


1 Introduction'
In paper [1] a concept of involutive monomlal d1v1s10n wa.s mvented whlch forms the
foundation of general involutive algorxthms 1, 2] for’ constructlon of Grobner bases [3]
of a special form' called involutive. This notion, by a well-known correspondence-[4, 5]
between polynomials and linear: homogeneous partial. dlﬂ'erentlal equations (PDEs)
with constant coefficients,’ follows the notion of mvolutlvnty for PDEs. . An involutive
-form of a system of PDEs is its mterreduced completion by the differential consequences
called prolongations!', incorporating all integrability condltlons into the system [6, 8].
The integrability conditions play the same role in the completlon procedure for PDEs
as nontrivial $-polynomials in the’ Buchberger algorithm [10, 11] for construction of
Grobner bases. ! , , ;

Given a finite polynomial set and an admissible monomial ordering, an involutive
division satisfying the axiomatic properties proposed in [1] leads to a self-consistent
separation of variables for any polynomial in the set into disjoined subsets of so-called
multiplicative and nonmultiplicative variables.

The idea of the separation of variables into multiplicative and nonmultiplicative goes
back to classical papers of Janet [6] and Thomas [7]: They used particular separations
of independent variables for completing systems of partial differential equations to in-
volution. More recently one of the possible separations already introduced by Janet [6]
was intensively used by Pommaret [8] in the formal theory of partial differential equa-
tions. These classical separations allow one to generate the integrability conditions
by means of multiplicative reductions of nonmultiplicative prolongations. -Just this
fact was first used in [9] as a platform for an involutive algonthm for construction of
Pommaret bases of polynomlal ideals. S k

If an involutive division satisfies some extra conditions: noethenty and constructlv-~
ity [1], then an involutive basis may be constructed algorithmically by sequential ex-
amination of single nonmultiplicative prolongations only. Whereas Thomas and Janet
divisions satisfy all the extra:conditions, Pommaret division,.being:constructive, is
non-noetherian. This implies that Pommaret bases of positive dimensional ideals may
be infinite. The uniqueness properties of involutive bases are investigated in [2] where
a special form of an algorithm proposed for construction of a minimal involutive basis .
which is unique much like to a reduced Grobner basis. In addition to the above men-
tioned classical divisions, in paper [2] two more divisions were introduced which satisfy
all the extra conditions.

Recently it was shown [12] that one can also construct different possxble ‘separa-
tions of variables for a fixed monomial set. These separations can not be considered,
generally, as functions of a set and its element as defined in [1]. Nevertheless, the
results of paper [12] demonstrate for a wide class of lexSlons ‘how one can change the
division dynamically in the course of the completion. This increases the flexibility of
the involutive technique and may also increase the efficiency of computations.

'Prolongation for PDE means its differentiation whereas for a polynomial this means multiplication
by the corresponding vanable
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An involutive basis is a special kind of Grébner basis, though, generally, it may
be redundant. However, extra elements in the form‘e_x'j ymay faéi_litaté i’nany’un'derlying,
computa.tionsi. The sti‘ucturq of ,a.'Pom'mége‘t basis, for’ erx'amApl‘e‘,' ;é\iéals'@ _n}gmber of
attractive features convenient for solving zero-dimensional polynomial systems [13]. An

involutive basis for any division allows one to compute easily the Hilbert functxonand

the Hilbert polynomial by eéxplicit and compact formulae. (12,14
:Computation of Janet bases relying upon the original Janet algorithin was imple-

mented in Réduce and used for finding the size of a Lie symmetry group for PDEs [15].
and for classification”of ordinary differential equations admitting nontrivial Lie sym-
metries [16].” The study of algorithmic aspects of the general completion procedure for.

Pommaret division and implementation i»n?\xio;hfwas done in.[17].. . The completion
to involution of polynomial bases for Pornmaret division was algorithmized and imple-

mented in Reduce, first, in'(9], and then with algorithmi improvements in [1]. The,
main improvementis ‘incorporation of an'involutive analogue of Buchberger’s chain -

criterion.’ Recently different involutive divisions were implemented also in 'Ma;thémvat’.
‘In"the ‘present paper we introduce ‘a“class of involutive divisions induced by ad-

missible orderings ‘and ‘prove’their noetherity and: cohst;‘uctiVity:. For the new class

of divisions, along:with the classical ones aﬁd-‘t\vbvdivisi‘opsrvfof ‘paper_[2], we study

the stability of the partial involutivity for mbnomiél'vand polynomial sets under their -

completion by irreducible nonmultiplicative prolongations. We genleralize‘v the involu-
tive algorithms to different main and completion orderings.: The completion ordering
serves for selection of a nonmultiplicative prolongation to be treated next.-In so doing,
a completion ordering defiries the selection strategy in involutive algorithms similar to
the selection strategy for critical pairs in' Buchberger algorithm’ (10,11). For different
divisions we find séme_conll‘plej;io.n‘qryde‘ﬂr{lgs Wh\icl_l:pr:es‘érye the pljobver{ty of partial invo-
is valid for all known divisions. This property can be used t6 efficiently recompute the
separatio vhen a T'k{i’ig\?v‘p‘ol)""no'xhiézl’ has to'be added L RS T e

lutivity and’thepéby save cdmﬁutin'g'ltiﬁi’éi ‘We iﬁdiéaté also’a "pairwise’ propertywhlch

2 Background of Involutlve Method

In: this:section;iwe r

the next sectiong:sve 00 5w v Lo ot N T
. -
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2.1 ! Preliminaries

S

Let N be the set of nonnegative integers, and M = {zf .. -gdn | d; € N} be a-set of
-ménomials in‘the ‘polynomial ring R = K]z,,..., Tq] over-a‘field K-of characteristic
zero.. .. . )

.. Bydeg(u)an
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and deg;(u) we denote thic total degreé of u € M and the degree of variable
i in u, res : 01 variable

écall basic definitions and facts of .papers (1, 2] which“are used’in *

ctively. “For the least common multiple of two monomials u,v € M.we -

shall use the conventional notation lem(u,v). If monomial u divides :ifldhdmia.l‘v we
shall write u|v. In this paper we shall distinguish-two admissible monomial 61"derifi’1'g’s{‘:‘
main ordering and completion ordering denoted by > and 3, respectively. The main
ordering serves, as usually, for isolation of the leading terms in'polynomials whereas - -
the completion ordering is used for taking the lowest nonmultiplicative prolongations
by the normal strategy {1] and thereby controlling the property of partial involutlwty
Besides, throughout the paper we shall assume that T PEAE
R ¢
The leading monomial and the leading coefficient of the polynomial f € R with respect
to > will be denoted by Im(f) and lc(f), respectively. If F'C Ris a polynomial set,
then by Im(F) we denote the leading monomial set for F, and Id(F) will denote the
ideal in R generated by F. The least common multiple of the set {Im(f) | f € F} will
be denoted by lem(F). B e e e e

S L = TS

- ; i
3 LRI

2.2  Involutive Monomial Division
Definition, 2.1 An involutive division L on M is given,.if for any finite monomial set
U C M and for any u € U there is given a submonoid L(u, U) of M satisfying the
conditions: ‘ :

(2) If w e L(u,U) and v]w, then v € L(u, V). - ,

(b) Ifu,v € Uand uL(u;U)NvL(v,U) # 0, then u€ vL(v,I/) or.v € uL(u,U).

(c) Ifvelandve€ul(y;U), then L(v,U) C L(u, U). L

(d):f V C U, then L(u,U).C L(u, V)forallue V. -~
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Elements of ‘L(u,U), u € U are called multiplicative for u: - If'w-e ul(u,U) we:
shall write u|zw and call'u: (L—)involutive divisor of w. The nmonomial w is c:«}lleg_
(L—)involutive multiple of u."In"such an everit the monomial v = w/u 1smultzplzcatwe
for u and the equality w = uv.will be written as w'= % v If uis'a conventional
divisor of w but not an involutive one we shall write, as usual, w = u: v. Then v is_
said to be nonmultiplicative for'ui -’ e et TRTIRER TG b P e B RS

Definition 2.2 We shall say that,ar; in\fqlutiv‘e:diyisi/on Lis y:Iokba{Iyr d?ﬁned if for any -
u € M its multiplicative monomials are defined irfespective of the monomial set I/ 3 u,
that is, if L(u,U) = L(u). o : :

-

Definition 2.1 for every u € U provides the»lsepa.r,atioxl’i L

{21,001} = Mu(u, U) UNML(w,U),” Mr(u,U)NNMi(w,U) =0 (2)
of ‘the set of variables into two’subsets: ’ﬁiﬁltz:;‘ili'édt;'dc ML(iz; U) c L(u,U) and non--

and any u € U the separation (2) is given such that the corresponding submonoid

' multiplicative NM{u,U) 0 L(xu,U) = Q. Conversely, .if for any finite set U C M. -



L(u U).of monomrals in varrables in' Mp(u, U) satisfies the condrtlons (b)-(d), then

‘the partrtron generates an involutive division.. /The conventrona.l monomlal division,

obviously, satisfies condrt1on (b) only in the univariate case, : ‘ B
. In what follows monomral sets are assumed to be finite.

Deﬁmtlon 2.3 A monomral set U € M 1s mvqutweI : ”
y autoreduced or L—autoreduc d
if the condrtlon uL(u Uuyn vL(v U)= 0 holds for all distinct ;v € U.. B

Deﬁmtlon 2 4 Given an involutive drvrsron L,
a monomral set U
respect to L or L—mvolutrve if v N vaIUtwe with

LViel) Vwem Bel) [weuln)].

Definition 2.5 We shall call the set Uuerv uM the cone generated by U and denote it

by C(U). The set U ey u L(u,U) will be called the mvolutzve cone of U wrth respect o

to L and denoted by C’L(U)

Thus, the set U is L—-mvolutrve if its coné C’(U ) coincides with its involutive 'c:one

: CL(U)

‘ D fi - 7 V
/ Utlaf nrt]on 2 6 An L. mvolutrve monomial set’ T i is called L-—completzon of aset U C
: (VuEU) (VwEM) (ElvEU) [quvL(v U)] /

rIf there exists a ﬁmte L—-completlon U:of a ﬁmte set U ‘then- the latter is: ﬁmte[y

- generated with respect to L The mvolutrve drvr i
2 sion: L is poetheri ’
e U is ﬁmtely generated wrth respect to L RO : {' o lf'every »ﬁmte i

"Proposutlon 2 7 [1] If an mvqutwe dw:szon L is noetherum then‘every monorﬁzal

3dea1 has aﬁmte mvqutzve basis: U

‘ ‘kDeﬁmtlon 2.8 Amon 1 e gy e L T
% lutwe dwmon A omra set Uis calledJ 1oca11y mvqutwe with respect to the invo-

o (Vu € U) (v:c, € NML(u U)) @vel) [ vll,(u :c,) }

.,V“Deﬁmtlon 2 9 A drvrsron L is called contmuous 1f for any set U GMand forany o

e ﬁmte sequence {u,}(1<.<k) of elements in U such that

(Vz < k) (31', € NML(u.,U)) 1 u.+,|;u, o

z:l»

the mequalrty ug 75 u» for 7 75 i holds

Theorem 2.10.[1] If an involutive division L is- continuous: then local. mwlu!wzty of
a monomial set U implies its involutivity.. : 7 L. L e

Definition 2.11 A continuous involutive drvxslon Lis constructwe 1l' l'or any U C M,
u € U, x; € NMp(u,U) such that u - z; has no involutive divisors in U and - ;

(Vv el) (Vz; € NMp(v,U)) (v~ .l‘jl“ - Xy l",' Ty #,“ i) [ “,' 1‘,6 U“Euu L(u,U)A’]

the following condition holds: s fnyr

(Vi € Uyer u L(u, U)) - [ u ,-.17,- ¢ wlL(w,UU {w}) | R ©)]

Definition 2.12 Let L be an involutive division, and /d(I/) be a monomialideal. Then
an L—involutive basis U of Id(U7) will be called minimalif for any other involutive basis
V of the same ldeal the inclusion U - V holds. .~ . o

Proposrtron 2.13 [2]'If U C M-is a finitely-generated set with 1esperl 1o a construc-
tive involutive dwzczon,}!hen the monomial ideal 1d(U) has a unique minimal involutive

basis.

2.3 Involutive Polynomial Sets
Definition 2.14 Given ' a ﬁmtf' setl of polynommL Fc R and a main-ordering >,
multiplicative and nomnultzphra!we valmble.:, Jor f G F are deﬁned in Ium. oflm(f)
and the leading monomial set Im(F).”

The V'conce‘pts of involutive polynoxlrvlal reduction and involutive nonnal form are
introduced similarly to their conventional analogues [10, 11] with tlle usc ol' mvolutlve
division mstead of the conventional one.: Sl ‘M-r o

Definition 2. 15 Let L be an mvolutlve d1v1sron L on M and l(t F’ l)e a ﬁmte set ol'
polynomlals Then we shall say:: - v o . R :

(i). pis: ‘L—reducible modulo Je F 1l' p-lasa term t = au, (a € l\ \ {0} we M
such that u = Im(f) x v, v € L(Ini(f) Im(F)) It yields the, L=reduction p—

— (afle(f)) f v. .
(n) pis L reducible modulo Fif tllere is f € I' suc'h that pis L reducnble modulo
f' Co B . I TR S SN FINE R e L o

(iii). pis in L—normal Jorm modulo F if p is not’~L+—rcdll.cil;lc mo(lulo F,

We detiote the LZhormal’ form of » todulo F’ by N['L(p F) lu contrast ”\th(; conven:
tional nofmal form will be denoted by’ N F(p; F). “1f monomnl wis. multlpll(atn( o
Im(f) (f € F) and h fu we shall \vrlte h=fxu. :



Definition 2.16 A finite polynomial set F is L— autoreduced if the leading monomial
set Im(F) of F'is L—autoreduced and every f € F does not contain monomials-which
are involutively m‘ultiple of any element in:Im(F).

" Remark 2.17 The further definitions and theorems of this section which involve the
completion ordering [ generalize those in [1] where C'is the same as the main ordering
. The proofs of the generalized theorems are immediate extensions of the underlying
proofs in [1] :

Deﬁmtlon 2.18 An L- autoreduced set F'is called (L— Jinvolutive if
(VfeF)(VueM) | NFL(fu Fy=0].

Given v € M and an L— autoreduced set F, if there exist f € F such that Im(f) C v

and -’
(VfEF)(VuEM)(lm( YeuCv) [NFL(fu,F)=0], (5)

then Fis called partially involutive up to the monomial v with respect.to the ordering
C. Fis still said to be partially involutive up to v if v C Im(f) for all f € F.

“Theorem 2.19 (1] An L—autoreduced set F C R is involutive withlrespect to a con-
tinuous involutive division L iff the following {local) involutivity conditions hold

(VfeF) (VI.ENML(lm(f) Im(F))) [NFL f z.,F)—Ol

: , Correspondzngly, partial mvoluthty (5) holds z_ﬂ'

(Y€ F) (Vai € NM(im( ), tm(E)) (m): z.:v) [NFLf :.,F) ]',,

/ Theorem 2.20, [1] If F C R is an L—-mvolutwe baszs of Id(F), then it is also a

Grébner baszs, and the equalzty of the conventwnal and L-normal forms NF(p, F)=
.NFL(p, F) holds for any polynomzal pERI the set F is parttally involutive up to
the: monomzal v with respect to [, then. the equalzty of the normal forms NF(p, F)

. ;NFL(p, F) holds: for any p. such: that. lm(p) E v

Theorem 2 21 Let Lbea contmuous mvolutwe dzotszon, F be dﬁnzte L ‘autorieduced »

- polynomial set: and NFL(p; F) be an algorzthm of L—mvolutwe normal form Then the
‘followmg are equwalent ‘ :

(z) Fisan L—-mvolutwe basis of Id( .

2'(11) For all g € F:c ‘€ NML(lm(g) lm(F)) there is f. € F satzsfymg lm(g) T =
(f) X.w. and a cham “of polynomials in F of the form o .

f fk,fk—h 1f0ygﬂr"'agm-hgm=g

A e i

such that - B ) ; B o
lVFL(SL(fi—lyﬁ)1F) = NFL(S(fO,gO)vF) = NFL(SL(g’J'-‘l’gJ‘)vF)‘z 01
where 0 < i < k, 0 < j <m, S(fo, o) is the conventional S-polynomial [10, 11] )

and St(fi, f;) = fi-z — fJ Xw is zts special form which occurs in involutive
algorithms [1].

Proof (i) = (ii) immediately follows from Theorems 2.19 and 2.20 if one ta.kes fo ="
f, go = g. To prove (ii) => (i) one suffices to show that NFy(g-z,F) = 0. ‘Assume for
a contradiction that there are nonmultiplicative prolongations which are L—irreducible
to zero modulo F. Let g - z be such a prolongation which is the lowest with respect
to the main ordering >. This means the partial involutivity of F up to Im(g)-= with -
respect to->. Correspondingly, the condition (iz) implies the representation [11] (cf.
the proof of Theorem 8.1. in [1]) S¢(f,9) = g-z — f x w = T;; fiui; where f; € F and
lm(f.u,,) < lm(g) z that contradlcts NFL(g z F) # 0 o O

Corollary 2.22 [1] Let F lJe a ﬁmte L autoreduced polynomlal set and let gz lJe a
nonmultiplicative prolongatwn of g € F. If the following holds :

(Vh € F) (Vue M) (Im(h)-uClm(g-z)) [ NF(h-u,F)=0],

Im(fo)llm(f), Im(go)lim(g)
af, fD,‘go € F) lm(f)|le(g z), lcm(fo,go) C lm(g :t)

NFL(fO"ﬁt((/{,);:F)— NFi(go- lt(gg)’F) 0

then the prolongation g - = may be discarded in the course of an involutive algorithm

Remark 2.23 Theorem 2.19 is the algorithmic characterization of 1nvolut1v1ty where-
as Theorem 2.20 relates Grobner bases and involutive bases. Theorem 2.21 and Corol-
lary 2.22 yield an involutive analog of the Buchberger’s chain criterion [10]..

Definition 2.24 Given a constructive division L, a finite involutive basis’ G ‘of idea.l
Id(G) is called minimal if {t(G) is the mlmmal mvolutlve ba51s of the monomxal 1dea1

generated by {lt(f) | f € 1d(G)}). )

Theorem 2.25 [2] A monic minimal involutive basis is unique.

3 Examples of Involutive Divisions .
3.1 Previously Introduced Divisions _

We give, first, examples of divisions correspondmg to separations mtroduced by Janet

Thomas and Pommaret for the purpose of involutivity analysis of P[Ws, and two more
divisions proposed in [2]. For the proof of va.lldlty of properties (a)- -(d) m.Deﬁmtlon 2.1
for these divisions we refer to [1, 2]. e



Definition 3.1 Thomas division [7). Given a finite set U C M, the variable z; is
considered as multiplicative for u € U if degi(u) = maz{deg;(v) | v € U}, and nonmul-
tiplicative, otherwise. &

Definltlon 3.2 Janet division [6] Let the set U C M be finite. For eachl1<i<n
divide U into groups labeled by non-negative mtegers dy,...,d;

[di,-..,di]={u €U|dj=d€gj(u), 1<5<i}.

A variable r;is multiplicative foru € U if i = 1.and deg(u) = maz{degi(v) | v € U},
orifi>1,u€ [dl, ,di-1) and degi(u) = maz{deg;(v) | v € [dy,...,di,]}.
Deﬁnltlon 3 3 Pommaret division [8] For.a monomial u = z{! .-z with d; > 0
the variables z;,7 > k are considered as multiphcative and the other variables as
nonmultiplicative. For u =1 all the variables are multiplicative. .

~ Definition 3.4 Division I [2). Let U be a finite monomial set. The variable @ is
" nonmultiplicative for. v € U if there is v € U such that '

:",‘ eafru=lem(u,v), 1<m<[nf2], d;>0 1<j<m),

and z; € {1‘,1, -Ti,..}-

Definition 3.5 Division II [2]. For monomial u'= z - ..z the variable z; is multi-
plicative if d; = dmu( u) where doz(1t) = maz{dy,...,d, }:

Remark 3.6 Thomas division, Divisions 1 and’Il'do not depend.on the ordering on
the variables. Janet and Pommaret .divisions, as defined, are based on the ordering

given in" (1) Pornrnaret division and D1v1510n II are globally deﬁned in accordance
with Deﬁnitlon 2 1

ﬁll 21:]hese divisions are constructive, and except Pommaret division they are noetherian

3.2 Induced D1v1510n

Now we consider a new class of 1nvolut1ve d1v1510ns mduced by admlsslble monom]al

orderings (cf [12])

Deﬁmtion 3.7 Induced dzvzszon Given an admissnble rnonomial ordermg >—2 a vari-

. able .z; is nonmultiplicative for u-'€ U if ‘there is.w € .U suchthat v -< u and’
degi(u) < degi(v).

]

‘Proposmlon 3. 8 The sepamtzon gwen n Deﬁnztzon 3 71, 1s an mvolutwe dwzswn

2This ordering is generally different from the main ordermg mtroduced m Sect 2 1

cvom gy,

Proof Let L>(u U) be'the submonoid generated by multip]icative \arlables ‘We must
prove the properties (b-c) in Definition 2.1 because (a) and (d) hold obviously. " .

(b) Let there be a monomial w such that w € uL>(u UYnvly(v, U) with u, ve U
and u # v. Assume u > v and ~vju. Then, thereis a variable r|({em(u, v)/u) such that’
z ¢ Ly (u,U). Smce vjw we obtain z|( w/u) that contradicts w € uly (u, U) Thus v]u
and w = v X (w/v) = v X [(w/u)(u/v)]: This yields u € vl (v, uy. - .

(c) Let v € uLy(u,U) and w € vLy(v,U) with u,v € U, and, hence, ulv and ’
wjw. Suppose w & uLy (u,U). 1t follows the existence of a variable z|(w/u), —z|(v/u)
and a monomial t < u < v, t € U such that x|(lem(u,¢)/u). This suggests that
xj(lem(v,t)fv) at t < v, Contradicting our initial assumptiou. ‘ a

Remark 3.9 Generally, an ordermg > definmg Induced division implies some varlable
ordering which is not compatible with (1). However, below we assume that the ordermg
> is compatible with (1) :

To distinguish the above lelSlO[‘lb the abbreviations T,J,P, 1,11, D> will be some-
times used. For illustrative purposés we consider three particular mdermgs to in-
duce involutive divisions: lexicograplical, degree-lencoglaphical aud degree-reverse-
lexicographical. To distinguish these tlree orderings we shall use the subscrlpts L,
DL, DRL, respectively. R
There are certain relations between separations generated by thosc dnmom

Proposition 3.10 For any U, u € U and > the mcluawns Mr(u,U) T Mj(u,U).
My(u,U) C Mi(u,U), Mr(u,U) C Mp, (u,U) hold. If U is uutmeducul ul!h lc~pect
to Pommaret dzvzszon, then also Mp(u U) - MJ(u U) R ,

Proof The mclusmn Mr(u,U) C Aloy(u ) follows fiom the obsmvation that €
(u U)implies z € Dy (u,U).. The other inclusions proved in. [1 e -0

The followilig example explicitly shows that all eight divisions we use in tlm papei are
different In the table we llst the mu]tlphcative varxdb]eq for ev ery dl\mon v

Example 3.11 [14] Multlphcatlve variables for elements in the monomla] set U
{z%, zz,y%yz, 23} (z >y > z) for dllleiclit d1v1sxons L. Soegl

Monomial : Multiplicative vwriables R

T J | P1ITTI1] Dz. | DDI [ Do,
%y zlzyizly,zle e | e
zz | = yz s laelzz] 20 | w2 | 2.2
SRR BT8O 2E- 20 22 I8 IR .23 7 32 NN I
yz oo o= oz SN R PV R S TR [F SS T I 03 T R
22 = z s lzt 2z foyz)o s s
9



Proposition 3.12 Induced diuision is noetherian, continuous and constructive.

Proof Noetherzty follows immediately from’ noetherlty of Thomas lelsxon and the
underlying mclusron in Proposition 3.10.

Continuity. Let U be a finite set, and {u; Yu<i<ar) be a sequence of elements in
U satlsfylng the conditions (3). In accordance with Definition 2.9 we shall show that
there are no coinciding elements in the ‘sequence for each of the two lelsrons There
‘are the following two alternatlves ‘

(ii) u;;éu,-_l -zj. : ’ - (6)

Extract from the sequence {u;} the subsequence {tv = U.,‘}(1<k<r\ <) of those elements
which occur in the left-hand side of relation (i) in (6).

Show that try1iplem(tiyr;tc) and =t [tisr. -We have tegy X Wiy = iy - Ty, =
tx - O where —tbgy 1|0k, Indeed, suppose tWiy1|0x. Apparently, we obtain the relation
it = up - 21 where i < | < g4y, and the variable z;, € NMp(w,U), which figures
in Definition 2.9 of the sequence {u;}, satisfies :c_,‘|wk+1 and -z |z This suggests,
by definition of the division, the existence of p € U such that p < w; and deg;,(w1) <
deg_"(p) Since p < tx4; and deg,,(uz) = deg;,(tes1), 1t contradicts multiplicativity of
z;, for teyre

‘Therefore, we obtain the relation

(1) wi=uisy-z5

b s Uk = By X Wiy
gcd(vk,wkﬂ) = gcd(vk,wk) = 1

wl’llCl’l by Deﬁnmon 3 7, lmphes i > tk+l since wy #1 for all k
1t remains to prove that elements in the sequence {u,}“<,<M) which occurin theleft-

: :hand side of relation (i )in (6) are also distinct. Assume for a contradiction'that there

there is’ z; ¢ D>(u1,U) satxsfyr
: ‘ft -< u, deg,(t) > deg,(_ul) ‘The

4 Completlon of Monomrali_ Sets to Involutlon :

“**are two. elements uj = ug with® 5:< k¥ Inbetween these’ elements there isi” obvrously,
.- an element: from the left- hand side of relation (i#) in (6).: Let.ui,, (j. < im < k) be

the nearest such element to-uj, Consxdermg the same nonmultlphcatrve prolongations

of uy as those of u; in: the initial" ‘sequence, one can’ construct“a’ sequence ‘such that
the subSequence of the left hand. sides of relation (i) in (6) has two 1dent1cal elements»
u = u,m w1th i > z.-,. B

€ D,(ua,U) Assume that

If U is a ﬁmtely generated monomlal set with’ respect to the ﬁxed mvolutlve lelSlOIl L,

: then its ﬁmte completlon glves an lnvolutlve basis of the monomlal 1deal generated by

10

1 ¢ D,(u U) be such that"‘ o

lj

~checked.: ‘; e ‘ e

U. There may be different involutively autoreduced bases of the same monomial ideal,
For instance, from Definitions 3.1 and 3.2 it is easy to see that any ﬁnlte monomlal set
is Thomas and Janet autoreduced. Therefore, enlargmg a Thomas or a .]anet basrs by
a prolongation of any its element and then completing the enlarged set leads to another”
Thomas and Janet basis, respectively. Similarly, Division I and Induced division do
not provide unlqueness of involutively autoreduced bases whereas Pommaret d1v1sron
and Division II do, as well as any globally defined d1v1sron [2]

4.1 Completlon Algorlthm

Theorem 4.1 lfU isa ﬁmtely generated set with respect toa constructwe mvolutwe
division, then the following algorithm computes the uniquely deﬁned minimal comple- -
tion U of U, that is, for any other completion U the inclusion U < U holds.

Algorithm InvolUtiveCompletion: :

Input: U, a finite monomlal set
Output: U, an involutive completion of U

begin
Uw=U
while existu e andz € NML(u U) such that
u -z has no mvolutlve divisors in U do
choose any'r= and such u and T wrth the lowest u+z w. r.t c
U:=0u {u :l:} ' :
end

00 O s w0 N

end .

Proof ‘This, completlon algonthm isa shghtly genera.hzed version of that in [1] where. s
ordering [ is assumed to be fixed.in the course “of the. completlon As proved in [1]
(see the proof. of Theorem 4.14), the output U of the algorlthm and. the number of
u‘reducrble prolonga.tlons are mvarlant on the chorce of ordermg in line 5 SR :

’Corollary 1.2 Ifset Uis conventzonaily autoreduced then the algarzthm computes the
- mzmmal mvo]utwe bas:s of monomzal zdeai Id(U) . v :

"In pra.ctxce, in: the ‘course of the completlon one has to choose the lowest nonmultl-
'_phcatlve prolougatlon and to. check whether it has an mvolutwe lelSOI' in the set. The

timing of computation is thereby determmed by the total number of prolongationsv .

' Theorem 4 3. The number of nonmult:phcatwe prolongatwns checked in the course of

algonthm InvolutlveCompletlon with a constructive division L is. mvarzant on the
choice of completzon orderm_q in line's..

11



Proof As it has been noticed in the proof of Theorem 4.1, the number of irreducible
prolongatlons, as well as the completed set itself, i is mvarra.nt Therefore, we must prove
tions.

invariance of the number of reducible prolonga
1 Let there be two different completion procedures of U to U based on different
choice of completion orderlngs Assume that the first procedure rieeds more reducible
prolongatlons to check than the second one. Let u-z =v X w (u,v € U,) be the first
prolongation checked in the course of the first procedure and such that in the course of
the second one the prolongation is not checked. This suggests = € M (u, ,) where U,
is the current set for the second procedure. If w # 1, by admissibility of a completion
ordering, we obtain u x £ = v X w (u,v € U3). From property (b) in Definition 2.1 we
deduce u € vL(v, U2), and, hence z cannot be nonmultiplicative for u as we assumed
for the first procedure.

If w = 1 we find that z € NMyg(u,0h) N My(u, ;) where u a.nd v = uzx are
elements in both Uy, J2. From the property (d) in Definition 2.1 and invariance of the
“final completed set U is follows that in some step of the second procedure z becomes
nonmultiplicative for u. Then the prolonga.tlon u-z w1ll be also checked that contra.dlcts
our assumption. ~ ‘ .
’i‘his theorem generalizes Remark 3.13 in [14] which is concerned with L—autoreduced
sets and fixed completion orderings, G

Example 4.4 (Continuation of Exa.mple 3. 11) The minimal involutive bases of the
ideal generated by the set U = {z%,zz,y% yz,2%} (z > y > 2) are given by

DTz{a:?yzze':cyz a:yz:cy,:cyz a:yz :cyz:cy,:cza,
2222, 22z, zy?2®, 2y 2t zyz, 2y, 2y 2® :cyz 2yz, z2°, 22,
T ‘zz,yz,yz yzy,yz,yz,yzz},
» U_] = L{:c y,:c z, :cy ,zyz :cz,y ,yz, 2%},
A Up = {z* y,:cz:cy,:cyz :cz,y,yz z, ,:c y, ,zz, },
U = {12y223 :::211222 zhy?z, 2? y zty2?, 2%y, 2yz, z? y,:cy 23,
rorta e zy 22 zy’z :cy ,zyzd :cyz zyz, :l:z3 z2?; :cz,y 23 ,y 22

vz, %, y2° ,yz yz,2°},

Un = {4, 2* y,:cy,:cyz :cz,y,yzz},
UL = {zty,z2? :cz,y,yz,yzz},,,.
CoUpp =" {z%y;22,9%,y2, 2"}, '
Upre = {%y,zy% 72,9%,vz,2°},

where k,;1'€ N (k,[> 2), and subscripts in the left-hand sideés starrd‘f()r diﬂereut invo-
- lutive divisions considered in Section 3. This exa.mple‘expliat!y s}rons that Pommaret
" division is not noetherian, since it leads to an infinite monomial basis.

12

4.2 Palr Property

In the course of algorlthm InvolutlveCompletlon the current monormal set U is en-;:
larged by irreducible nonmultiplicative prolongatlons in line 6. As this takes place, for

a noug]obally defined division one has to recompute the separations into multrphcatrve
and nonmultiplicative variables for all monomials. The next definition and proposmon

give a prescription for eﬂicxent recomputing. SR TER

Definition 4.5 We shall say that an involutive division L is pmrwlse if for any ﬁmte
set U and any u € U (U'\ {u} # 1), the following holds:

CL(u,U) = Neev{uy L(u, {v}).

or, equivalently,

AlL\(u, U) = nveu\{u}AIL(u, {('}), . IV]”L(U, U) LEU\(u}A I‘IL u {U} 7 e

Therefore, for a pairwise. division L and a monomial set U/ the cori ectlon of the sepa-
ration due to enla.rgernent of U by an element v is per formed by formula

) N.ML(u,U‘U {vh =nNA, (u U)U NMp(u, {x, v} (8

Proposition 4.6 All the above deﬁnrd duuszons are pauuvse

Proof Pommaret lelSlOIl and Dlvlslon I1, as globally (leﬁned (hvmous zue tu» ally *
pairwise, © it

Thomas dwz.szon Smce '

ma:c{deg,(w) lwe U} = mallEU\{.,}{mar{deg, (2) (I(g,(v)}}

Definition 3.1 implies apparently (7). ~ s FRRIRS .
Janet division. For i = 1, by our convention (1) and Deﬁmt:ou 3.2, Janet case is‘res
duced to Thomas one, and we arc done. Let now i > } and degi(u) = d,.. deq, ,(u)

di-y. If the group [d, ..., d;2)] of eléments in U contains, in addmon 1o e ‘some extra’
elemcnts then

-

ma.z{deg,(w) | weE [d;, ydiz]} = maz,e,,.., ._,]\(u){ma r{deg, (u) dcg,(v)}}

and z; € M;(u,U); otherwise. This suggests the pairwise propext\ CoiES peipu

Division I and Induced division. For these division the palrmse properl) follo\w
lmmedlately fromi Deﬁmtlons 3 4 and 3 7 O P TERE R I e

T PTG ‘ A L LT TS L P Sy e

‘;x“*x'!‘i
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4.3 Monotonicity

Consider now another optimization related to the choice of a nonmultiplicative pro-
longation in line 5 of algorithm InvolutlveCompletlon The choice of the lowest
prolongation with respect to some fixed ordering C is called normal selection strat-

€qy [1] . . A

Definition 4.7 Given a division L and an admlssnble ordering C, a monomial set U
will be called complete up to monomzal w with respect to C if

(Yu e U) (VzGNML(u U)) (u- z‘Cw) [u- .TGCL(U)], (9)

where Ci(U) is involutive cone of U by Definition 2.5. We call monomial w bound of
completeness for U. Ifu-zJwforallu €U, z€ NM(u,U), then we shall still say
that U is completed up to w.

Definition 48We shall call division L monotone Jor C if for any set U and any
monomial w € M satisfying (9) the following holds:

(Vv € U) (Vz € NMy(v,U)) (v-z & CL(U)), ['U U {v-z} is complete up to w .
We shall say that L is monotone if its monotonicity holds for any ordering L.

Thus, monotonicity means that enlargement of U by an irreducible nonmultiplicative
prolongation does not decrease its completeness bound.

Remark 4.9 Ifa division L is monotone for an ordering , then the choice of the latter
as a completion ordering is beneficial for the algorithm InvolutiveCompletion. By
Theorem (4.3), the total number of prolongations checked is invariant on the ordering.
Monotonicity of the latter allows one to omit recomputing separations and checking
prolOngations which are lower than the current completeness bound.

Now we “consider the monotonicity propertles of different divisions defined in Sect. 2.
Pommaret division and Division II, as globally defined, are trivially monotone.

' Proposition,fi.lo Thomas division isvmonotone.

“ Proof From Definition 3.1 it follows lmmedxately that T(u U)=T(u,UU{v-z}) for
canyveU, :::GNMT(UU) : , O

', Proposntlon 4 11 Janet dwzszon is monotone for lezicographical ordermg
Proof Denote the lexicographical cornpletlon ordering compatible w1th (1) by Cres-

Consxder a nonmultiplicative prolongation v-z; ¢ Cs(U) (v-€ U) such that v-z; e w
where w is the completeness bound of U in accordance with (9).
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Suppose there is'a pair {u € Uz}, satlsfymg

H

- uzy € C,,(U), -z & Cs(UU {v-’%}), u- Ty CLer w Em v- z,, (10)

and consider the lowest such pair with respect to Cr.s.
If 2 € J(u,U) we obtain

{ degi(u) = degi(v) + 1, degi(u) < degk(v) ' o ifj =1, o
degi(u) = degi(v) (i < J), deg;(u) “degj(v) +1, degi(u) < degi(v) if j>1.

Here k > j and, if k- ] > 1, then degm(u) = degm(v) for all i< m < k. Consnder now
two alternatlves i

(i) w € U. In this case conditions (10) are contradictory since from the rightmost
condition it follows deg;(u) = deg,(w) (i< k) and degi(w) > degk(u), that i 1s, zi €
NM;(u,U).

(i w¢ U. Then there is ¢ € U such that w € tJ(t U). Because T € J(u U), for
some 1 < p < k we have degi(t) = degi(u) = degi(vz;) where i < p and deg,41(t) <
degpi1(u) < degyi1(w). Thus we obtain contradiction with Tp1 € J(t, U) Wthh
follows from w € tJ(t, U). ‘

It is remains to prove that if zx € NMy(u,U), then u -z, € C;(U U {v - z;}). If
u-zx € U we are done. Otherwise, we have u-z; = ¢, r for some q, € U, r, € J(q,U)
and ry ¢ J(U U {v - z;}). Hence, there is z; |r1, zi, € NM(q;,U U {v- .1:,}), and
deg(qy - Ti,) ClLes deg(u- i) Then, by our assumption that prolongation u - zj is the
lowest satisfying (10), we have q; - z;, = g3 X 12, gz € U, r2 € J(g, UU v - z;). By
property (d) in Definition 2.1, it 'yields 2 € J(qz,U), and, hence, q; x T, = g2 X ro:in

- U. This is impossible, because any monomlal set is Janet autoreduced O

Remark 4.12 ‘Janiet division is not monotone for degree—lexxcographlcal and degree—4
revense—lex:cographxcal ordermgs as, the followmg example shows. :

Example 4:13 Consxder the conventlonally autoreduced set U= {:::z %z yzt’} ‘Let
completion ordering [C be degree—lexxcographlcal or degree—reverse—lex1cograph1ca.l or-’
dering with.z 3y 32 3¢, U is: complete up to w = z? yz The lowest: u'reduuble
prolongatlon is :::yzt2 :I w. The next one in the set {:::z :c 2z yzt2 :::yzt’} 1s zyz C w,

; Example 4.14 Consxder the set U {zy w?, :::zt yzt} and D1v1s1on I generatmg the'

separatlon’
Monomial: Division I ’ e
fp=zy’*w? | z,y,w | 2t |
v-:::zt z,z,t. |y, w )
: u-yzt v,z bwl oz,
15



Let z Jy J z 3t 3 wand 3 be any of the orderings: -lexicographical, degree-
‘lexicographical or degree—reverse—lexxcographlcal The bound of completeness for U is
zyw’ We find that v>w = u - £ = zztw is the lowest irreducible prolongation in U,
and the next one for UU {zztw} isu-wC a:yw2 Therefore, Division I is not monotone
for three orderings consxdered

Propos:tlon 4.15 Induced division is monotone for the ordering which induces this
, dwzszon

Proof By Definition 3.7.of Dg, enlargement of U by irreducible nonmultiplicative
prolongation v-z; J w (v € U) does not change the reducibility propertxes of those
prolongatlons uzy (u € U) which satisfy uzy Cv.z;. ; e a

5 Constructlon of Involutlve Bases for Polynomial
| Ideals ' '

ln tlllS section we present an algorithm for computation of minimal involutive bases of
polynomial-ideals which generalizes the algorithm of paper {2] to different completion
and main orderings.

Theorem 5. 1 Let Fbea ﬁmte subset ofR and L be a constructwe mvolutwe division.
Suppose the completzon ordering T is degree compatzble Then the algorithm Minima-
o lInvolutlveBaSIS computes a minimal involutive. basis of Id(F) if this basis is finite.
‘ IfL i5 noetherzan, then the baszs is computed for any completzon ordermg

Proof The proof is the same as in [2] and based on, Theorems 2.19, 2.20 and 4.1,
t‘ Corollarles222 and42 DT i e .0

: Proposntlon 5.2 The conventignal autoreductzon of the input polynomzal set in line
2 is optzonal and may be omztted

« Proof Let F be a non autoreduced set and the a.lgorlthm start with llne 3. Subsequent
" to_the initializion in lines 47and 5-the' upper’ while-loop selects, first of all, those
polynomlals in the triple set Q which have the same leading term as the element in

; ;- {g}. .If there is such’ a polynomial in the triple set Q@ with nonzero involutive:
~ normal form h computed in line 12, then Im(h) C Im(g). Tt follows from lines 14.and.

18 that' G becomes the one—element set'{h}"as an input for the lower while-loop.

. Thus, by restriction in line 20° for ‘nonmultiplicative ‘prolongations checked and
redxstrlbutlon of polynomials in line 28 in every step of the algorithm we have Im(g) C
Im(f) for any gin (g,u, P) € T-and fin '(f;v; D) € Q whenever the set Q is nonempty.

- Furthermore, as proved in [1, 2], in some step,:of, the algorithm a polynornial his
added to the current polynomxal set.G in llne 14 or in hne 24 such that h is an elernent

16 -

to the completlon ordermg C.:It lmphes the reductlon of G to- the one—e]ement set‘

= {h} and transfer of-the rest to Q.. Then:G-is sequentlally completed’ by. other
polynomlals from the reduced Grébner basis and their nonmultlphcatlve prolongations.
In so doing, the completion of Im(G).due to the redistribution of polynom:als between
sets T and @ in lines 18 and 28 is monotone with respect to [ Therefore the’ outputr
of algorlthm MxmmalInvolutnveBams irrespective of autoreductlon in lme 2 is the:
same as 1t -would. be. for the: reduced Grobner basls in'the mput B R )

Algorlthm memalInvolutlveBasxs 7 o o
Input F,a finite polynomlal set L, an mvolutlve division; .

>, a main ordering; , a completion ordering BRI

SUtPUt’ G, the mlnxmal mvolutlve basns of Id(F) lf algorlthm termlnates
egin v e “ o

Fi= Autoreduce(F) ST ;
—'choose g € F .with the lowest lm( ) w. rt |: 3

- Ti={(g,Im(9);0)}; Q:=10; G —{g} 4
for- each’ 'f €' F\'{g} do D s A
Q:= Qu{(f,tm(f) 0} SRR R S e
repeat R A L ey L 7

‘ #, and b0 o b e 8

“ )ose g in (g,u P) € Q w1th the lowest lm(g) w L. [: 10
VQ‘ Q\ (g, P)} B

; n‘(f,v,D).eTst rm(f)>-[m )

v, D)} Q:=QU{(f,v,D)}; Gi=G\{f}
)eT GNA{L(Q,G)\Pan ,lngéﬂ ety
,(f) forallf"n (’f,v D)EQ . :




" Criterion(g,u,T) is true provided that if there is (f,v, D) € T such that Im(f)|cIm(g)

and lem(u,v). < Im(g).  Correctness of this criterion,” which is just the involutive -
n\u, v

"[1] of Buchberger’s chain criterion [10], is provided by Corpllary 222

form | ‘
ﬁémaik'5;3 The choice of a-completion ord’(.erinig which is mc.)nbt_on'é f?t L preseryes%
obviously, the partial involutivity of the intermediate ’pqurfon.u__al set G in the c.e).tige o
its enlargement in line 23, if Im(h) = Im(g-a:). Therefore, §1m11ar to t¥1e monomllia l(?.sg
tc.f. Remark 4.9), this saves computing time for recomput'mg separations and checking
irreducibility of nonmultiplicative prolongations unless L is globally defined anyway.

6  Conclusion R

The above described optimizations concern only that part of c?mput_ing.involut.ive baszs
which is related to completion by nonmultiplicative pr‘olongaflons. W:lth irreducible lead-
ing terms. ‘Another important step is to search for an involutive d|v1-sor among the.lea ;
ing monomials of an intermediate basis. This is impo.rtant, fOf Eﬂic;ent computation o
the involutive normal form in lines 11 and 22 of algorithm Mlnlmallnyolutlve8a§1s.
Some related optimizations are considered in [14] f0f the»pu.rp'o'se of 1mp.lem(.efltatmg
the algorithm InvolutiveCompletion in Mathematica fOI'.dIV.lSlOI]S of Sect.3.'d; .
- A promising way to the further optimization of comp.utatlor} is r?la.tc.ed t? th;n eas o
paper [12]. By appropriate dynamical refinement of an ;nvolptnfe t.ilvuj,xon in- lt e c?lrse
of computation, one can decrease the total number of nonmultxﬂ;pa?lvep;o ongations
to be checked. This may lead to a notable reduction of computing time. .. 7
:HAlgori'thm MinimalInvolutiveBasis has beeri,im'plemen.ted in Reduge for Pom-
maret division. Computer experiments showed that t!p‘s al{gorlthm.ls’ somewhat faster
" ‘than our previous version of involutive algorithm' also implemented in Reduce for Pom-

" maret bases [1]. For a nonglobally defined division the difference in speed is to be much
. greater as algorithm MinimallnvolutiveBasis deals with fewer mtermedlate polyno-

mials andrdvoids'inte,r’media‘te'autpreductiohé [2]cmwss s i e e

degree-reverse-lexicographical Pommaret | ! C 1o :

Mhz computer,rénd"'30 seconds for the 6th Katsura systenyl.} By c‘onllpa:rvlson, the PgSSo
* software for computing Grobner. bases®: needs. forvthesee):c‘amples?fl and: 36 sgconds,

;eSﬁgctijvely. i LS S - .

b
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