aDA= Asym(DA) , A'E 0k(M) , aDAE 0k+J(M) . 

Remark 12. Since the operator aD contains in its structure a covariant basis vector field 
dxi ore"' [aD= Asym o D = Asym o (dxi 0\7 a.) = Asym o (e"' 0\7 eJ], it cannot act ou 
contravariant tensor fields as an anti-symmetrisation operator which maps a contravariaut 
tensor field in a full anti-symmetric contravariant tensor field. This is the rea.~cm for 
considering the action of aD on covariant tensor fields only. This ca.~e is analogous wil,h 
the case of the operator d. 

The properties of the anti-symmetric covariant tensor differential are determined by 
its definition and the properties of the covariant tensor differential: 

(a) Action on a function 

.Df = Asym(Df) = Df = df, aD!= df = t;.dx' , f E cr(!!'f) , aD! E T*(M) , 
aDf(e) = df (e)= J,;,Ji i.E,i = e;.J,; = U, ~ = e;.8; . 

aD has also the property 

aD(aDf) = f(.i;il·dxi 1\ dxi = 
= ~.(P;~- PJ;).f,k .dxi 1\ dxi = !.U;j k .f,k·dxi 1\ dxi 

/,i,j = /,j,i , f E c:;(M) , r > 2 . 

(b) Action on a covariant tensor field A E 0k(M) 

aDA= aD(aA) . 

Proof: 

aDA= Asym(DA) = Asym(An;;.dx; 0 dx8
) = A[B;iJ·dx; 1\ dxiJ . 

On the other side, 

aD(aA) = Asym[D(aA)] = Asym(A[nJ(dx~~ dxiJ) = A[[BJ;iJ·dx; 1\ dxn = 
= A[B;i]·dx 1\ dx , 

because of the property of the anti-symmetric Bach brackets 

A[[BJ;i] = ( A[IJ];i )[IJi] = A[JJ;iJ . 
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TIH'refore, 
aD:\= aD(ai\). 

aT5 has also the propc•rt); 

- ·- - j ,i '"~IJ 
,.JJ(. /J:\) - A[ll;i;JJ·rl.r 1\ dJ A d.r 

(r) Lira•ar opc•ralor with n•spPcl to covar.iant tensor liPids 

Proof: 

aT5(n.A 1 + d ... h) = n .• T5A, + .J..DA2. 
.\; E ;-;k(.\1), i = i.:!. n_, J E f{ (?r C). 

• 

.T5(n.;\ 1 + 3 .. -h) = :lsym[T5(n.A, + 3 .. ·h)] = ;\sym[T5(n.Ar) + T5(3..·h)] = 
= .. tsyrlr[n.T5A 1J + Asym[B.Drh} = n .:\sym(n.-1,) + 3 .. ·\sym(D.b) ==' · 

. = n.,IJA, + J .• n.·\2. . 

ThP last relation follows also immediatl'ly from tlw lirwarity of both operators .·\sym 
and TJ. '.• 

ld) Differential operator with r<•spPrl to mvariant tensor field~ 

.. T5(:1;~ H)= .. D(aA 1\ .,H)= .,TJ_.t 1\ a/J + (-l)k . .,.\1\ ,,TJH. 
,\ E'<0k(Jt(· II E 0t(.\f), .,TJA E'(~k+\(.\1)·. ·,;TJII E ;•:t+r(.\1). 

:~ L 

ll 

Proof:,. .,,. 1.: 

· .. TJ(~\ N /J) ='Asym[fJ(i\ (0 /J)] = ,\sym[TJ.-1 (0 /J + dJ·i ;.; .-1 :-:'\a, II]=,,. 
·· .·. . . = .-\sym(Di\) 1\ 'all+ Asym(dxi 0 .-I 0 '\o.fll = 

= aDA 1\ .. JJ + Asym(dxi 0 A (0 \'a, H) . 
' . 

For i\sym( ell:' (0 A (:..) v ii,/J) we c:a11 fi11d the rdations 

Asy111(dxi Q¢ il N \7 a, H) = Asym(d.ri) 1\ Asym,·\ 1\ .. lsym('\ a, H) = 
= dx; A, a A A [JJ(CJ;i .dxc] = (-I )k .• A 1\ H[c;iJ·riJ·' A rfi c ::: 

Tlwreforl', 

= (-l)k ... AI\i\sym(fJ/J) = (-IJk .... IA .,TJH. 

.. D(A 0 IJ) = a/JJ\ A aH + Asy,i(rl.r' ~As \'<>,11) = 
= alJAI\ aH+(-I)k·aAA .,fJIJ. 

On t.he ot.her sidP, from the rclat.io11 aDA= aD(ail). it follows that 

aD( AN H)= aD[,,(rl 0 /J)] = .,TJ[.-\sym(!l 0/l)] = ,,D(.,.\1\ "II) . 

Putt.inv; tlw last. expression i11 the• n•lation for ,.TJ(.-1 (~H).,, ... obtain 

.,D(.,:\ A aH) =.,D.-I A_ all+ (-l)k ... ~·IA ,.TJII,. 

21 



By the US<' of the relations aDA- aD(a/1). 0 D/J = aD(alJ) we can cletermirH· tlw 
action of aD on the external product a A 1\ a lJ of two full anti-symmetric tensor lid cis a.·\ 
and .JJ 

aD(aA 1\ alJ) = [aD(aA)]I\ a/J + (-l)k-aA 1\ [aD(aJJ)]. 

Therefore, aD acts on full anti-symmetric tensor fields as a differential op<~rat or obey­
ing the rule for anti-differentiation. 

aD maps a full anti-symmetric covariant tensor field of rank k in a full anti-symmetric 
covariant tensor field of rank k + I. 

4.2. Anti-symmetric Lie tensor differential (Lie external differential). On 
the analogy of the definition of the anti-symmetric covariant tensor differential we can 
introduce the nGtion of anti-symmetric Lie tensor differential. Instead of 7J in a 7J we can 
put I and find an operator of the type .I= Asym o I. 

Definition 11. a£= Asym o £is called anti-symmetric I.ie tensor differential (l.ir• ex-
ternal differential). · 

a I maps a covariant tensor field of rank k in a full anti-symmetric covariant tensor 
field of rank k + 1 

.I: A-+ .IA = Asym(IA) , A E ~k(M),- .EA E ®k+!(M). 

Remark 13. Since the operator a 'I contains in its structure a covariant ba.~is vector field 
dxi or c" [a£= Asym o £ = Asym o (dxi 0 1:8 ,) = Asym o (e" 0 l:e~)J, it cannot act on 
contravariant tensor fields as an anti-symmetrisation operator which maps a contravariant 
tensor field in a full anti-symmetric contravariant tensor field. This is the rca.~on for 
considering the action of a£ on covariant tensor fields only. This case is analogous with 
the ca.5c of the operator D. 

The properties of the anti-symmetric Lie tensor differential are determined by its 
definition and the properties of the Lie tensor differential: 

{a) Action on a function 

a£f = Asym(Ef) = £J = df, .£J = df = J,;.dxi , 
f E Cr(M) , .£J E T*(M) , 

a IJ(~) = df (~) = J.;.Ji j -~j = ~i.J.; = f.J 
1 

f, = ~i_fJ; . 

a I has also the property 

a I(.£!) = £a1,P;J.dxi 1\ dx; , 

(b) Action on a covariant tensor field A E 0k{M) 

a£A = ai(aA) . 

Proof: 

Pi=/,;· 

.IA = Asym(£A) = Asym(£a,A8 .dxi 0'dx8 ):::: £a;,ABJ:dxi 1\ dx 11 
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On the other side, 

a'I(aA) = Asym[£(aA)] = Asym(£a,A[H]·dxi 0 dx 8
) = £a1,A[n]]·dxi 1\ dx 8 = 

· =£a
1
,AnJ·dx'l\dx 8

, · ' 

because of the property of the anti-symmetric Bach brackets 

£a1,Arnn = (£a1,Arnn)[n;J = £a1,AnJ . 

Therefore; 
a'IA = a'I(aA) . 

.£has the property 

a£(.£A) = £au£a,An]·dxi 1\dxi l\dx 8
. 

(c) Linear operator with respect to covariant tensor fields 

•a£(a.Ar + f}.A2) = a.a'IAr + fJ.a£A2 , 
A; E ®k(M) , i = 1, 2 , a, {3 E R (or C). 

Proof: 

.£(a.Ar + f}.A2) = Asym[£(a.Ar + f}.A2)] = Asym[£(a.Ar) +£(fJ.A2)] = 
= Asym[a.£Ar] + Asym[f}.£A2] = a.Asym(£Ar) + f}.Asym(£A2) = 

= a.a'IAr + {3 .• £A2 . 

The last relation follows also immediately from the linearity of both operators Asym 
~dL . 

(d) Differential operator with respect to covariant tensor fields 

a£(A 0 B)= .£(aA 1\ aB) =".£A 1\ aB + (-l)k ·aA 1\ a£B , 
A E ®k(M), BE ®t(M), .£A E ®k+r(M)', ·~£BE 0t+r(M). 

Proof: 

.£(A 0 B)= Asym[£(A 0 B)]= Asym[£A 0 B + dxi 0 A 0 £a,B] = 
= Asym(£A) 1\ aB + Asym(dxi 0 A 0 £a, B)= 

= a'IA 1\ aB + Asym(dxi 0 A 0 £a; B) . 

For Asym(dx' 0 A.® £a, B) w~ can find the relations 
1 ,. , t 

Asym(dx; 0 A 0 £a, B)= Asym(dxi) J\ AsymA 1\ Asym(£a,B) = 
= dxi 1\ a A 1\ [£a,B[c]·dxc] = (-l)k ·aA 1\ £a1,BG].dxi 1\ dxc = 

= (-l)k. 0 AI\Asym(£B) = (-l)k. 0 AI\ a'IB, where 
dx' 1\ Asym(£a,B) = -Asym(dxi 0 £a, B)= Asym(£B) = a'IB . 

Therefore, 

.£(A 0 B)= a'IA 1\ aB + Asym(dxi 0 A 0 £a, B)= 
'· ''"='.;£AI\~B+(-'l)k.aA/\a£B .. ''' " 
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On the other side, from the relation aEA = aE(~A), it follows that. 

aE(A ®B) = aE[a(A ®B)]= aE[Asym(A ®B)]= aE(aA 1\ a B) . 

Putting the last expression in the relation for aE(A ®B), we obtain 

aE(aA 1\ a B)= aEA 1\ aB + ( -l)k -a A 1\ aEB . 

By the use of the relations aEA = aE(aA), a£B = aE(aB) we can determine the 
action of a£ on the external product aA 1\ aB of two full anti-symmetric tensor fields aA 
and aB 

aE(aA 1\ a B)= [a£(aA)] 1\ aB + (-l)k ·aA i\ [a£(aB)] . 
-~· 

Therefore, a£ acts on full anti-symmetric tensor fields as a differential operator obeying 
the rule for anti-differentiation. 

a£ maps a full anti-symmetric covariant tensor field of rank k in a full anti-symmetric 
covariant tensor field of rank k + 1. 

The.re is a relation between the action of the anti-symmetric Lie covariant differential 
a£ and the tensor differential d. From 

a£A = Asym(£A) = Asym[dxi ® £a;(A)] = Asym[(£a;An).dxi ® dxn] 

and the explicit forms of £a; An and (£a; An) .dxi 

· · c -c · - · 
(£a;An).dx3 = An,j·dx1 + (Pnj + r Bj).Ac.dx1 =dAn+ Pnj.dx3 

where 

c -c - · - - 11 
Pnj = (Pnj + r nj ).Ac , dAn = An,j .dx1 ' dA = dAn ® dx , 

we obtain 
£A= dA+P, P = Pnj.dxi ® dxn . 

Then, 
aEA = Asym(£A) = Asym(dA + P) = adA+ aP , 

aP = P[nj]·dxi 1\ dxn ' adA= A[B,j]·dxi 1\ dxB 

Special case: S = C: t i = g} : Pjk + r;k = 0, 

P=O, £A= dA, a £A= adA. 

The Lie derivative of a full anti-symmetric covariant tensor field along a contravariant 
vector field e can be found on the basis of the Lie derivative of a covariant tensor field 
WE®k(M) . 

£~W = (£~WA).dxA = (£~Wn).en, 
£€WA = WA,k·e- SAknt.wn.ek ,t+ (P!ft + r~l).Wn.~1 . 

The Lie derivative of adf can be found after direct computation in the form 

£<(ad!)= {f,;,i.ei + f.de1 .!. + (P/k + r[kl-ek]}.dx' . 
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Spu·ial m.w: .'-i = C: / 1 j = !/~ : I'Jk + q_k = l'jk+ qk = 0. [5] (p.l/1 ): 

.t<(,,df) = U.r.i:f.-1 + J.i.e ;).dr' = ((fi ,.~i + J.i~f.i _;).d:r' = Ui-f.i-). 1.dJ·' = 
= d(/j.f.l) = ;Ju.,~.f.l) = ,,d(f,f) . 

.tdadfl = ad(f,f) = ad(£{/) bi'Ci\IIS(' of£{/= E.J . 

Tlu• Li<' d<•rivat in• of a covariant v<·ctor field p along a contra\·ariant wet or fi<·ld f. can· 
lw wrill<'n in th<' form . . . 

" _ (£ ) 1 i _ r. ck + cT (l'j + ['j ) ck] 1 i "'-£.P- £.Pi ·1 l' - U1i,k·<.. l'i·<..· ~+Pi· ik fk ·<.. •1 ·1' · 

In tlw sp<'cial (·as<'. wlwn S =C . .Co' can be exprcss<'d by th<' us<' of Sand ,J. 
s·,wr·iu/ r·u"" <; = C · J' · = ,,;_ · 1'1 + 1'7 = pi + I;;_ = u· · 
' · · • · · J • J · 1k Lk Jk 1 k · 

I' roof: 

.C£.11 = '2.8((..1 dp) + .,d[.'l'(p. OJ = idadp) + ad(i£.p) = 
= (if. o ad+ ,do i£.)p . 

.to'= (Pi.k-f.k + Jlk-f.k .d.dJ·' = Jli.k·e.dJ·' + Pk-e .•. r1J·' = 
= l'i,k·e.r~J,. + (Pk·e).;.rhi -Pk.i-f.k;dJ·' = 

= (l'i,k- Pk,;).f.kdJ·1 + [S(p.O],;.dr 1 = 
= :l.f'[i.kJ·e .r/J"' + d[S(p. OJ= ·'2.S(f..a dp) + ,,J[S(J'.f)J. 

l'k.i·e.dJ·' = Pk.i·dr'.e = dpk.e = (ilp)k.t,k. 
(S(p, f,)],; .d:ri = d[S'(p, OJ= ad[S(p. OJ · 

On the other side, 

adl' = l'[k,i]·dri 1\ rhk = Jl[i,k]·dJ·k 1\ clJ·1 

.'>'(Ca dp) = l'[i,kJ·e .dJ·k = ~.i{(adp) , S(~. p) = S(p. 0 = i£.1' . 

Tlwr<'forc, 

.C£.1' = '2.8(~.a dp) + ad[S(p, OJ = i£.(adp) + ,d(i£.1'). 

Remark 14. lu ([,,!I)-spaces [iu coutrasl. l.o (l.,.,!J)-spaccs} rr•lalio11s of IIH' type 1'~ o 
ad= ado££., ££. o if.= if. o ££. arc not fulfilled. · 
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