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1 Introduction 

In paper [1] a concept of involutive monomial division was invented which forms the 
foundation of algorithms [1, 2] for the construction· of Grobner bases [3, 4, 5] of a 
special form called involutive. Given a finite monomial set, an involutive division 

· satisfying the axiomatic properties proposed in [1]leads to a self-consistent separation 
of variables for any monomial in the set into disjoined subsets of so-called mul.tiplicative 
and nonmultiplicative variables. Thereby an involutive division defines the separation 
as a function of a monomial set and an element in the set. For a polynomial set the 
separation is assigned to the set of the leading monomials. 

The idea of the separation of variables into multiplicative and nonmultiplicative goes 
back to classical papers of Janet [6] and Thomas [7]. They used particular separations 
of independent variables for completion of orthonomic systems of partial differential 
equations (PDEs) to an involutive form. Later on one of the separations already 
considered by Janet [6] was used intensively by Pommaret [8] for involutivity analysis 
of general systems of partial differential equations. 

An involutive form of a system of PDEs is its interreduced completion by the 
differential consequences such that all integrability conditions are incorporated into 
the system. These conditions play the same role in the completion procedure for PDEs 
as nontrivial S-polynomials in the Buchberger algorithm for construction of Grobner 
bases. By a well-known correspondence between polynomials and linear homogeneous 
partial differential equations; the notion of an involutive system cim be transferred to 
systems of algebraic equations [9]. 

The separation of variables' into multiplicative and nonmultiplicative allows one 
to generate the integrability conditions by means of multiplicative reductions of non­
multiplicative prolongations. In the language of monomials: if a leading monomial is 
multiplied by its multiplicative variables only, it is an involutive divisor of the resulting 
power product. Thus, in the course of involutive reduction polynomials aie allowed 
to be multiplied by only multiplicative power products. ThEm an involutive basis of a 
polynomial ideal is defined [1] as a generating set such that any prolongation of any el­
ement is involutively.(multiplicatively) reduced to zero modulo the set. Any involutive 
basis is a Grobnei one, though, generally, it may be redundant. 

If an involutive division satisfies some extra conditions: noetherity, continuity. and 
constructivity [1], then an involutive basis may be constructed algorithmically by se­
quential examination of single nonmultiplicative prolongations only. The uniqueness 
properties of involutive ba.Ses are investigated in [2] where a special form of an algo­
rithm is proposed for construction of a minimal involutive basis which is unique much 
like to a reduced Grobner basis. In addition to the above mentioned classical divisions, 
in paper [2] two more divisions were introduced which satisfy all the extra conditions. 

In paper [10] it is shown that one can also construct different possible separations of 
variables for a fixed monomial set. These separations can not be considered, generally, 
as functions of a set and its element defined in [1]. Nevertheless, the results of paper [10] 
demonstrate for a wide class of divisions how one can change the division dynamically 
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in the course of the completion .. This increases the flexibility of the.involutive technique 
and may also increase the efficiency of computations. < .• < > :<,<<. < ' ~, . 

Computation of Janet bases relying upon the original Janet algorithm was imple­
mented in Reduce and used for finding the size· of a Lie'symnietry group for PDEs [11] 
arid for dassificatiori of ·ordinary-differential equations admitting nontrivial Lie sym~ 
metries[12]. The study ~f algorithmic aspects of the general completion procedure for 
Pommaret division and implementation in Axiom was done in·[13]; The completion 
to Pommaret polynomial bases was algorithmized and implemented in Reduce, first, 
in [14]; and then' with algorithmic improvements in [1]. 

In this paper we present first. results oL'an implementation in Mathematica 'of in­
volutive divisions introduced and studied in [1, 2] and also a new cl<i.ss of divisions the 
theoretiCal study of which including the pr~of of noetherity, continuity andconstruc­
tivity will he presented elsewhere [15]. We discuss some built-in facilities of Malhe­
matica which allow one to easily implement different involutive divisions as well as 
the algorithm for completion of a monomial set to involution [1, 2]: Some computer 
experiments and< their analysis are also described. They reveal not only specific fea­
tures of particular involutive divisions but also some general computational aspects of 
completion to involution important for the extension of the technique to polynomial 
and differential bases. The computational efficiency issues are also discussed, and some 
future improvements ~re shortly outlined. 

<As an application of the algorithms implemented we consider computation of Hilbert 
function and Hilbert polynomial for monomial ideals. Already Janet [6] showed how 
to compute these objects for a monomial ideal generated by an involutive monomial 
set. In particular, he wrote an explicit formula for the projective Hilbert polynomiaf 
in terms of Ca~tan charac::ters:·This representation is also used in [8, 13]. In paper [10] 
it was noticed that a Hilbert function ·can be':written <in a· simple ·and elegant way 
as a certain sum'over the elements of an_ involutive basis. -We .. use this formula and 
the corresponding compaCt formula for the Hilbert polynomial which follows from the 
former. These explicit formulas allow to't:omputeieasily the index. nf regularity- of an 
ideal [5], and we demonstrate this by· expliCit examples.· 

~:;.. ' _.'{, . 

·2 · Involutive .Monomial DiV:ision. General .:Proper;_ 
ties' ' :> ··,:- .-:-:...... ~: 

.. ' 

hi this s~ctio~; \vt(gi~e the definition of involutive divisions and describe their basic 
properties . .The presentatidn follciws·[l, 2]\vhete one can find montdetails and proofs. 

·.Let_ N be a set <of non-negative integers, and M = '.{ xt• , ... · x~" t d; E N} be a set of 
moh6rrilals irt the polynomial ring-·Ktxh. ;'., x~J over a field K of characteristic zero. 

By deg(u) and deg;(u) we denote the total degree of u E-M-and the degreeofvariable . 
x; in· u, -respectively.· For the.least common timltiple of two monomials u, v E .M we 
. shall us~ theconvention~d notati6n lcm(u;v). -If monomial u divides mono~ial v we 
shall writ'e u!v> ·· • 
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An admissible monomial ordering is denoted by >-, and throughout this paper we 
shall assume that < . ' .. . ,. : . ;, . . . . . 

x1>-x2>-··:>-xn. :(1) 

Definition 2.1 An involutive division L on M is given, if for any finite monomial set 
U. C M and for any u E U there. i~ given a submonoid L( u, U) of M satisfying .the 
conditions: ·. . · 

(a) Ifw E L(u,U)and v!w, then v E L{u,U). . . .. . 
(b) If u, v E u and uL(u, U) n vL(v; lf) # 0, thenu E vL(v, U) or; E u'L(u, U): . 
(c) lfv E U and v E uL(u,U), then L(v,U) ~ L(u,U). · · 
(d) If V ~ U, then L(u, U) ~ f(u, V) for all u E V. 

Elements of L( u, U) are called multiplicative for u. If w E uL( u, U) we shall w~ite 
u!Lw and call u (L-}involutive divisor of w. The monomial.w in its turn is called. 
(L-)involutive multiple of u:·In such au event the monomial v ~ wfu is multiplicative 
for U and the equality W = UV will be written as W = U X v. If U is a conventior{aJ 
divisor of w but not an involutive one we shall write, as usual, w = u · v. Then v is 
said to be nonmultiplicative for u. 

Definition 2.2 We shall say that an involutive division L is globally defined if for any 
u EM its multiplicative monomials are.definedirrespective of the monomial set•U•3 u,' 
that is, if L(u,U) = L(u). . < 

D~finition 2.1 for every u E U, provides the separation · 

{xh .. . ,xn} = ML(u,U) u NML(u,U), ML(u,U) n NML(u,U) = 0 ,,•' (2) 

of the set • of variables. into two subsets: ; multiplicative ML( u, CJ) 'C f( u; U) and- nonf 
multiplicative NML(u,U) n L(u,U) = 0. Conversely, iffor,any finite set·U c.M 
and any u E U the separation (2) is given such that the corresponding submonoid 
L(u,U).of monomials in variables-in ML(u,U) satisfies the conditions-(bHd)~·.therr 
the partition generates. an· involutive division. The conventional monomial division, 
obviously, satisfies condition (b) only in the univariate case. 

' In what follows'monomial sets are assumed to be finite.' '· · 

Definition 2.3 A monomial set U E M is involutively autoreduied or L_;,auto~d1ced 
ifthe condition uL( u, U) n vL(v, U) = 0 holds for all.disti~ct u, v E U. 

> •tt '~ ,, .·y;. .,! '·. '-.>·.::,:' ---~-;~'; 

Definition 2.4 Given an involutive division L, a mono~ial set U is . involutive with 
respect to L or L-involutive if · 

(VuE U) (Vw EM) (3v E U) ( uw E vL(v,U) ] • 
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Definition 2.5 An L-involutive monomial set U is called L-completion of a set U ~ 
ti if 

(VuE U) (Vw EM) (3v E U) ( tiw E vL(v,U) 1. 

If there exists a finite· L-completion ti of a finite set U, then the hitter is finitely 
generated with respect to L. The involutive division L is noetherian if every finite set 
U is finitely generated with respect to L. 

Proposition 2.6 [1} If an involutive diVision L is noetherian, then every monomial 
ideal has a finite involutive basis [J. 

.J 

Proposition 2. 7 {2} If U is a finitely generated monomial set, then so is the set ob­
tained by autoreduction of U in the sense of the conventional monomial division. 

Definition 2.8 A monomial set U is called locally involutive with respect to the invo-
lutive division L if · 

(VuE U) (Vx; EN ML(u, U)) (3v E U) ( viL(u · x;) 1. 

Definition 2.9 A division L is called continuous if for any finite set U E M and for 
any finite sequence { u;}(l~i~k) of elements in U such that 

(Vi<k) (3xjENML(u;,U)) [u;+IILu;·x;1 

the inequality u; =1- u; for i =1- j holds. 

(3) 

Theorem ·2.10 [l}If an involutive division L is continuous then local involutivity of 
(my monomial set u implies its involutivity. 

. " . O· 

Definition..2.ll A continuous involutive divis!on L ·i~ c~nstrnctive iffor any U C M, 
u·E 'U,· x; E NMi.(u, U) such that u · x; has no involutive divisors in U and 

(Vv E U) (Vx; EN ML(v, U)) (v • x;lu · :t;, v · x; =f. u 'Xi) ( v · x; E UueuuL(u,U) 1 

th.e following condition holds: . 

(V~ E Uueu ~ L(u, U)) ( u · x; ¢ wL(w, U U {w}) 1· (4) 

.. 

3 . E~amples of In:Yohitive Di~ision.s and Completion 
AJg;ori~hm '. 

· \Ve give, first, ·examples of the involutive divisions defined by Janet. Thomas and 
Pommaret and two new divisions proposed in (2]. For the proof ofvalidity of properties 
(b)-(d) in Definition 2.1 for these division!> we refe·r to (1~ 2]. · · · 

Example 3.1 Thomas div.ision [7] .. Given a finite set U C M, the variable x; is 
consider~d as inultiplicativefor u E U ifdeg;(zl) ='= max{deg;(v) I v E U}, and nonmul-
tiplicative,otherwise. · ·· . · . . 

· Example 3.2 Janet division [6]. Let the set U C M be finite; For each 1 :S i :S n 
divide U into groups ·labeled by non-negative integers 11, ••• , d;: 

[d11 ••• ,d;] =:= { u E U J di ;= degj(t!), 1 :S j :S i }. 

A variable x; is multiplicative for tl E U if i = 1 and deg1(u) = ma;r{deg1(v)'l'i• E U}, 
or ifi > 1, u E[d1,. •• ,d;_i] and dcg;(u) = max{deg;(v) I v E [d17 ••• ,d;_i]}. 

Example 3.3 Pommaret division [8]. For a monomial u = x1• ···;rtk with dk >.0 
the variables xj,j -~ k are con;idered as multiplicative and the other va'ria'bles ~s 
nonm~t!tiplicative. For u = l ~Il the variables are multiplicati~·e. 

J):xample 3.4 Di':ision I. .[2] Let U be a finite monomial set. The variable .r1 is non-
multiplicative for u.E U:if there is_.t' Ell such ~hat . , ,. ,, 

xf.• · · · xf;::u = /em( u, t' ), 1 :S m :S [n/2], d; > 0 ( 1 :S j :S m). 

and X; E {x;,.·:.,x;m}: ' . ~ i , ;- ·~ I 

Example 3~5 Pi vision IL[~] FQr monomialu = ;r1' .. · xt· the variable .r; is multi-
plicative if(!;_= dmar( t1) where dm.:r(u )'= rnax.{ d~o ... , d,.}. ' : 

' >.. ' t • -. 

' - •. . . .. ~ 

All these divisions are continuous and constnictive, and except Ponimaret division they 
are also noetheri~n [1, 2]. • '. · . 

Now we consider a new class of involutive divisions indttced by admissible llJOIIOlllial 
orderings (cf. [10}). . · · . 

Example 3.6 Induced division~' Gi~en'·an admis~ibl~ mohomial ordering >- a variable 
x; is nonmultiplicativefor u E U if there is v E U such tha(v-< 11 and drg;(u) < dcg;(t•). 

' ,. 

'i · •• · 

..;_ . 
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The proof that this separation gives a noether:ian, continuous and constructive involu­
tive division for any admissible ordering is given in (15] together with some additional 
theoretical analysis of the listed divisions. 

To distinguish these divisions, the abbreviations T, J, P, I, I I, D will be used. In 
the implementation described below, three orderings are used to induce involutive di­
visions: lexicographical, degree-lexicographical and degree-reverse-lexicographical. To 
distinguish these three orderings we shall use the subscripts L, DL, DRL, respectively. 

We note that 

• Thomas division, Divisions I and II do not depend on the o~dering on the vari­
ables. Janet and Pommaret divisions_, as defined, are based on the ordering given 
in (1). Generally, the ordering>- defining an Induced division implies some vari­
able ordering which is not compatible with (1). However, below we assume that 
lexicographical, degree-lexicographical and degree-reverse-lexicographical order­
ings are compatible with (1). 

• Pommaret division and Division II are globally defined in accordance with Defi­
nition 2.1. 

There are the following relations between separations geherated by those divisions. 

Proposition 3.7 {1, 2, 15} For any U, u. E U ·and>- the inclusions MT(u,U) ~ 
MJ(u,U), Mi(u,U) ~ Mr(u,U), MT(u,U) ~ Mv,._(u,U) hold. If U is autoreduced 
with respect to Pommaret division, then also Mp(u, U) ~ MJ(u, U). · 

Thefollowing simple example explicitly sh~w~ that all eight divisions 'we us~ iri tliis 
paper are different. In the table we list' the multiplicative variables for every division. 

Example 3.8 Multiplicative variables/or elements in the set U = {~2y,xz,y2,yz,z3} 
(x >- y >- z) for different divisions. 

Monomial ·. Multiplicative. variables 
T J p I II DL DvL DvRL 

x2y X x,y,z y,z X X X X X 
.. 

xz - y,z z X x,z X x,z . x,z 
y2 y y,z y,z y .. y x,y x,y y . 
yz - z z - y,z x,y x,y,z x,y,z 
z3 z z z z z x,y,z z z 

. " 
'· ··-t 

If U is a finitely generated monomial set with respect to the involutive division L, then 
its finite completion gives an involutive basis of the monomial ideal generated by U. 
There may be different involutively autoreduced bases of the same monomial ideal. For 
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instance, from the definitions given in Examples 3.1 and 3.2 it is easy to see that any 
finite monomial set is Thomas and Janet autoreduced. Therefore, enlarging a Tomas 
or Janet ba.Sis by a prolongation of any its element and then completing the enlarged 
set leads to another Thomas and Janet basis, respectively. Similarly, Division I and an 
Induced division do not provide uniqueness of involutively autoreduced bases whereas 
Pommaret division and Division II do, as well as any globally defined division (2]. 

Definition 3.9 Let L be an involutive division, and I d(U) be a monomial ideal. Then 
its L-involutive basis [J will be called minima/ if for any other involutive basis V of 
the same ideal the inclusion [J ~ V holds. 

Proposition 3.10 {2] /fU C M is a finitely generated set with respect to a constructive 
involutive division, then the monomial ideal I d( U) has a unique minimal involutive 
basis. 

If Lis constructive, then to compute the minimal involutive basis for an ideal generated 
by a given finite monomial set one can use the following ·algorithm (2]. 

Algorithm MinimallnvolutiveMonomialBasis: 

Input: U, a finite monomial set 
Output: 0, the minimalinvolutive basis of Id(U) 
b~n - · ' 

[! := Autoreduce(U) 
choose any admissible monomial ordering -< 
while exist u E [!and x E NML(u,U) s.t. 

u · x has no involutive divisors in[! do 
choose such u,x with the lowest u · x w.r.t. -< 
(! := (J U { U • X} 

end 
end 

{,.;' . . . . ' ;. .·.. '. ;' 

Here Autoreduce(U) stands for the conventional (non-involutive) autoreduction. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Remark 3.11 With line 2 omitted the algorithm produces the minimal completion 
of a finitely generated set for a.I).Y admissibl~ ordering in line 3 (1] which we shall' call 
selection ordering. 

·:.; 

Remark 3.12 . Given a constructive division Land a finitely generated L:...autoreduced 
monomial set U, the number 'of monomials added in the ~~urse of completing the set as 
well as the number of reducible nonmultiplicative prolongations checked do not depend 
on the completion ordering 'in line 3 of the above algorithm:. . - . 

Let ~1 and >-2 be two different completion orderings of U to 0, and Nt and N2 be the 
c~rresp~~ding ~~~be~~ ~f the reducible prolongations in the course of the completi~n 
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procedure. Assume that N 1 > N2 • As proved in (1] (c.f. the proof of Theorem 4.14) the 
number of irreducible prolongations is invariant on the completion ordering. Therefore, 
there are reducible nonmultiplicative prolongations at completion with >- 1 which are 
not considered at completion with >-2 • Let u·x = v x w, u, v E U1 ~ U be the first such 
prolongation in the course of the first completion procedure with U1 being the current 
monomial set. Then, by admissibility of both orderings, for the second completion 
procedure we obtain u x x = v x w, u, v E 02 which contradicts the property (b) in 
Definition 2.1. · · 

We would like to stress that just the first computer experiments with the package 
directed our attention to this property of the completion procedure. 

J 

Example 3.13 (Continuation of Example 3.8). The minimal involutive bases of the 
ideal generated by the set U = {x2y,xz,y2,yz,z3} (x >- y >- z) are given by 

Ur = . { x2y2z3, x2y2z2, x2y2z, x2y2, x2yz3, x2yz2, x2yz, x2y, x2z3, 

x 2z2, x 2z, xy2z3, xy2z2, xy2z, xy2, xyz3, xyz2, xyz, xz3, xz2, 

xz, y2z3, y2z2, y2z, y2, yz3, yz2' yz, z3}' 

U; = {x2y,x2z,xy2,xyz,xz,y2,yz,z3}, 

Up = {x2y, x 2z, xy2,xyz, xz,y2, yz,z3, ... , xky, ... , x1z, .. . } , 
[!1 = {x2y2z3, x2y2z2, x2y2z, x2y2, x2yz3, x2yz2, x2yz, x2y, xy2z3, 

xy2z2, xy2z, xy2, xyz3, xyz2, xyz, xz3, xz2, xz, y2z3, y2z2, 

y2z,y2,yz3,yz2,yz,z3}, 

Uu = {x2y2,x2y,xy2,xyz,xz,y2,yz,z3}, 

UL = {x2y,xz2,xz,y2,yz2,yz,z3}, 

UnL = {x2y,xz,y2,yz,z3}, 

UnnL = {x2y,xy2,xz,y2,yz,z3}, 

where k, l E N (k, l > 2), and subscripts in the left-hand sides stand for different invo­
lutive divisions considered in Section 3. This example explicitly shows that Pommaret 
division is not noetherian, since it leads to an infinite monomial basis. 

4 Implementation in M athematica 

Our goal was to produce a package for exploring different involutive divisions. In doing 
so, we have not paid much attention to efficiency issues, hut rather tried to allow for 
high flexibility and easy extensibility. 

In .this section we will also describe some observations that allow to speed up the 
steps of the algorithm MinimallnvolutiveMonomialBasis significantly. The basic 
operations on monomial sets are the same for the computation of involutive bases of 
polynomial (1, 2] and differential systems (9], so the improvements described .here can 

. -· =·be used :in these cases, too. . . . 
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Language dependentoptimizations wert! onlymade whe~e t~eywere~traightforward 
and promised a.' big gairi in spe~d .. For' example, ~\·e use ·compiled versions of the 
functions which implement term.orderings. 

1\I~nomials' ~re represe;;t'ed a~ multiiudices, i.e. the monomial x;• · ... · x~n is rep-
resented as the list of its exponents {i I,. .• ' i~}. Thus, the set [! = { ilt. ... ;um} can 
be considered as· a ni x n- matrix of integers: For every n1onomial u, we use two 
additional lists of length 'n: a list' giving the separation of the variables for u, and· a · 
similar list containing notes about the prolo~gations that have already been done. 

In the following, we will applv functions like /em also to multiindices, with 'tlie 
obvious meaning. The set notati~n will be used for lists, 'assun1ing that the order of 
the elements is given somehow., 

Building a flexible and extensible system is helped by some features of Mathemafica. 
We used a functional style of programming, rna king extensive tise of high )~vel functions 
- such as Sort, Se.lect, Map- for manipulating lists. 

\Ve pass the term ordering function as' a parameter to functions like minimal­
Involuti veMonomialBasis. The parameter is just the name of the ordering function. 
In the following example, the built-in function Sort is used to sort a list U of monomials 
with respc:;ct to lexicographic orderin_g: 

U = Sort[U; lexOrder] 

The function lexOrder when called for two multiilidices a, b gives True if a?:iab, False 
otherwise. To add a new term order called ord, one -ivould only have ·to write--a 
corresponding function similar to lexOrder. Then the symbol ord can be passed to· 
other functions without the need to, change any part of the pa.ckage. 

We chose to pass the involutive division as a parameter, too .. Th<:> function sep­
aration computes' the separation· of a monomial u 'w.r.t: a· moi10mial set U and an· 
involutive division. For exa~ple, 

separation[Janet] [u, U] 

returns a list .. { St. •• • , sn} where Sj = 1 if a;i. E 1\1 (u, U) , and Sj = 0 .oth<:>m;ise .. 
The following statement r«tturns the minimal involutive basis vf U. with r<:>sp<'ct to , 

Janet divisioii and with lexicographic selection ordering: • · 

minimal!nv9luti veMonomialBasis [Jan_e~] [U, l~xOrder] 

An indunid division iike DL is ·give~ by the expre~sio~: induc~dDivision rl~xOrder] .; 
Using a parameter to specifytl1e involutive divisi'on Iiuikes it easy to program a' gen<:>ral 
version of· so!Jle operation· now, and suiJpl<:>ment it by ·niore optimized wrsions. for 
specific divisions later~ For example, the table that gives the separa't.ion for (·ach ,,' E l! 
is by·defaulfconiputed using thefunctimi' sepationsDneByDne wJtich takPs each rl; E l' 
and deter~lines Ah(ui, U) 'or NML(11j, U) accordiii:g to the ddinitidn ~f the inn;lut h-(: . 
division given in the.paranieter: _:_.. - ..... - -~- -· :.. .... :. --- -- __ :'. ·" :-~ --· · 
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.. separation11[div.J [U..List] := separationsOneByOne[div] [U] 

separationsOneByOne[div j [U..List] .:= Map[separation[div] [#, U]&, U]; 

\Ve use the pattern di v _ here to mean "any division". Of course, there are often 
more efficient ways to compute separations, based on special properties of a particular 
division. As a simple example, consider Thomas division (Example 3.1), where one 
has to compute the maximal degrees only once. We added a specialized version of 
separations which computes the maximal degrees and then separates the variables 
for each u E U accordingly (this is done in the function thmult): 

.J 
separations [Thomas] [U..List] :=Module [{maxima}, 

maxima= Map [Max, U/1 Transpose] ; 
Return[ 

Map[thmult[#,maxima]&, U] 
] 

] 

The point here is that Mathematica will automatically dispatch to the specialized ver­
sion, because the argument Thomas is more specific than the general pattern div_ (16). 
A similar behavior is known in other programming languages as "overloading" or 
"polymorphism". To extend the package for a new involutive division (called, say, 
newDivision), one would only have to write the specific version of the function sep­
aration: 

separation[newDivision] [u_, U..List] := ... 

I ') 
; ·l 

' All the' other steps in the algorithm would· then' be executed by functions' that· are" · "'''-"' · 
generically defined for any involutive division. When it is needed, a more efficient 
version of separations can be added, like in the following fragment: 

separations [newDivision] [U..List] := ... 

This incremental development, starting with few generic functions that are then sup­
plemented by more efficient ones for special cases, helps to find the right balance 
between "program efficiency" i.e. the time your program spends on computing, and 
"programmer efficiency", i.e. the time you spend on programming. 

We will now describe observations that can be used to make some operations of 
. the algorithm MinimallnvolutiveMonomialBasis faster. In t~e following we will 

consider the list U = { u~, ... , un} of monomials, and u is always an element of U. 
The first step is to compute the separation for each of the input monomials. For 

globally defined divisions, this is done irrespective of the other monomials in U. The 
implementation for Thomas division was shown above, the only improvement over 
separationsOneByOne being that we compute /em{ uju E U} only once. For Janet 

___ divi~L'!.IlJf1J:Cample3.2), we made use of the following remark!_ ............ --· ·- ...... _. __ 
----<·----·---
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Remark 4.1 When the list U is sorted lexicographically in decreasing order, :.the . 
groups [dt. ... , d;) mentioned in the definition are· grouped together. These groups ·are 
sorted lexicographically with respect to their labels of any fixed length i. The sort~d 
list starts with the group labeled [d. m.r), dl mar = max deg.u, the monomials in [dl mar] 
have x 1 as a multiplicative variable. We can then split the list into groups given by 
labels of length 1 imd proceed recursively within each of them, next considering degrees 
in the second variable x2 , and so on: · 

For a division Dr (Example 3.6) that is induced by some ordering >-, we can use an 
auxiliary list: ' 

Remark 4.2 Let.the monomials be sorted in descending order: u1 >- ... >- Un.· We 
call the elements of the list cm(U) := { m~, ... , mn[m; = !em( u;, ... , un), i = n, ... , 1} 
the cumulated multiples of U. By definition, variable Xj is nonmultiplicative for u; if 
and only if it has a higher degree in m;: degiu; < degim;. Thus, all we have to do is 
compute the list cm(U) of cumulated multiples and then compare each u E U against 
its corresponding entry in cm(U). 

For Division I, we are not aware of any property that would allow us to accelerate the 
computation of separations in a manner similar to Janet or Induced divisions. 

The following observation can be used to speed up the process of finding a minimal 
nonmultiplicativeprolongation (line 6 of the algorithm). Let' us denote the minimal 
(w.r.L the choseri ordering>-) nonmultiplicative prolongation by a given variable x 
with Pr(x). . 

Remark 4.3 Let U be sorted w.r.t. the completion ordering: u1 >- ... >- Un. Let 
u; and x be fixed such that u; · x· is a minimal nonmultiplicative prolongation w.r.t. 
>-. Then u; · x is an element of the set {Pr(x1), ••• ,Pr(xn)}. This follows directly 
from the minimality of u; · x. Furthermore, u; is the minimal monomial having x as a 
nonmultiplicative variable, because v · x >- u · x implies v >- u. 

The remark obviously exten_ds to the more general situation of the algorithm, where 
some of the nonmultiplicative Pt:olongations have already been considered. 
The next step in the algorithm is to search for an involutive divisor w of a nonmulti­
plicative prolongation v = u · x. In the polynomial case, the efficiency of this. search 
can be even more important, sit1ce we may want to involutively reduce every tenn of 
a prolonged polynomial; Recall that for an involutively. reduced set U, there can be 
at most one such w. We present now some optimizations that apply to increasingly 
specialized situations. , •· 

An involutive divisor is also a conventional one: ·wj[.v :::} wlv , and thus w :S v 
w.r.t any admissible term ordering. Consequently, we can keep the list U sorted in 
descending order w.r.t. >-,and use binary search to find the greatest u; E U such that 
Uj :S v. All candidates for an.involutive divisor are then among Uj,'· •• , Um· 

The binary search technique does not make much use ofthe. properties of involutive .. 
divisions, in fact it is ali:eady'applicable to findinfronventional divisors.ofii.· Wdiave 
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implemented this technique but found that it did not give improved timings. This 
is due' to the overhead involved in the binary search that-we had to program in the 
Mathematica language as opposed to the very fast built-in function Select· for linear 
searching. The advantage of using binary search will surely realize for very large lists, 
or ·when used in an· implementation in some other programming language. 

The following remark uses a special property of involutive·divisions, taking into 
account that vis a nonmultiplicative prolongation of an element of U. 

Renia~k 4.4 Let U be an involutively autoreduced set of monomials and v = u · x a 
nonmultiplicative prolongation of some u E U. If a monomial w E U is an involutive 
divisor of v then degxw = degxv. Since~· x should be involutively reducible by w, we 
can write u · x = w x ( u · x /w ). If w = v = u · x, we are done. If w =I u · x and wlu, then 
tj =.w X (ufw), which contradicts our assumption that U is involutively ~utoreduced. 

One ~~n gain e~en mor~ by considering particular divisions. 

Remark 4.5 Let us assume that we want to compute a minimal involutive Janet basis, 
and that we search for an involutive divisor w of some noninultiplicative prolongation 
v =;u ~ Xj. Then, w is in the class [deg1u, ... , degj_1u, degiu + 1] because w has to 
divide u · Xj and thus degkw ~-degku for k = 1, ... ,j -1 . In fact, these degrees have 
to be equal, because ·degkw < degku .would mean that Xk is nonmultiplicative for w. 
Furthermore, degiw = degiu + 1 according to Remark 4.4. .., 

Consequently, there holds u · x~lexw>-iextt,-which can also be used to narrow the search 
range for an involutive divisor.1 There are similar relations for Pommaret and induced 
divisions. Namely, for Pommaret division, w is reverse lexicographically greater. than 
u, and for a division that is induced by >-,either u · x = w or u >- w holds.,: 

These properties together with.Remark 3.12 suggest that one shquld keep the mono­
mials sorted with respect to some order that is most suitable for finding involutive 
divisors; and·usethis order as completion order, too. ·'· 

Finally, when: \Ve find no involutive divisor; we have to add the'prolongation to the 
set' ana 'adju~t separations accordingly. . . . 

Remark 4.6 For all divisions discussed ·so far, the following holds for a monomial 
u E U: NM(u, U U { v}) = NM(u,U) U NM(u, {u, v} ): 

A detailed discussion of this fact can be found in [15]. So, after adding a monomial v 
to U, we: have. to compute the separation of v, and then only 14pairwise':.separations 
for every u E ·U. ·. . · . 
Again, for special divisions, we can ~ake more improvements. 

1 H~re >-ze., deriotes the lexicographica1 ~rd~ring c~mpatible with (1): 
. ' ~~ .' . . . . . . ' : ... 

-----·~------- -~·-·"----- .. ·----k·------~-~- -·-·- -----
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Remark 4.7 Let v = u · xj be some nonrimltiplicative prolongation, and assume that 
v has no involutive divisor in the Janet-autoreduced set U. Then, the separation may 
only change for monomials in the class [deg1u, ... , degj-J u, degiu + 1]. 

Remark 4.8 Consider the same situation but with some induced division D-,.. Only: 
the variable Xj can change from multiplicative to nonmultiplicative, and it can do so 
only for monomials s >- v satisfying degis = degit'- 1. 

Of all the improvements mentioned above, only Remark 4.4 is implemented in the i 
current version of the package. 

\\'e have applied the package to examples taken from various sources. For each 
polynomial system, we computed the degree reverse lexicographical Griibner basis and 
took the resulting set of leading monomials as input to the algorithm Minimallnvo­
lutiveMonomialBasis. As we will describe in the following section, the output can 
then be used to compute the Hilbert function, the Hilbert polynomial and the index 
of regularity of the corresponding polynomial ideal. 

Example 4.9 [5, p. 4.55] U = {;~,3 y.:5 ,xy3.:2 }. 

Example 4.10 [17] Consider an x n matrix A = (o;j) with. unspecified entries~ 
The condition A2 = 0 leads to a system of n2 polynomi:(equatious in the variables 
on, ... , o 1n, o 21. ••• , Gnn· . We treated the leading .monomials of the degree· reverse 
lexicographic Grobner basis, where the variables are ordered according to n 11 '>- ... >­

OJn >- 0'21 >- · • · >- Onn· 

Example 4.11 The system of "n-th cyclic roots" is a well known exampll•. For 11 = 4 
, it is given by: 

XJ + x2 + ;r3 + .r., = 0 

XJX2 + X2.!:3 + X3X4 + ;t:4X1 = 0 

X1X2X3 + X2X3:r4 + X3;r4X1 + X4X 1;r2 = 0 

X1X2X3x.j- I = 0 

The following table shows the rest;lts of applying the algorithin Minimallnvolutive­
MonomhiiBasis to our examples. In. the first thre<!' columns, the size of'the in pitt is 
given where m. is the number of monomials, ~~ is the number of variables, and d is the 
maximum total degree of the in'put monomials. The divisions are iJidic~h·d by the ab­
breviations used above. For each division, we give'the length of the minimal involutivc 
monomial basis, the nuniber of prolongations considered ~lltrit;g n1inpleti~; •• a1;d .tlw 
portionof reducibleprolongations. Thus, 100% reducible p~oloi1gatimi~ ml'~u;s that 
the input is alreadyan involutive basis. Anempty_ !7.!!!:.!'Y~in th<- column' for Pommarl'l . 
division means that we did not compute a minimal Pommaret:basis because t.lw ideal 
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is not zero dimensional. For the other divisions, it means that the timing is larger than 
9999 seconds at our computer2• , · . · • · 

Input Size Division 
m n d J T p I /1 DL DnnL DnL 

8 29 26 8 1 6 5 
Ex. 3.8 5 3 3 11 55 - 47 11 9 8 6 

73% 57%. 55% 73% 78% 88% 100% 
5 14 3 12 3 3 3 

Ex. 4.9 2 3 9 4 19 _.,1_ 2 17 2 2 2 
2-5%. 37% . .50% 41% 50% 50% 50% 

Ex. 4.10 
5 25 25 12 10 5 5 

n=2 
5 4 3 7 49 - 49 21 18 7 7 

100% 59% 59% 67% 72% 100% 100% 

Ex. 4.10 
56 612. 531 1711 1479 

n=3 
2-5 9 4 239 - - - 2972 2920 9362 8044 

87% 80% 83% 82% 82% 

Ex. 4.10 
1324 

n=4 
161 16 6 11836 - - - - - - -

90% 

Ex. 4.11 
1 98 98 25 41 9 1 

n=4 
7 4 6 14 242 - 242 55 . 92 20 14 

100% 62% 62% 67% 63% 90% 100%· 

Ex. 4.11 
23 1010 23 93 154 135 106 

n=5 
20 5 8 76 3544 76 - 297 488 548 419 

96% 72% 96% 75% 72% 79% 79%' 

Ex. 4.11 
46 46 201 385 841 972 

n=6 
4.5 6 9 194 - 194 - 807 1527 4230 4899 

0 

99% 99% 81% 78% 81% 81% 

For some examples, bases for two different divisions may coincide. For Example 3.8, 
all bases are different, the input is already a basis for the division DDL· For the system 
of Example-4.9, bases for Division I, DL, DnnL, and DnL coincide. The bases for 
Thorria's and Division I coincide in Example 4.10 with n = 2, also the input is a base 
for Jan~t division and for the Induced di'visions DnnL al\d DnL· For the fourth cy'c!ic 
roots (Exampl~ 4·.11), the bas~s for Th~inas division and Division I, 'as well as those 
for Janet division and the induced division DnL coinCide, respectively. . ·. . ' 

The computations with monomial set~ should give at least so~e hint t~'the per­
formance of different divisions in the polynomial ~nd diff~rentiai ca.Ses. From our 
experience, Janet division, generally, and Induced division~, sometimes, seem to be 

:----~-2a·200:MHz 586 running Linux ~ ·-'-
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the most promising in terms of prolongations that have to be considered. Pommaret 
division·- even though it is not noetherian - deserves further investigation, because it 
is globally defined and rather "compact", too. · · 

5 Computation of Hilbert Function, ~ilbert Poly-
nomial and Index of Regularity 

Analysis of arbitrariness of the soluti~n space for systems of PDEs was just one of the · 
basic motivations for the development of the Janet-Riquier theory of involutivity [6, 18] 
and the corner stone for. the following research activity related with completion to 
involution (c.f. [8, 11, 13, 19, 22, 23]). Already Janet [6] relying on theconcept of 
an involutive system and taking into account the uniqueness of involutive divisors, 
gave explicit expressions for the number of monomi~ls which have no divisors among 
the leading terms of the system. Janet's formulas are written in terms of the Cartan 
characters o.Z, They are defined for an involutive basis of (maximal total) degree q as 
a number of monomials in M of the total degree q and with k Pommaret multiplicative 
variables which have no involutive divisors among the ieading monomials of the basis. 
Janet obtained, in particular, the following presentation of the Hilbert polynomial of 
an ideal I= Id(U) generated by a set U of monomials of degree q, which was later 
used in [8, 13, 19): · · . · · 

fiP1(s) = t (s + k -1)> 
k=l k -1 q. 

(5) 

Recently in paper [10] it was observed that the affine Hilbert function for a rri~nomial 
ideal I C K[xh ... , xn), given its i- reduced involutive basis U can be written in the 
following simple and elegant way: 

aHFr(s)~ (n+s) -t~ (i-deg(u)+m(u)-1); 
• . . s . i=OuEU m(u)- 1 

(6) 

where m( u). is a number of multiplicative variables of u. This formula is an easy 
consequence of the fact that any monomial w E I has.a unique involutive divisor 
in U which implies the equaiityw = ·u x (w/u). The fir~t term iii (6) stands for 
the total number of monomials. in M of degree less or equai s and. the double sum 
counts the number of such monomials which have involutive divisors in U. Though 
this presentation, for a~Pommaret basis, is completely equi~lent to Janet's explicit 
formulas, it is more compact, yalid for arbitrary involutiv~ divi~ions and more directable 

for computation of Hilbert functions. 
If s 2: Sm, where 

s,; ,; max{deg(u) I u E U}, 
---then one Call rewrite_...:_: __ :----· . _·, .. ~ ___ ;::_ __ _:. __ ---?-- -· ----'· 

(7) 
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't(i-deg(u)+m(u)-1) = t '(i-deg(u)_+m(u)-1)· _;,-(s~deg(u),~m(u)) 
i=O m(u)- 1 i=deg(u) m(u)- 1 m(u) • 

and thereby obtain from ( 6) the following compact formula for the affine Hilb~rt poly-
n~mial of I r~p~esented by 'its invohitive basis·: ' . . . ·· . . · . · • · · 

a_H PI(s) := ;(~ + s) .. _, ~ (. s'- deg(u) ~ m(u)) .. ~' 
. . . s ueu . m( u) . . . . 

(8) 

Much like (6),. this form~la not only gene~alizes (5) to· arbitrary involutive divisioils, 
but also gives a simpler representation fdr the Hilbert polynomial. ·. 

The above introduced s,; ·gives an upper bound for the index of regularity [5) of 
id~a:J I, that is, such minimal integer s0 ;?: 0 that for all s ;?: so the following equality 
holds · · 

aHP1(s) = aHF1(s) (9) 

The index ~f regularity can be eQ.Sily found n~merically from the explicit formulas (6-8) 
by starting at the bound (7) and checking the equality(9) for decreasing integer values 

. of s. , . · · · · · · 

. For illustrative purposes consider Example 4.9. The generat~did~al is .two-dinien­
sional, and its affine Hilbert polynomial computed by formula (8) for any involutive 
division is 2s2 +lOs- 53. The.values of this polynomial for integer arguments together. 
with ones of the affine Hilbert function computed·by formula (6) are plotted at Fig.l. 
The index of regularity isS. . ' . 
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·· As a more nontrivial example consider now the polynomial ideal generated by squaring 
a 4 x4 matrix in Example 4.10 all the elements of which are considered as variables .. The 

-~- ··--~~ <.~-··· -.·-·~· ---..:"--
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reduced degree reverse lexicographical Grobner basis computed with Malhematica in 
about 5 minutes at our 200 MHz 586 computer coni.~ins 161 elements: Ja;.et basis of 
the monomial ideal generated by leading monomials of the Grobner basis contains 1324 
elements, and gives the following affine Hilbert polynomial ' 

,...-.t.\ 
1 8. 1 •. ·-·8 6 .113 5 32-59 4 617 3 607 2' 41 3 

1440 s + 72 s + 45 s + 144 s + 1440 s +144 s + 120 s + 12 s +. 
with 2 as index of regularity. The current first implementation in Mathemalica, as we 
discuss in Sect.4, does not take into account many specific properties of the involuth;e 
technique which, we expect, will drastically decrease the timings. By this reason the 
computation of the Janet basis took about 2 hours whereas computation of the Hilbert 
polynomial took only 2seconds. 

6 Conclusion 

The practical efficiency of the algorithm MinimallnvolutiveMonomialBasis de­
pends on the efficiency of the following basic operations, given a monomial set ll and 
its separation: 

1. Selection of a minima! nonmultiplicative prolongation u x .r in the currt>nt mono­
mial set U with respect to the completion ordering. 

2. Search for an involutive divisor in ll. 

3. Recomputing the separation for U U { u · x} .· 

As we ha~~ noted~ the first implenientatio~ 'described' in' Sect.-1 is farfiom being, op­
timal. In the next version we shall improve, first of all; the im1;let~1entation of the 
above mentioned operations taking into accOunt both specific algoritlunic features o[ 
invclutive divjsi~~s and reiated programming in .Mathenl~li~a. • · . 

The basic operations remain of great importance for the implt>mt'nl at. ion of the 
polynomial involutive algorithni of paper [2) which we plah to do as a: tiext ~te,~.':Th~it' 
we want to' extend :the polyu'omial. Atatlu:maiica code to linear PDEs. This cia.;,-~ of 
differential equations is of interest by its ow~, ·and. also for the Lie symti1t-try atialysis 
of.nonline~f. di~erential equa~,ions, The most no."trivial,step her(" isit!tegratim,J c(th~~ 
determi~ing ~~terns of lint;ar PDEs for the symm~try generators [20) .. 'f.h~_.sy_s~ems' 
are overdetermined and just•th~ completion io invol'ltion is the ll~~t !Jnive~al"ii}go­
ritbmic scheme for their expli~it solving. The completion of nonlint>ar PDE- s~;stt'ms 
to invo)ution•ip.volves, generally,. their splitting in~o a finite numlwr.ofsltbsystc·ms as 
was shownalready,by Thoma.S [7). The. subsystems. contait~ not only:ec:ptations .lmt 
also inequaiities much like regular systems produced by the ROS('nfdci:Grolmc·r-algo-

-rithm [21). _ ····-----·--·-·-_:..:.. •.. --.......:.... . . ... ..;;:._ ____ ,;.;., ________ __ 
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, The separation of independent variables into multiplicative and nonmultiplicative 
allowsone to ·obtain the integrability conditions of PDEs from their.non~ultiplicative 
proiongations. There is also another ~ethod of computation ofintegrability conditions 
which does not use the separation [22): The relatedsimplified form of PDEs called. 
reduced involutive form is a generaliz~tion to noniin~ar c~es o{ a st~ndard form [23). 
The standard form was proved to be a differential Grobner basis for linear PDEs in [24). 

We believe that thejmplementation of the involutive division algorithms for differ­
ential equations together with its experimental and theoretical comparison with other 
computer algebra packages availableJor general analysis of PDEs [13, 21, 22, 25) will 
allow one to improve the algorithii1s ancl ill1ylementation~.· The latter is necessary fo~ 
solving real problems with PDEs. which is significantly harder than algebraic equa­
tions with corresponding numbers of independent variables and of degree. The notable 
progress in efficiency of algebr~i~ Grobm;;r basis algorithms. over the !~sf years, and 
application to real problems may exert influence on their counterparts in PDEs: ·char­
acteristic sets, differential Grobner bases, involutive systems, etc. 
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rep.zn B.n., EepT M., llliXOBCKll r. 
MHBOniOTHBHhie .neneHu~ B cucTeMe Mame.M, 
peanuJau~ u HeKOTOpbie npuMeHeHu~ 

PaccMoTpeHhi pam.uqHhie HHBOniOTHBHI 
B cucreMe Mame.MamuKa · BMecre c · anro1 
6a3liCOB MOHOMllaJihHhiX ll):{eaJIOB. B KaqeCTB• 
Bh~HcneHlle cp}'HKUllll ll MHoroqneHa runb( 
~ nonHHOMllaJihHOro u.neana, npe.ncrasneH 
eT, B qaCTHOCTll, BblqlfC~Tb liH.neKC. pery~J 

Pa6oTa BhmonHeHa B J1a6opaTopuu 
Mannauuu OM.SIM. 

npenpi!HT QfueJli!HeHHOrO IIHCTIIT)'Ta ll)] 

Gerdt V.P., Berth M., Czichowski G. 
Involutive Divisions in Mathematica: 
Implementation and Some Applications 

In this p~per we consider different i 
implementation in · Mathematica together 
of involutive bao;es for monomial ideals. 
consider computation of the Hilbert f1 
for a ni'onomial ideal, or for a polynomial 01 
allows one: i~ particular, to determine the i 
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