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1 Introduction 

In paper [1} a concept of involutive ~onomial division was invented which forms the 
foundation of general involutive algorithms (1, 2] for cons.truction of Grobner b~es [3] 
of a special form called involutive. This notion, by ~ well-known .correspondence (4, 5] 
between polynomials and linear homogeneous partial differential equations (PDEs) 
with constant coefficients, follows the notion of involutivity for PDEs. An involutive 
form of a system of PDEs is itsint~~reduced completion by the differential consequences 
called prolongations1

, incorporating all integrability conditions into the system (6, 8]. 
The integrability conditions play the same role in the completion procedure for PDEs 
as nontrivial S-polynomials in the Buchberger alg~rithm (10, 11] for construction of 
Grobner bases. 

Given a finite polynomial set and an admissible monomial ordering, an involutive 
division satisfying the axiomatic properties proposed in (I] leads to a self-consistent 
separation of variables for any polynomial in the set into disjoined subsets of so-called 
multiplicative and nonmultiplicative varial?les. 

The idea of the separation of variables into multiplicative and nonmultiplicative goes 
back to classical papers of Janet (6] and Thomas [7]. They used particular separations 
of independent variables for completing systems of partial differential equations to in
volution. More recently one of the possible separations already introduced by Janet [6] 
was intensively used by Pommaret [S]in the formal theory of partial differential equa
tions. These classical separations allow one to generate the integrabilit;y conditions 
by means of multiplicative reductions of nonmultiplicative prolongations. Just this 
fact was first used in [9] as a platform for an involutive algorithm for construction of 
Pommaret bases of polyno~ial.ideals. 

If an involutive division satisfies some extra conditions: noetherity and constructiv7 
ity [1], then an involutive basis may be constructed algorithmically by sequential ex
amination of single nonmultiplicative prolongations only. Whereas Thomas and Janet 
divisions satisfy all the extra conditions, Pommaret division, being constructive, is 
non-noetherian. This implies that Pommaret bases of positive dimensional ideals may 
be infinite. The uniqueness properties of involutive bases are investigated in [2] where 
a special form of an algorithm proposed for construction of a minimal involutivy oasis 
which is unique much like to a reduced Grabner basis. In addition to the above men
tioned classical divisions, in paper [2] two more divisions were introduced which satisfy 
all the extra conditions. 

Recently it was shown [12] that one can also construct different possibl~ separa
tions of variables for a fixed monomial set. These separations can not be considered, 
generally, as functions of a set and its element as defined in [1]. Nevertheless, the 
results of paper. [12] demonstrate for a wide class of divisions how one can change the 
division dynamically ih the course of the completion. This increases the flexibility of 
the involutive technique and m~y also increase the efficiency of computations. 

1 Prolongation for PDE means its differentiation whereas for a polynomial this means multiplication 
by the corresponding vari~ble. · 
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An involutive basis 'is a special kind of Grabner basis, though, generally, it may 
be redundant: H~wever, extra. elements iri the former may facilitat~ many underlying 
computations. The structurt! of a Ponimar~t basis,_ for example; reveals· a n'!mber of 
attractive features convenient for solving zero-dimensional poly;omial system~ [13]. An 
involutive basis for any division aliows one to comp~t~. easily the Hilbert ftin~tion_and. 
the Hilbert polyn?mial by explicit and'<;'ompact,for~ulae:i1_2,}4J. _ ,. .. _ ....• ,, . 

Computation of Janet bases-relying upon the original Janet algorithrnwas imph 
mtmted in Reduce and used for finding the size of.; Lie symmetry group for PDEs [15] . 
and for classification of'ordinary differential equati~ns admitting nontrivial Lie sym
metries [16]: The st~dy of algorithmic aspects ofthe general wmp!e'tion procedure for: 
Pommaret division and implement'ation in 'Axi~mwas do~e 'in [17].' The cofiipletion 
to involution of polynomi_al bases for Poinmaret diyisiori was ·algorit,hmized ?nd imple
mehted)n Reduce,_ first, in_[9]; and .then, with algorithrrii,c improvementsin [1]. The 
main improvement' is inco~poratlon ·of an involutive analogue of Btichberger'!!_ch~in 
criterion. Recently different involutive divisions were implemented also in Mathemat-
ica [14]: _ . _ . . · __ · .,. , . ,:··;·, ., .•. :. _·· , ,, L- ,. · . 

···In the present paper we introduce 'a·-dass of involtitive divisions induced by ad
missible orderings and prove'their noetherity and constructivity. For'the new _class 
of givisions, along :with the classical ones and twodivi~lons'ofpaper[2];. we study 
the stability of the partial involutivity for monomial and polynomial -sets under tlieir. 
completion by irreducible nonrriultiplicative prolongations .. We gen~ralize the involu
tive algmithms to different main and com'pletion orderings. 'The con\.pletion ordering 
serves foi selection of a nonmultiplicative prolongation to be treated next.- In so doing, 
a completion ordering' defines the selection strategy' in invohitive algorithms similar to 
the selection strategy for critical pairs in: Buchberger alg~rithm [10, 11]. For different 
divisions we_ find somecorripletionorderings whichpre~erve the property of partial invo
lutivity and' thereby save ~omputing tiille: We ih'dicate also'a 'pair~isk prhpe~ty which 
is valid for ~ll kii:own 'divisions. This pr6perty can beused t~ efficiently ~ecbmpute the 
separatio'n's when in'ew polynomialhas t~'be addecL . . . - - - -· ... ·.. . -

< • '.- '~· ~ ' - '.,;";' ' ' ~ :·. '·' ~ 

-- . ·, \. ~· ~ .!• ::\'J ;: . ; ) . : ;·· i: 

2 Background of Involutive Method··.,,,_ :k"-

In_ this sectionj·_we recall basic definitions and fads of•papers [1, 2] which'.are us~d 'in 
the next sections;_· .. ; : '--' · --~; ·, <•:< ,, . '• · , .. 

•• • 
2.1 ·Preliminaries 

·-:,,.~ ? ~~' 
Le~ N be the s~_t of nonp.egati ve int~gers, and M = { xf• · .. x~~ I d; E N} be ~ set of 
monomials in :the polynomialring R = K[xt,.:. 'Xn] over a field K of characteristic 

zero .. _. _ , , , ... _·: .. ·•. _.. ,.· .... _,_ .. _ :•-- .. _ --·-:. 
. By deg( u )and deg;( u) we denote tile total degree of u E M and the pegree'of variable 

xiin u, respecti~eiy.·For the least comm~n ~ultipl~of iwo monomials u,~·E.·M.~~ 
---~':.:::.:·-~:--..:; ..... ~.-; •.. ;---1~~-- ... ·-:....o..·~~--- ··:· .,. ,~.. .o -.· ' . ··-.- -·: •• ' ' 
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shall use the conventional notation lcm( u, v ). If mononiialu divides 'monomial v ~~ 
shall write u!v. In this paper we shall distinguish two admissible nio~omial orde;~ngs: 
main ordering and completion ordering denoted by >- and :J, respeCtivelY: The main 
ordering serves, as usually, for isolation of the leading t'e~ms in polynomials ~hereas 
the completion ordering is used for taking the lowest nonmultiplicative prolongations 
by the normal strategy [1] and thereby controlling the property ofpartial lnvoltiiivity. 
Besides, throughout the paper we shall assume that . . . · ' - ...... ' ' . . . 

X1 >- X2 ~- • • • >- Xn • 
(< •6> 

The leading monomial and the leading coefficient of the polynomial f E R with respect 
to >- will be denoted by lm(f) and lc(f), respectively. If F C R .is a polynomial set, 
then by lm(F) we denote the leading monomia.J set for F, and Id(F) will denote the 
ideal in R generated by F. The least common multiple of the set { lm(f) J I E. F} will 
be de1_1oted by lcm(F). . i. 

2.2 Involutive Monomial Division 

Definition. 2.1 An involutive division L on M is given, if for any finite monomial set 
U C M and for any u E U there is given a submonoid L( u, U) of M satisfying· the 
conditions: 

(a) If wE L(u,i!) a:D.d v)w; then v E L(u,U). 
.,, }+ 

(b) If u, v E U and uL(u,U) n vL(v, U) =rf ~'then u E vL(v, U) or v E uL(u, U). 
(c) If v E If and v EuL(u~ U), then L(v, U) ~ L(u, U). ·· 
(d) If V ~ U, then L(u, U) ~ L(u, V) for all u E V. 

' ' • . • . • '. - ~- ? 

Elements of L( u, U), u E U' are called multiplicative for, u. I( w E uL( u,U) we 
shall write u)Lw and call it (L-}invo/utive divisor of w. The monomial w is called 
(L-}involutive multiple of~- 'In 'such an everit the monomial v ,; wju is inultipliciitiv~ 
for U and the equality w = uv will be written as W '= u X v; If U is a conventionlil 
divisor of w but not an involutive one we shall write, as usual; w = u .· v. Then v is 
said to be nonmultiplitative for u: · · - · ·· " · · · · · · . 

Definition 2.2 We sha.Il say that an inyolutivedivision Lis globally defined if for .any 
u EM its multipliCa.tlvemOiiomia.Js are deflned'irre~pective'of the riionomia.J set U 3 u, 
that-is, if L(u,U) = L(u) . 

Definition 2.1 for every u E U provides the separation 
" -~·· .-.;~ .. ~- ·, . ' ~-·-. ,• :· ··.~' . . . 

{xh···•xn} = ML(u,U) uNMi(u,U), Mi(u,UfnNMi(~,U) =0 (2) · 

of the set of variables into two' sunsets: multiplicative ML( u~ uj c L( u, U) and non
multiplicative N ML{ u, U) n L( u, U) = 0. Conversely, jf for, any Jinite set U C .M 
and any u E U the separation (2) is given such .. tha.t' the corresponding--~submonoid 
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L(u, U) of monomials in variables in ML(u, U) satisfies the conditions (h)-(d), then 
the partition.generates_an involutive division. :The conventional monomial division, 
obviously, satisfies condition (b) only in the univariatecase: 

In what follows monomial sets are assumed to be finite. 

Definition 2.3. A monomial set u· E Mis involutively autoredu~ed or L-autoreduced 
if tile condition uL(u,U) ri ~L(v, U) = 0 holds for all distinct u,·v E U.. ' 

Definition 2.4 Given an involutive division L, a monomial set U is involutive with 
~espect to L or L-involutive if 

. (VuE U) (Vw EM) (3v EU) [ uw.E vL(v,U)J. 

· Definition 2.5 We shall call the set Uueu u M the cone generated by U and denote it 
by C(U). The set Uueu .u L( u, U) will be called the involutive cone of U with respect 

.. to L and denoted by CL(U). - · · 

Thus; the set U is 'L-involutive if its cone C(U) coinci&s with its invol~tiv~ cone 
CL(U).< '·, ~ · · . . . . 

~efinition 2.6 An L-involutive monomialset ci is called L-:-complet~?l] of a, set U ~ u if 

(Vu E U) ('</i.v E M) (3v E U) [ uw E vL( v, U) J, 
' > ·--.· • ' • 

Ihhere exists a finite L-completion U: of a finite set U; then the latter is finitely 
generated with respect to L . . The involutive division L is. fiodherian _if exery .·finite -~e~ . 

,-~, l!kfini.iely.gene;at~d \vith·i:especno•L:~ .,>. ;, k _..,. -~·- • · • • ·: _ •.. _. • • · 

Pr~positi~n 2. 7. [1} If an 'involutive division L is noetherian, then every mimomial 
id.ea_l has a finite involutive basis.U. · · 

. Defin'itiOJ:! 2:8 . A m~nomi~I set u is called locally involutive with respect to the invo-
lutive division L if · 

,, (\{u f= U) (Vxi EN ilh(u,U)) (3v EU) ( vJL(ti ·xi) j. . ·-·· ' . ., 
., 
.... '!.-

.Definition 2.9 A division L is called contlmwus- if'for ahy" set U -~ M and for any 
finite sequence {~;}(15i$k) of elements in u. such that . ' . ' - .- .· ... -

. ,_ -- .. . - -'~ .-. -· . . - ~ 

(Vi;< ~)(~x; E ]VAh(t,z;,lj)).J!li+t!Lu;; x;J {3) . 

the'ineqtmlity ~;#u;fciri·~ j:)iolds:· 
• ~::..-_~~-~,;~ :_:_:~.~ - "~'::: •. ; .:. ; ', e~,:-' ~? >' . ;·l_ 

.l 

Theorem 2.10 [1} If an involutive dit•ision L is continuous then local involutivity 'of 
a monomial set U implies its involutivity. 

Definition 2.11 A continuous involutive division L is con~truC:tive if fo/;;~y U c M, 
u E U, x; E · N ML( u, U) such that u • .r; has no involutive divisors in. U and , ~ 

(\fu E U) (V:ri E N lih(v, U)) (v · .riiu · .r;, ti • Xj # ti · x;) ( v · Xj E Uueu u L(u, U)] 

the following condition holds: ·IL 

(\fw E Uueu 11 L(u,U)) [ tt· .r; fj. tvL(w,U U {tv})]. . . ( 4) 

Definition 2.12 Let L be an inyolutive division, and I d(U) be a monomial ideal. Then 
an L-involutive basis [!of I d( U) will be called minimal if for any other involutive basis 
V of the same ideal the inclusion (1 ~ \1' holds. , , 

Proposition 2.13 [2} If U C M is a finitely generated set with :1~espi~ito a construc
tive involutive division,Jhen the monomial ideal I d( U) has a uniqiLe minimal involutive 
basis. 

2.3 Involutive Poly1Iomial Sets 

Definition 2.14 Given a finite set of polynomials F ·c IR mul.a main ordering>-. 
multiplicative and nonlnultiplicative v_ariables for f E F ar~ defined. in terms of lm(f) 
and the leading monomial set lm(F). · '"" 

Ti~e ·concepts ~f irivoluti\•e polynoniial reduction and inv6Iu.tive norn~al foni1 'are 
introduced si~ilarly to their conventional analogues [10, 11] with the usc ~f involutive 
division instead of the .conventional one. " ' 

D~fil-tition 2.15 Let L be an .invohitive division.£ ~n M, and let .p ri~··~ fihit~-s~t of 
. polynomi~ls. The? _weshall say:· · · ' · ' '' ·. · : ·' ·. · ··· ' > 

(i). p is L-1·educible modulo f E F- if p has a term t = au, (a E /\ \ {0})~ tt·E M 
such that u = lm(f) x v, v E L(lni(f),lm(F)). It yields the,J..:--'rrduCtion p·-+ 
g = p- (aflc(f)) f v. . 

. '. ·- ~ ~ 

(ii). pis L-:-reducible modulo F if there is f E F such that p is L:-rcduribl~ .mod~tlo 
f. ' \ . 

(iii). ]J is in L-normal form modulo F if pis not .(,-redt;ciblc mo<hilo F . 

We denote the. _{:.:.)J~r~al'forbl ofp ~10dulo p' b~ N F'dJ,, F). In r;mtrast, 'tlu· con,:i;t\
tional normal form will bi!''denoted by· N F(7,; F)., .If nionomial II' is m'ultiiilirat iw 'to 
lm(f) (! E F) and h = fu we shall write h = f x u. 

' ' . .-- . 



Definition 2.16 A finite polynomial set F is L-autoreducedif the leading monomial 
set lm(F) ofF is L-autoreduced and every f E F does not contain m~nomials which 
are involutively multiple of any element in lm(F). 

Remark 2.17 The further definitions and theorems of this section which involve the 
completion ordering C generalize those in [11 where Cis the same as the main ordering 
>-. The proofs of the generalized theorems are immediate extensions of the underlying 
proofs in [11. 

Definition 2.18 An L-autoreduced set F is called (L- }involutive if 
.J 

(V f E F) (Vu E M) ( N FL(fu, F) = 0 I· 

Given v E M and an L-autoreduced set F, if there exist f E F such that lm(f) C v 
and 

(Vf E F) (VuE M) (lm(f) · u C v) [ NFL(fu, F)= 0 I, (5) 

then F is called partially involuti'!e up to the monomial v with respect to the ordering 
c. F is still said to be partially involutive up to v if v C lm(f) for all f E F. 

Theorem 2.19 {1} An L-autoreduced set F C R is involutive with respect to a con
tinuous involutive division L iff the following (local) involutivity conditions hold 

(Vf E FJ (Vx; E N ML(lm(f), lm(F))) [ N FL(f · x;, F)= 0 I· 

Correspondingly, partialinvolutivity (5) holds iff 

{vf E F) '(Vxi E N ML(lm(f), lm(F))) (lm(f) · x; C v) [ .N FL(f • x;, F) = 0 I· 
'·'' ' t' $ .• ,,/ 

Theorem 2.20 {1} IfF C R is an L-involutive basis ofld(F), then it is also a 
Grabner basis,_.and the. equality of the. conventional and L-normal forms N F(p,P) = 
f'! FL(P,. F') holdsforany polynomial p E R. 'lfthe set P is partially involutive up to 
the monomial v with respect to c, then the equality of the normal forms N F(p, F) = 
N FL(P, F) holds for any p such that lm(p) C v. . . 

Theorem 2.21 Let L be a continuous involutive division, F be afiniteL-autoreduced 
polynomial set and NFL(p, F) be an algorithm of L-involutive normal form. Then the 

.following are equivalent: 

{i)~ F is an£:-involutive basis of ld(F). 

{ii). For all g. E P, x E N ML( lm(g ), lm( F)) there is I E F satisfying lm(g) · x = 
lm(f) x w ;and a chain. of polynomials in F. of the form . · . . 

f = /k,fk-b· · .,fo,go,. · .',!Jm-h9m = 9 

6 

1-

... 
·r 

such that 

N FL(SL{J;-l,Ji), F)= N FL(S(fo,go), F)= N FL(SL(9i-h9j), F)= 0, 

where 0 $ i $ k, 0 $ j $ m, S(f0 ,go) is the conventional S-polynomial {10, 11} 
and SL(f;,fi) = /; · x- h x w .is its special form which occurs in involutive 
algorithms {1}. 

Proof (i) ===? (ii) immediately follows f;om Theorems 2.19 and 2.20 if one takes f~ = 
f, go= g. To prove (ii) ===? (i) one suffices to show that N FL(g·x, F)= 0. 'Assume for 
a contradiction that there are nonmultiplicative prolongations which are £-irreducible 
to zero modulo F. Let g · x be such a prolongation which is the lowest with respect 
to the main ordering>-. This means the partial involutivity of F,upto lm(g) · x :with 
respect to >-. Correspondingly, the condition (ii) implies the representation (11] (cf. 
the proof of Theorem 8.1. in [1)) S L(/, g) = g · x- f x w = Lij f;u;j where /; E F and 
lm(f;u;i) -< lm(g) · x that contradicts N FL(9 · x, F)# 0. . D 

'~'' : '; 
Corollary 2.22 {1} Let F be a finite L-autoreduced polynomial set, and let g · x be a 
nonmultiplicative prolongation of g E F. If the following holds 

(Vh E F) (Vu EM) ( lm(h) · u C lm(g · x) ) [ N FL(h · u, F)= 0 I, 

[ 

lm(fo)llm(f), lm(go)ll~(g) l 
(3f,f0 ,g0 E F) l~(f)ILim(g·x), lcm(fo,go).clm(g·x)' , 

N FL(f~ · 1WJol), F)= N FL(Yo · ~~~(~}),F)= 0 

then the prolongation g · x may be discarded in the course of an involutive algorithm. 

Remark 2.23 Theorem 2.19 is the algorithmic characterization of involutivity where-
as Theorem 2.20 relates Grobner bases and involutive bases. Theo-rem 2.21 and Corol- ' 
lary 2.22 yield an involutive analog of the Buchberger's chain criterion· [101. 

Definition 2.24 Given a constructive division L, a finite involutive basis G'of ideal 
I d( G) is called minimal if lt( G) is the miniJ?al involutive basis of the monomial ideal 
generated by {lt(f)] f E Id(G)}. · ' · ' ' · ' • · · 

Theorem 2.25 [2} A monic minimal involutive basis is unique. 

3 Examples of Inv~lutive Divisions 
• ! 

3.1 Previously Introduced Divisions 

We give, first, examples of divisions corresponding to separations introduced by Jan~t, 
Thomas and Pommaret for the purpose of involutivity analysis of P~s, and two more 
divisions proposed in [21. For the proof of validity of properties (a)-( dJ in.Definition 2.1 
for these divisions we refer to [1, 2]. . L 
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Definition 3.1 Thomas division [7]. Given a finite set U C M, the ·variable x; is 
considered as multiplicative for u E U if deg;(u) = max{deg;(v) I v E U}, and nonmul
tiplicative, otherwise. 

Definition 3.2 Janet division [6]. Let the set U C M be finite. For each 1 ~ i ~ n 
divide U into groups labeled by non-negative int'egers d1 , ••• , d;: 

[dt, ... ,d;] = { u E U I d; = degi(u), 1 ~j ~ i }. 

A variable x; is multiplicative for u E U ifi = 1·and deg1 (u) = max{deg1(v) I v E U}, 
or ifi > 1, u E [dt, ... ,d;-t] and deg;(u) = ma"f{deg;(v) l v E [dt, ... ,d;_t]}. 

Definition 3.3 Pommaret division [8]. Fora monomial u = xf1 
• • • x~• with dk > 0 

the variables Xj,j 2: k are considered as multiplicative and the other variables as 
nonmultiplicative. For u = 1 all the variables are multiplicative. 

Definition 3.4 Division I [2]. Let U be a finite monomial set. The variable x; is 
nonmultiplicative for u E U if there is v E U such that 

x11
1 

• • • xf:;:u = lcm( u, v ), 1 ~ m ~ [n/2], di > 0 (1 ~ j ~ m), 

and X; E {x;11 ••• ,x;m}. 

Definition 3,5 Division II [2]. For monomial u = xf1 
• • • x%n the variable x; is multi

plicative if d; = dmax( u) where dmax( 11) = max{ dt, ... , dn}. 

Remark 3.6 Thomas division, Divisions I and 'II do not depend 'on the ordering on 
the variables. Janet and Pommaret divisions, as defined, are based on the ordering 
gi'ven in (I). Pommaret.divisiori and Division II are globally defi~~d in accordance 
with Defiriitlon 2.'1. . . 

All these divisions are constructive, and except Pommaret division they are no(;!therian 
[1, 2]. ,, 

3.2 Induced Division 

Now we consider a new class of involutive divisions induced by admissible monomial 
orderings ( c[ [12]). 

. :.~_;_ 
Definition 3. 7 Induced division. Given an admissible monomial ordering >- 2 a vari
able X; is nonmultiplicative for ll· E u if there is :v .E B such :-that v -.:.<· ll and. 
degi(u) < deg;(v). ., ·!:: 

Propositiorr:3.8 ·-The 'separation given in Definitiorr·3.T is a~ iiwolutive division. 
. - :. . . .',.- . -· '.. ',, . ' 

2
This ordering is generally different from the ~ain ~rderi~g int~od.;cedjn Sect.2._1. 
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Proof Let L>-( tt, U) be the submonoid generated by multiplicati~e ~ariables. We rh~st 
prove the properties (b-e) in Definition 2.1 because (a) and (d) hold obviously. 

(b) Let there be a monomial tv such that w E uL>- ( u, U) n v L>- ( l', U) with u, v E U 
and 11 #- v. Assumeu >- t• and --.vlu. Then, thereisavariable.rl(lcm(u;t•)/u)such th~t 
x 1. L'>:(u, U)~ Since vlw we obtain .rl(w/u) that contradicts wE uL>-{u,U)~ Thus, vlu 
and w = 1) X (wfv) = v X [(wfu)(ufv)]. This yields uE vL>-(i•,U). ' ·. 

(c) Let v E uL>-(u,U) and wE t•L>-(t•,U) with u,v E u; and, he'nce, ulv and 
ulw. Suppose w 1. uL>-(u, U). It follow~ the existence of a variable'.ri(w/u), ..,xl(v/u) 
and a monomial t -< u -< v, .t E U such that :rl(lcm( u, t)/u). This suggests that 
xl(lcm(v,t)/v) at t-< v, contradicting our initial assumption. 0 

Remark 3.9 Generally, an ordering>- defining Induced division implies some variable 
ordering which is not compatible with ( 1 ). However, below we assume that the orCie;ing 
>- is compatible with ( 1 ). 

To distinguish the above divisl~ns, the abbreviations T, J, P, I, I I, D.,:. will be some
times used. For illustrative purposes we consider three particular orderiilgs to in
duce involutive divisions: lexieographical, degre~-lexicographical and degree-i·everse
lexicographical. To distinguish these three orderings we shall use the subscript; i. 
DL, DRL, respectively. 

There are certain relations between sepa,rations generated by those divisions: 

Proposition 3.10 For any U, u E. U and>- the inclusions Jh(u,U) ~ UJ(u,U). 
Mr(u,U) ~ Ah(u,U), Mr(u,U) ~ Mv,_(u,U) hold. If[/ is autorcduccd u·ith respect 
to Pommm·et division, then also Mp(u, U) ~ MJ( u, U). · 

Proof The inclusion Afr( u, U) ~ Mv,_ ( 11 1 U) follows fron~ the obs~rvai.ion .that.t~· E 
T( u, U) implies x E D>- ( u, U). The other. inclusions proved in i1, 2]. · · · · 0 

The following example explicitly shows that all eight divisions \ve use in this paper ar(> 
differenf. In the table we list 'the multiplicative variables for every(livision: · · 

·Example 3.11 [14] Multiplicative variables for elements i'p tl;e monomi~l s~t. U. = 
{x2y,xz,y2,yz,z3 } (x >- y >- z) for different divisions: 

Monomial I Multiplicative variables. 

IT I J I P I I I II· I DL I · Dvr. I Dvln 
x2y X x,y;::: y,z :r X :r • :r .r . 
xz - y,z ~ :r x,.: X ;r,:: .r,::_ 
y2 y y,z y,z y y x,y, ,r,y: .:Y 
y::: - z ::: ...:. y,::: :r,y :r~y.::: ·.,·:y,'z 
z3 ::: z ::: -- ::: :r,y,::: ::: ::: 
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Proposition 3.12 Induced division is noetherian, continuous and con,«tructive. 

Proof Noetherity. follows immediately from' noetherity of Thomas division and the 
underlying inclusion in Proposition 3.10. . . . 

Continuity. L~t u be a finite set, and { u;}(1:9$M) be a sequence of eleme;ltS in 
U satisfying the conditions (3). In accordance with Definition 2.9 we shall show that 
there are no coinciding elements in the sequence for each of the two divisions. There 
are the following two alternatives: ' , 

(i) Uj = Ui-1 · Xjj (ii) Uj =j; tli-1 • Xj. (6) 

Extract from the sequence {u;} the subsequente {tk = u;.}(1$k$K$M) of those elements 
which occur in the left-hand side of relation (ii) in (6). 

Show that tk+dvlcm(tk+b tk) and -.tkitk+!· We have tk+1 x Wk+! = u;.-1 · Xj• = 
tk · Vk where -.tbk+diik. Indeed, suppose tvk+diik. Apparently, we obtain the relation 
tk+l = u1 · z1 where ik :S: l < ik+b and the variable Xj1 .!= N Mv(u,, U), which figures 
in Definition 2.9 of the sequence {u;}, satisfies Xj1lwk+l and -.xj,lz,. This suggests, 
by definition of the division, the existence of p E U such that p -< u1 and degj,( ui) < 
degj1(p). Since p -< tk+! and degj1(u,) = degj1(tk+I), it contradicts multiplicativity of 
Xj1 for tk+!· 

Th~refore, we obtain the relation 

{ 
tk · Vk :::: tk+l X Wk+1 , 
gcd(vk, Wk+t) = gcd(vk, wk) = 1, 

which, by Definition 3. 7, implies tk >- tk+! since Wk #1 for all k. 
It remains to 'prove that elements in the sequence {u; }(1$i$M) whichoccur in the left

hand side of relation (i) in (6) are also distinct. Assume for a contradiction that there 
·"·''are two.elements.uj ·='uk with'j:<k:'>In:betweeri.tllese'eJem:ents fhere'is;'obvlously,· . 

an e}em~nt from the left-hand side of relation (ii) in(6). Let u;;,. (j < im < k) be 
the nearest, such elementto Uj, Corisid~ring the samenoflmultiplicativeprolongations 
oLuk as those of ui in the initialsequence, one can construct'a·sequence such that 
the 'subsequence of the left~hand sides of reiation (ii) in (6) has 'two id~ntical elements 

· · .. ,u:~'='u;'''with·ik·> i,;.; ' .· . , ·. , . • ·. ·. \ ,,)· :·: . . · · · ' · '. · ·. 
'~Cori;lructi~ity. Let u,ti1 .E (/; v E 'D;(u{;V')'and:£'¢ D~(u,[T) be' such that 
u~x; '=u1v x w, w ED>-(u1v;UU{u1 v}( $how•ttlatt!leD>-(u1 ,U). Assumdhat 
the~e ·is· x j \f. D~ ( u1 , U) satisfying ·~;~~~ .T}ii~ i§'plii:S)ne .e~ls.~ence·(-e· U satisfying 
t-< u; cle.gi(t) >:degj{iti);'Then_:becauset:~'u;v; tneconditioo·:..xilv'leads tothe 
contladictory conditio~~ aegJ(tf;>~<I~!li(4ivj'.:::~er~tor(l; ;.ilv,, .5· ,;:.' .... : . o 

•••• < • ~. '"'· t'· ·'· --~·' •• --~ ,.~· -~ .. ·..;· ·.': • .• -· . -:~-\·"·' 

4 Compl~tio11, of Monomial, Sets to Involu~io:q. -
·: ·>··· .. ;· ··rt_- ·i·.·._ .·.·.~_., __ -.i 1.·:~--- _.c.·.· ·_r .'',·, ~-·····'~·-~._;.-' 

..... )Ll!is afinitely_generated mQnoiui~l set_witn\·esp~ct to the fixed inv~lutiy~di~ision L, 
- then its finite completion gives an involutive basis of the m(mo~ial ide.l:l gene~ated by 

. .. . ,- .. ·-· " . . ·' 
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U. There may be different involutivelyautoreduced bases of the same monomial ideaL 
For instance, from Definitions 3.1 and 3.2 itis easy to see that ~ny finite monomialset 
is Thomas and Janet autoreduced. The~efore, enlarging a Thomas or a Janet .b~i~ by 
a prolongation of any its element and then completing-the ~nlarged set leads to another 
Thoma.S and Janet basis, respectively. Similarly, Division I and Induced division do 
not provide uniqueness of invol~tively autoreduced bases whereas Pommaret division 
and Division ll do, as well as any globally defined division [2]. 

4.1 Completion Algorithm 
' ' . 

Theorem 4.1 'If U is a finitely gene~ated set with respect to a constructive involutive 
division, then the following algorithm computes the uniquely defined minimal comple
tion D of U, that is, for any other completion U the inclusion [! ~ [J holds. 

Algorithm InvolutiveCompletion: 

Input: U, a finite monomial set 
Output: U, an involutiv~ completion of U 
b~n 1 

[J := u 2 
while exist u E [J and x E N ML( u, U) such that 3 

u · x has no involutive divis~!;s in [J do 4 
choose any'Cand such u and x with the lowest u · x w.r.t. C · 5 
U := U U { U • X} 6 

end 7 
end 8 

~roof This.. completion algorithm)s ,a slightly ge.11eralized version,of that in [1)_ where. 
ordering cis assumed to be fixed. in the course. of the completion. As proved in [1] 
(see the proofofTheorem4.14), the ~utput [! ofth~ alg~rithm and the number of 
irreducible prolcingati~ns are in~iant on the choice of ordering in line 5.' 

- - , . . . . . , -; ~- :~ :\ I , ;_ t:. .. " ' . ,, . 

Corollary 4.'2 .If set U is conventionaUy autoreduced, then th~ algorithm computes the 
minimal ~volutive ·basis of monomial idealid(U). . ' 

I~ pra~tice,:'in·the cours{! of the co~pletion oi1ehas to choose·the lowe~tn~n~~lti
.piicative prolongation and to check whether it has an involutive divisor:inthe set. The 
. timing ~f computation is thereby determined. by the .total '.number . of prolongations 
checked; ' . · · ) .· 

. ~ " 

Theorem 4;3 The number ofnonmultiplicative prolongations checked in the course of 
algorithm InvolutiveCompletion with a constructive division L is invariant on the 
choice of completion:()rde~ing iri line 5.. . . 
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Proof As it has been noticed in the proof of Theorem 4.1, the nu~ber of irreducible 
prolongations, as well as the completed set itself, is invariant. Therefore, we must prove 
invariance of the number of reducible prolongations. · 

Let there be two different completion procedures of U to (J based on different 
choice of completion orderings. Assume that the first procedure needs more reducible 
prolongations to check th~~ the second one. Let u · x = v x w ( u, v E UJ) be the first 
prolongation checked in the course of the first procedure and such that in the course of 
the second one the prolongation is not checked. This suggests x E ML(u, [12) where U2 
is the current set for the second procedure. If w # 1, by admissibility of a completion 
ordering, we obtain u x x = v x w ( u, v E U2): Fr~m property (b) in Definition 2.1 we 
deduce u E. vL( v, U2), and, hence, x cannot be nonmultiplicative for u as we assumed 
for the first procedure. 

If w = 1 we find that x E NML(u,U1) n ML(u,U2) where u and v = ux are 
elements in both U~, U2 • From the property (d) in Definition 2.1 and invariance of the 
final completed set (J is follows that in some step of the second procedure x becomes 
nonmultiplicative for u. Then the prolongati~n u·x will be also checked that contradicts 
our assumption. 

D 

This theorem generalizes Remark 3.13 in [14] which is concerned with L-autoreduced 
sets and fixed completion orderings, 

Example 4.4 (Continuation of Example 3.11). The minimal involutive bases of the 
ideal generated by the set U = {x 2y,xz,y2,y;,z3} (x >- y >- z) are given by 

Vr = {x2y2z3,x2y2z2,x2y2z,x2y2,x2yz3,x2yz2,x2yz,x2y,x2z3, 

x2z2 , x 2z, xy2z3, xy2z 2, xy2z, xy2, xyz3, xyz2, xyz, xz
3
, xz\ 

'xz, y2z3,y2z2, y2z, y2, yz3, yz2, yz,·z3}., 

'UJ-' = · {d?y,:x2z,xy2,xyz,xz,y2,yz,z3}, 
.: :i 2 2 . 2 3 .k I . ' 
Up = {x y,x z,xy ,xyz,xz,y ,yz,z ,.,.,x y, .•. ,xz, ..• }, 

[!
1 

= {x2y2z3, x2y2z2, x2y2z, x2y2·, x2yz3, x2yz2, ;zyz, xzy, ~y2z3, 

Vu = 
(JL 

VvL = 
(/DRL 

xy2z 2,·xy2z, xy2, xyz3, xyz2, xyz, xz3, xz2, xz, y2z3
, y2z 2, 

y2z, y2' yz3, yz2, yz, z3}, 

{x2y2, x 2y, xy2, xyz, xz, y2, yz,,z3}, 

{x2y, xz2, xz, y2, yz2, yz, z3
}, 

{x2y;xz,y2,yz,z3}, 

{x2y, xy2, xz, y2, yz, z3
}, 

wherek;/ EN (k,l > 2), and subscripts in the left-hand sides stand·for different invO
. hitive divisions considered in Section 3. This example explicitly shows that Poinmaret 

division is not noetherian, since it leads to an infinite monomial b'asis. 
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4.2 Pair Property 

In the course of alg~rith~ ,I~volutiveCompletion the current mon~~ial s~t (f is en-., 
larged by irreducible nonmultiplicative prolongations in line 6. As this takes place, for 
a nonglob~lly defined di~ision one has to re~omptlte the separations int~ multiplicative 
and nonmultiplicative variables for all monomials. The next definition and proposition 
give a prescription for efficient recomputing. -' 1 

Definition 4.5 We shall say that an involutive division L is pairwise if for any finite 
set[! and any u E U (U \ {u} # 0), the following holds: 

. L( ll, U) = nvEF\{u}L(u, {v}) . 

or, equivalently, 

Ah_(u, U) = nvEU\{u}Ah( u, { 1'} ), . NML(u,U) = UvEU\{u}NML{tf,{v}). (i) 

Therefore, for a pairwise division L and a monomial set U the correction of the sepa
ration due to enlargement of U by an element v is performed by formula 

Nl'.h(u, U U {i•}) = NAh(u, [() U NML(l~, {u,t•} ). (8) 

Proposition 4.6 All the above defined di!'isions are pairwise. 

Proof Pommaret division and Division II, as globallydefil1ed divisions. 'a1:e 'triviail):'" 
pair~vise. • · · ' · · ' ". .., · 

Thomas division. Since 
<- • 

max{deg;(w) I wE U} = ma.rvEU\{t.j{max{cl~g;(u),fltf]i(t•)}}, 
Definition 3.1 impliesapparently (7). 

Janet division. Fori= 1, by our convention (1) and Definitici!i 3.2. Janet case·is re:.. 
duced to Thomas one, and we are done. Let now i > 1 and degJ( u) = d 1 .... deg;_ 1 ( 11) = 
di-1. If the group [dl, ... , d;_I] of ele"ments in u contains, il~ addit.i<;;. to 'u.' som~· extra' 
elements, then 

max{ deg;( w) I wE [db ... , cl;_-I]} = max•E[d,, ... ,d,_l]\{u} {m(l,i{ deg;( 11 );ilcg;(v) }}; " 

and x; E AfJ(tt, U), otherwise. This suggests the pairwise p'rciperty. . < ' , :': .. ''i'' t'; 
Diuision I and Induced division. For these division the pairwise property follows 

immediately froni Definitions 3.4 and 3.7; i' '-:o i 

: : -. ~ •t .·, .. ··'· ·n ~-~ -

. -. ' . ~ ; . 
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4.3 Monotonicity 

Consider now another optimization related to the choice of a nonmultiplicative pro
longation in line 5 of algorithm lnvolutiveCompletion. The choice of the lowest 
prolongation with respect to some fixed ordering C is called normal selection strat
egy (1]. 

Definition 4.7 Given a division L andan admissible ordering C, a monomial set U 
will be called complete up to monomial w with respect to C if 

(VuE U) (Vx E NML(u,U)) (u ·f~ w) ( u ·x E CL(U)), (9) 

where CL(U) is involutive cone of U by Definition 2.5. We call monomial w bound of 
completeness for U. If u · x ::J w for all u E U, x E N 1\h(u, U), then we shall still say 
that U is completed up to w. 

Definition 4.8 We shall call division L monotone for c if for any set U and any 
monomial w E M satisfying (9) the following holds: 

(VvE U) (Vx E N ML(v, U)) (v · x ~ CL(U)) ( U U {v · x} is complete up to tv). 

We shall say that L is monotone if its monotonicity holds for any orpering C. 

Thus, monotonicity means that enlargement of U by an irreducible nonmultiplicative 
prolongation does not decrease its complet~ness bound. 

Remark 4.9 If a division Lis monotone for an ordering C, then the choice of the latter 
as a completion ordering is beneficial for the algorithm InvolutiveCompletion. By 
Theorem (4.3), the total number of prolongations checked is invariant on the ordering. 
Monotonicity of the latter allows one to omit recomputing separations and checking 
prolongations which are lower than the current completeness bound. 

Now we consider the monotonicity properties of different divisions defined in Sect.2. 
Pommaret division and Division II; as globally defined, are trivially monotone. 

Proposition ,4.10 Thomas division ismonotone. 

Proof From Definition 3.1 it follows immediately that T(u, U) = T(u, U U {v · x}) for 
any v E u, X E NMr(v,U). 0 

Proposition 4.11 Janet division is monotone for lexicographical ordering. 

Proof Denote the lexicographical completion ordering compatible with (1) by CLer· 
· Consider a nonmultiplicativeprolongation v·xr<f. CJ(U) (v E U) such that v·Xj :::JLer w 

where w is the completeness bound of U in accordance with (9). 
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Suppose there is a pair {u E U,xk}, satisfying 

UXk E CJ(U), U • Xk ~ CJ(U U {vxj} ), U: Xk ~Ler W CLer V • Xj, (10) 

and consid~r the lowest such pair ~ith respect to CLer· 

If xk E J(u, U) we obtain 

{ 
deg1(u) = deg1(v) + 1, degk(u) < degk(v) 
degi(u) = deg;(v) (i < j), degi(u) = degi(v) + 1, 

if j =1, 
degk(u) < degk(v) ifj > 1. 

Here k > j and, if k- j > 1, then degm(u) = degm(v) for all l< m < k. Consider n~w 
two alternatives: . 

(i) wE U. In this case conditions {10) are contradictory since from the rightmost 
condition it follows deg;(u) = deg;(tv) (i < k) and degk(w) > degk(u), that is, Xk E 
NMJ(u,U). 

{ii) tv <f. U. Then there is t E U such that wE tJ(t, U). Because Xk E J{u, U), for 
some 1 ::; p < k we have deg;(t) = deg;(u) = deg;(vxi) where i ::; p and degp+t(t) < 
degv+I(u) ::; degp+I(w). Thus we obtain contradiction with Xp+I E J(t,U) which 
follows from wE tJ(t, U). 

It is remains to prove that if Xk E NMJ(u,U), then u · Xk E CJ(U U {v ·xi}). If 
u · Xk E U we are done. Otherwise, we have u · Xk = q1 r1 for some q1 E U, r1 E J(q, U) 
and r1 ~ J(U U {v · Xj}). Hence, there is x;,jr~, x;1 E NMJ(Qt,U U {v ·xi}), ClJ1d 
deg(ql. x;,) CLer deg(u· Xk)· T_hen, by,our assumption that prolongation u: Xk is the 
lowest satisfying (10), we have Ql · x;1 = Q2 x r2, Q2 E U,. r2 E J(q2, U U v ·xi)· By 
prop~rty {d) in Definition 2.1, it yieldsr2 E J(q2 ,U), and, hence, q1 x x;, = q2 x r 2 in 
U. This is impossible, because any m~momial set is Janet autoreduced. 0 

Remark 4.12 Jatiet division is not monotone for degree-lexicographical a~d degree
reveJ:Se-lexicographical orderings as. the following example shows. · 

Example 4:13 Consider th~ conventicH)ally ~utoreduced set U = {xzl, x2z,·y~t2 }: L~t, 
completion ordering c be degree-lexicographical or degree-reverse-lexi~ographical or
dering with x :::J y ::J z ::J t .. U .is complete up to w = x 2yz. The lowest irreducible 
prolongation is xyzt2 ::J, w. Th~~~xtbne in" the's~t {x;2, ~~i, yzt2,'xyzt2}i~;x!/z:2 cw. 

' ' . : ' ' ' ' ' . ' ' '· .•. , ' . • . l . ' . f.. • J ~ '' 

Example 4.14 Consider the set u·= {:i:y2w2, izt; yzt}a~d Division !generating the 
separation: 

Monomial Division I 
Mr NMI . ~ 

p = xy~w2 x,y,w z,t 
v =xzt x,z,t .y,w 

.u = yzt y, z, t,w. L. .x . . 
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Let x :::J y :::J z :::J t :::J w and :::J be any of the orderings: lexicographical, degree
lexicographical or degree-reverse-lexicographical. The bound of complet~ness for U is 
xyw'l. We find that v:· w = u · x = xztw is the lowest irreducible prolongation in U, 
and the next one for U U { xztw} is u · w C: xyw2

• Therefore, Division I is not monotone 
for three orderings considered. · · . 

Proposition 4.15 Induced division is monotone for the ordering which induces this 
division. 

' ~ ~ 

Proof By Definition 3.7 of De, enlargement of U by. irreducible nonmultiplicative 
prolongation v · Xj :::J w (v E U) does not change the reducibility properties of those 
prolongations uxk (u E U) whichsatisfy uxk C: v · Xj. D 

5 Construction of Involutive Bases for Polynomial 
.·· . '· . 

Ideals 

in this section we present an algorithm for computation of minimal involutive bases of 
polynomial ideals which generalizes the algorithm of paper [2) to different completion 
~nd.II_lain orderings .. 

T~'eorem 5.1 Let F be a finitesubsetofJR and L be a constr~ctive involutive division. 
S11-ppose'the completion ordering tis _deg~~e c'ompatible .. Then the. algorithm Minima
llnvolutiveBasis computes a minima[.involutive ba;is of I d(F) if this b~sis is finite. 
If L, is noetherian, then the basis is computed f~r any completion ordering. 

, . , • r~- ; • , • , . -. 

P)\oof The pro9f is the same as ,in [2] and based on, Theorems 2.19, 2.20 and 4.1, 
Corollaries 2.22 and 4~2. . .· . . D 

Proposition 5.2 The conventional autoreduction of the input polynomial set in #ne 
2 is optional and ,may be ~mitt.ed. . . . . . . . 

- • >' . ,-

P~oor' L~t F be a u'on-autb:reduced set ~nd the ilgorithm start with line 3:· Sub~e~uent 
to'. the initi~lizion in liries 4 ·and 5 tlie; ~pper while-lo~p seleCts, first'• ~f an; those 
polynomials in the triple set Q which have the same leading term as the element in 
G = {g} ... If there is such a polynomial in the triple set Q with nonzero involutive 
normal form h computed in line 12, then lm(h) c: lm(g): It f~llows from lines l4 and~ 
18that G becomes the one-element set {h}as an input for the lower while-loop. 

. Thus, by restriction in line 20 fornonmultiplii:ative ·prolongations checked and 
redistribution of polynomials in line 28; in every ~tep ~f the algorithm we have lm(g) c: 
lm(f) for ariy gin (g, u, P) E T. and f iri (!; v; D) E: Q whenever the set Q is nonempty. 

Furthermore, as proved in [1, 2}, in some step of the algorithm a polynomial h is 
added to the current polynomial set Gin line 14 or. in line 24, such that his ah element 

-----in the· reduced Grobrier basis of/ d( F) \vith 'the lo,vestleadirig rriorioriiial with respect 
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to the completion ordering C. · It implies the reduction of G t~ the one-element'iset 
G = { h}, and transfer of: the rest to Q. Then: G is sequentially completed by other 
polynomials from the reduced {jrobner basis and their nonmultiplicative prolongations. 
In so doing, the completion of lm(G) due to the redistribution of polynomials-between 
sets T and Qin lines 18 and 28 is monotone. with respect to c:: Th~refore, the'output 
of algorithm MinimallnvolutiveBasis irrespective of autoreduction in line 2·is the 
same as it wouldb~.for.thereduc~d Grobner basis inthe input. · D 

Algorithm Minim8.Unvoluti~eBa~i~: · . 

Input: F, ·a finite polyno111ial set; L, an involutive division;. 
>-:,a ~ain ori:lering; t, a completion ordering 

Output: G, the minimafinvolutive basis of Id(F) if algorithm terminates 
begi11 · · ·· ·.···.· ·. · " ·········•·· .. <·-·.· .. 

F ::::: Autoreduce(F)' · · 
choose. g e .F.,vith the l~\yest/~(.9) w.'r.t. c · 
T:='{(g,lm(g);0)}; Q :~ 0; G := {g} 
for· each I E F \ {9} <to' . . . 
Q := QU{(f,lm(f)~':})} ·· 
repeat ·· · 
. h == 0 . 

1V!ti~i Q =1: 0 anq h = 0 ·. do · . .. . . . . . 
· c:ho()~e' gin'(g1~lj,'f) E Qwith the l()'vest /m(g) \v.r.t. C: 
.,Q :';=Q\ {(giu,P)} · :' ·• . · ·, .. 
if :Criterion(g, u, T) is false then h := N FLfg; G) 

end ·-·~ · . · · .. · · · · ', .·" ·" .. · ·· . · · · 

:: 'if'h:f::O'·•~hen'G.:='.GU{h} ' .. 

.1 
2 ._.3 

'4· 

5 
6 
7 
8 
9 

10 
11 
12. 

. ' 13 
u;~:··:ftr· 

if/in'( h);= '[m(g)' then: T ::= 1' U {(~ 1 il,P))'< 
eJ~e':T:::TU'{(h,l~7l(h),0))~ ·:: ' ' _'·· .·· • ..... · .· . .· . 
't'for ead:![.in (}, v, D) E T s£·tm(f) ~ln1(/i} do · . · .. ·. · 17 · 

'']5 

i6 

.. ·" r·~c--1'\{(f,~;D)}; .(/:;; CJiJ.HJ,ti,~D)};. a':=;= G\{fj · .· )? . 
while exisqg~u,f') E .T'and x e N~fL(g;G}\ P and; if Q :f 0, . . . 19' 
~~.t~.tm(i'x) i: !rnUJfor ~Iff_ i~·u,·v,p} ,E Q' .. d() ·:: ·: • ·. ·.· · 2:q 
sP,oQs~ sllch..(g;u,P),;Cwi~h tl1e lo'Yest'lf1l(g).:::c·\Y.r.t: c.·· 2f 
-T.:;;'T\{(g,u;g)Ju{(g,u,PLi'{i})} .·.... 22 
if. Ci-ite_r{on(g ~:x.~.'J'fis fal§e . ~li~~- .~ := jVFL(g. x,f!) 23 
. if h l.Q'<!li~n G:7:.GU.{h} ..• >.- ,:· '.;. <·. J.. , , 2~ 

: it,t.T!l{hJ~-~!'l(il,t>; :~~-:~ r:=r·t:f{(~;i,,~n ·:.. 25-
. ~!~e, _1' =~'T.l! {(h;[7J!(h);,0,}} .. :; J ,,:::. C; ;.> , : ;, , . .. , ;: 26' 
,··;:·~o(~a~:fi.ri:(/..t~:_fl},E':f: ,w}th /_'l,ll(f),:::J'lm(~) .• cJ<? . ,. ..·2; 

. ~ .. end: . ;:·_.7[,=~zN;;:{(t.f.p~l; . .9}=;;f?.lf}Cf,~XPJ?;:G,=:::.c:nn 
. untU Q'=fi 0. · 

end" · .. ' ... ··. 

J.T··· 

28-
)~···· 
30 
31' 



Criterio!'(g, u,T) is true provided tha,tif there is (J, v, D) E T such that lm(J)!Llm(g) 
arid_l~(u,v):-< lm(g). Correctness of this criterion,·which is just the invohith·e 
form [1) of,B';lchberger's chain criterion [10), is provided by Corollary 2.22. 

Remark 5~3 The choice of a completion ordering which is monotone forL preserves, 
obviously, the' partial involutivity of the intermediate polynomial set G in the cause of 
its enlargement in line 23; if lm(h) = lm(g·x). Therefore, similar to themonomialcase 
( c.f. Remark 4.9), this saves computing time for recomputing separations and checking 
irreducibility of nonmultiplicative prolongations unless L is globally defined anyway. 

6 Conclusion .J -. ~ 

The above described optimizations concern only that part of computing involutive b~es 
which is related to completion by nonmultiplicative prolongations with irreducible lead
ing terms. Another important step is to search for an involutive divisor among the 1ead
i~g monomials of an intermediate basis. This is important for _efficient computation of 
the involutive normal form in lines 11 and 22 of algorithm MinimallnvolutiveBasis. 
Some related optimizations are considered in [14) for the purpose of implementating 
the algorithm InvolutiveCompletion in Mathematica for divisions of Sect.3; · 

· A promising way to the further optimization of computation is related to the ideas of 
paper [12). By appropriate dynamical refinement' of an involutive division ·In the course 
of computation, one c'an decrease the total number of nonmultiplicative prolongations 
to be checked. This may lead to a notable reduction of computing time. · 

: .. Algorithm MinimallnvolutiveBasis has beeriimplementetl in Reduce for Pom
maret division. Computer experiments showed that this algorithm is somewhat faster 
than our previous version of involutive algorithnialso implemented in Reduce for Pom
m~et bases [1). For a nonglobally defined d-ivision the difference in speed is to be much 
greater as algorithm MinimallnvolutiveBasis deals with fewer intermediate polyno-
mials and avoids intermediate autoreductions [2). ·' . . .• , 

. With the new implementation'_oneneeds, for· example, 57 seconds to compute a. 
degree-reverse-lexiCographical Pommaret basis for 6th cyclic roots on an Pentium 100 
Mhz computer, -~nd30 seconds for the 6th Katsura system. By comparison, the PoSSo 
software for computing Grobn~r ba.Ses3. Ii~ds for. these examples 24 ·and 36 seconds, 
respectively. ' 
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fep.nT B.Il. 
TexHHKa HHBOJIJOTHBHblx .IlerreHHH: HeKoTop~>Ie o6oe 

B .IlOllOJIHeHHe K paHee BBe,lleHHbJM HHBOJIJOTHBl 

,lleJieHHH, HH.IlyuHpyeMbiX .IlOllYCTHMbiMH COOTHOllleli 

qTo 3TH ,llerreHllil liB1IliiOTCJI HeTepoBbiMH II KoHcq: 

anropHTMHqecKOe llOCTpOeHHe HHBOJIIOTHBHbiX 6a3Hl 

BbNHCJieHllil MYJibTHllJIHKaTHBHbiX pe.IlJKUHH OT He~ 

CJie,llOBaHa 33BHCHMOCTb HHBOJIIOTHBHbiX aJII'OpHTMC 

KaTHBHbiX npO.IlOJIJKeHHH, 33,llaBaeMOH .IlOllYCTHMbiM 

Ha3biBaeMbiM nopli.IlKOM nononHeHllil. Ha cicHose c1 

JieHHH npe,llJiaraJOTCJI ,llBe BbiqHCJIHTeJibHbie OllTHMH3: 

HOM Bbl6ope nopli.IlKa nononHeHHll, ~pyraJI OTHOCI 

II HeMyJibTHnnHKaTHBHbiX nepeMeHHbiX B npouecce 1 

Pa6oTa BbinOJIHeHa B Jb6opaTopHH BbNHCJIHTerr 

npenpHHT 06'be)lHHeHHOI'O HHCTHyYTa ll)lepH 

Gerdt V.P. 
Involutive Division Technique: Some Generalizatior 

In addition to the earlier introduced involuti· 
of divisions induced by admissible monomial order 
noetherian and constructive. Thereby each of then 
Grobner basis of a polynomial ideal by sequentia 
of nonmultiplicative prolongations. We study 
on the coll!Pletion ordering. Based on properties 
computational optimizations are suggested. One 
of the completion ordering. Another optimization i 
and nonmultiplicatlve variables in the course of the 
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