


1 Introductlon

In paper [1] a concept of mvolutlve monomial division was mvented whlch forms the
foundation of algorithms [1, 2] for the construction of Grobner bases: (3, 4, 5] of a
special form called ‘involutive. - Given a finite monomial set, an involutive division

- satisfying the axiomatic properties proposed in [1] leads to a self-consistent separation
of variables for any monomial in the set into disjoined subsets of so-called multiplicative
and nonmultiplicative variables. Thereby an involutive division defines the separation
as a function of a monomial set and an element in the set. For a polynomxal set the
separation is assigned to the set of the leading monomials.

The idea of the separation of variables into multiplicative and nonmultxpllcatlve goes
_back to classical papers of Janet [6] and. Thomas [7]. They used particular separations
of independent variables for completion of orthonomic systems of partial differential
equations (PDEs) to an. involutive form. - Later on one of the separations already
considered by Janet [6] was used intensively by Pommaret [8] for mvolutxvxty analysis
of general systems of partial differential equations.

An involutive form of a system of PDEs is its mterreduced completlon by the
differential consequences such that all integrability conditions are incorporated into
the system. These conditions play the same role in the completion procedure for PDEs
as nontrivial S-polynomials in the Buchberger algorithm for construction of Grébner
bases. By a well-known correspondence between polynomials and linear homogeneous
partial differential equations; the notion of an involutive system can be tra.nsferred to
systems of algebraic equations [9). - :

The separation of variables:-into multxpllca.tlve and nonmultiplicative allows one
to generate the integrability conditions by means of multiplicative reductions of non-
multiplicative prolongations. In the language of monomials: if a leading monomial is
multiplied by its multiplicative variables only, it is an involutive divisor of the resulting
power product. Thus, in the course of involutive reduction polynomials are allowed
to be multiplied by only multiplicative power products Then an involutive basis of a
po]ynormal ideal is defined [1) as a generating set such that any prolongation of any el-
ement is involutively (multiplicatively) reduced to zero modulo the set. Any involutive
basis is a Grobner one, though, genera.lly, it may be redundant. )

If an involutive division satisfies some extra conditions: noetherity, continuity and
constructlvxty [1], then an involutive basxs may be constructed a.lgonthmlca.lly by se-
properties of involutive bases are mvestngated in [2] where'a specla.l form of an algo-
rithm is proposed for construction of a minimal involutive basis which is unique much
like to a reduced Grobner basis. In addition to the above mentioned classical divisions,
in paper (2] two more divisions were introduced which satisfy all the ‘extra conditions.

In paper [10] it is shown that one can also construct different possible separations of
variables for a fixed monomial set. These separations can not be considered, generally,
as functions of a set and its element defined in {1). Nevertheless, the results of paper {10]
demonstrate for a wide class of divisions how one can change the division dynamically
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in the course of the completion. This increases the ﬂexnblllty of the.involutive technlque
and may also increase the efﬁc1ency of computations. AR TR 2l
Computation of Janet bases relying upon the original Janet algorlthm was imple-

mented in Reduce and used for finding the size of a Lie symmetry group for PDEs [11]

and for classification of ordmary differential equations admitting nontrivial Lie sym-

metries [12]. The study of algorithmic aspects of the general completion procedure for

Pommaret division and implementation in Axiom was done in:[13]: The completion
‘to Pommaret polynomial bases was algorithmized and -implemented in Reduce, ﬁrst
- in [14], and 'then’ with algorithmic improvements in [1]. :

* In this paper we present first results of.an implementation‘in Mathematzca ‘of in--

- volutive divisions introduced and studied i1t {1, 2] and also a new class of divisions the
theoretical study of which including the proof of noetherity, continuity and construc-
tivity will be presented elsewhere [15]. We discuss some built-in facilities of Mathe-
matica ‘which allow one to easily implement- different involutive divisions as well as
the algorithm for completlon of a monomial set to involution [1, 2].- Some computer
experiments and’ their analysis are also described. -They reveal not only specific fea-
tures of particular involutive divisions but also some general computational aspects of
completion to involution important for the extension of the technique to -polynomial
and differential bases. The computational efficiency issues are also dxscussed and some
future improvements are shortly outlined. - el T - : '

“As an application of the algorithms 1mplemented we con51der computatlon of Hllbert
functlon and Hilbert polynomial for monomial ideals. Already Janet [6] showed how
to compute these objects for a monomial ideal generated by an involutive monomial
set. In particular, he wrote an explicit formula for the projective Hilbert polynomial
in terms of Cartan characters.” This representatior is also'used in [8,.13]. In paper [10]
it was noticed that a Hllbert function -can’ be“written-in-a’ simple and. elegant way
as a certain sum’over the elements of an: ‘involutive basis: -‘We-use this formula-and
the corresponding compact formula for the Hilbert polynomial which follows from:the
former, ‘These explicit formulas allow to computes easdy the index of regula.rlty of an
ideal [5], and we: demonstrate thls by eXpllClt examples SR S
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"2 Involutlve Monomlal D1V1510n.; General Proper-
tles e it ST . 4 e e S »

In thls sectlon, \\ve'."gi\‘/e'the definition of involutive divisions and describe their basic

«propertles The presentation follows[1,2] where one can ﬁnd more'details and:proofs.
" Let N be a set of nori-negative 1ntegers and M = {z%w-. 24 | d;-€ N} be a set of

monomxals in the polynomlal ring°Kfz,, . ., T5] over a ﬁeld K of characteristic zerg.

-+ By deg(u) and degi(u) we denote the total dégree of u € Mrand the degrée of variable \

'a:. in'u,- respectlvely For the least common multiple of two rmonomials u,v € M we
-shiall use the. conventxonal notatlon Icm(u v) If monomlal u: d1v1des monomnal v we
:shall wrlte u|v S T : R TR -

An admissible monomlal orderlng is denoted by >-, a.nd throughout thlS paper we,
shall assume that’ ‘ - L s S
.1:1>-a:z>- >-z,.. S , *(1)
Definition 2.1 An mvolutwe division L on M is given, if for any finite monomial set
UcM and for any u € U there is given a submonmd L(u U) of M sa.tlsfymg the
conditions: . B TP s BT «

(a) If w € L(u,U) and vjw, then v € L{u,U).

(b) fu,v € U and uL(u,U) NvL(v, U) #0, thenquL(v U) orvGuL(u U)
(c) IfveU and v € uL(y,U), then L(v,U) C L(u,V).

(d) f V C U, then L(u, U) € L(y, V)fora.lluGV '

Elements of L(u,U) are called multzplzcatwe for u. Ifw E uL(u U) we sha.ll write -
u|pw and call u (L— )mvolutwe divisor of w. The monomial w in its turn is called
(L—)mvolutwe multiple of u.” In such an event the monomial v = w/u is multzphcatwe
for u and the equality w = uv will be written as w = u x'v. fuisa conveéntional
divisor of w but not an involutive one we shall wrlte, as usual, w = u-v. Then v is

" said to be nonmultiplicative for u.

Definition 2.2 We shall say that an involutive division L is globally defined if for any
u € M its multiplicative monomials are defined. 1rrespect1ve of the monomlal set:U.D u;
that is, if L(u,U) = L(u). ~ -

Definition 2.1 for every.u € U provides the separation. *
(21yenny2n} = Mp(u,U)U NMp(u,U), -Mp(u,U) 0 NMy(u,U) =0 (2)

of the set:of variables into two subsets:: multiplicative Mr(u,U)'C’ L(w;U) and:nons
multiplicative NMg(u,U) N L(u,U) = 0. . Conversely,:if. for any finite set .U :C:M
and any u € U the sepa.ra.txon (2) is given such that the corresponding submonoid
L(u,U) of monomials in-variables:in My (u,U) satisfies the ‘conditions . (b)-(d);-therr
the partition generates. zan’involutive division.. The conventional monomial division,
obv1ously, satisfies condition (b) only in the univariate case. o

In what follows “monomial sets are assumed to be ﬁmte Rt
Definition 2.3 A monomial set U € M is involulively autoreduced or L—autoreduced
if the condition uL(u U) n vL(v V)= 0 holds for, all—dlstmct u,v € U

Deﬁmtlon 2.4 Given an involutive dwnsxon L,a monomla.l set U is mvqutwe with
respect to L or L—involutive if s

(YueU) VweM) (Fvel) [uwevL(v U)].



Deﬁmtxon 2.5 An L—involutive monomial set I is called L—completton of aset U C
Uif

(VueU) (VweM) (Fvel) [uwevL(v,0)).

If there exists a finite- L—completion U of a finite set U, then the latter is ﬁmtely,

generated with respect to L. The involutive division L is noetherian if every ﬁmte set
U is finitely generated with respect to L.

Proposxtlon 2.6 [1] If an involutive dwtswn L is nocthenan, then every monomml
ideal has a finite involutive basis /. ‘

Proposition 2.7 [2] If U is a finitely yenerated monomial set, then so is the set ob-
tamcd by autoreduction of U m the sense of the conventional monomial dwzswn,

Deﬁmtlon 2.8 A monomial set U is called locally mvolutwe with respect to the invo-
lutlve d1v1s1on Lif

(Vu € U) (Vz; € NML(u,U)) (Elv € U) [vlp(u-2)].

Definition 2.9 ‘A division L is ca.lled continuous if for any finite set U € M and for
any finite sequence {u,}(1<,<,,) of elements in U such that :

(Vi< k) (3'7"1 € NML(“HU)) [ 'U:+1|L'Un “zj ] : (3)

the mequallty u; % uj for i # 7 holds.

Theorem 2.10° [ If an involutive- division L is contmuous then Iocal mvolutwtty of

any monomzal set U zmplzes its mvolutwtty

1

Deﬁnltlomz-]_l A continuous mvolutlve d|v1s1on Lis constructwe 1f for any U CM,
w€ U, z; € NMj(u,U) such that u-z; has no mvolutlve lelSOl'S in U and

(Yve U) (Vz; € NM (v, U)) (v x,lu z;, v~ x, # uf:c.) [v z; € U.,euuL(u U)]

the following condltlon holds: .

(VwEU.,euuL(u U)) [u x.¢wL(wUU{w})] " '(4):

Lot
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3 Examples of Involutlve D1v1s1ons and Completlon
Algorlthm I B

“We give, first; examp]es of the-involutive divisions defined by -Janet;, Thomas and

Pommaret and two new divisions proposed in [2]. For the proof of validity of properties
(b)-(d)-in Definition 2.1 for these divisions we refer to [1; 2]. PR

Example 3.1 Thomas division ["] Given a finite set U C M, the \anable x; is
considered as multxpllcatne for u € U if (leg,(u) = ma.t{deg. (v | v E U}, and nonmul-
tiplicative, otherwnse

' Example 3.2 Janet division [6]. Let the set U C M be finite. For each 1< i<n

divide U into groups labeled by non-negative mtegers d,, dis
[dh d]__{u €U|d—deg_,(u),1<]<z}

A variable z; is multiplicative for u € U if i = 1 and deg\(u) = mas r{degl(v) |'ve U}
orifi > Lue [d,...,di—;] and (lcg,(u) maz{degi(v) | v € [d,, dig]}

Example 3.3 Pommaret division [8]. For a monomial u = f-- o with dy >.0
the varlab]es T, >k are cons:(lered as ‘multiplicative and the other \anables as
nonmultlpllcatlve For u=1 all the variables are multxphcatl\'e

. Example 3.4 Division L. [2] Let U be a finite monqmla.l set. The \'arlable Iy is non-

mu]tlphcatlve forue U lf there isve U such that

ERRE S |
Y

& -z‘?"'u=lcmu,v), 1§m$n2, d; >0 (1<j<m).
tm J
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and z; E'{I{l,’.. .,:lf.'m}Q L

Example 3.5 Division 11. [2] For monomial « = x{ ...zl thc vanal)]e x; is multi-
plicative lf d; = d,,,,,,(u) where d,,,,.,(u) = ma:r{d., d,.} S

All these lels:ons are contmuous and constructlve, and except Pommaret division they
are also noetherian [1, 2]. . ‘ :

Now we consnder a new class ofmvo]utlve lelslom mduced by admhsxble monomial
orderings (cf [10] R T g' ;

Example 3. 6 Induced lelsnon leen an admlssnb]e mononnal ordermg > a variable
z;is noumultlp]lcatnvefor u € Uifthereisv € U such that v < uand deg;(u) < deg;(v).




The proof that this separation gives a noetherian, continuous and constructive involu-
tive division for any admissible ordering is given in [15] together with 'some additional
theoretical analysis of the listed divisions.

To distinguish these divisions, the abbreviations T, J, P, 1, II D will be used. In
the implementation described below, three orderings are used to induce involutive di-
visions: lexicographical, degree-lexicographical and degree-reverse-lexicographical. To
distinguish these three orderings we shall use the subscripts L, DL, DRL, respectively.

We note that

e Thomas dwnsnon, Divisions Iand I do not depend on the ordermg on the vari-
ables. Janet and Pommaret divisions, as defined, are based on the ordering given
in (1). Generally, the ordering > deﬁnmg an Induced division implies some vari-
able ordering which is not compatible with (1). However, below we assume that
lexicographical, degree—lexncographlcal and degree-reverse-lexicographical order-
ings are compatible with (1).

e Pommaret division and Division II are globally defined in accordance with Defi-
nition 2.1. .

There are the following relations between separations generated by those divisions.

Proposntlon 3.7 [1, 2, 15] For any U, u € U ‘and S the inclusions’ MT(u U) C
My(u,U), Mr(u,U) C Mi(u,U), Mr(u, U) C Mp, (u,U) hoId IfU is autoreduced
with respect to Pommaret division, then also Mp(u,U) C My(u, U)

The following simple example explxcxtly shows that all eight dlvnsnons we use in thls
paper are dnﬂ'erent In the table we list the multiplicative varxables for every division.

B R SR .

Example 3.8 MuItipIicatiue varz'ables for elements in ihe set U= {izy,:'cz,y"’,yzf,,z?} v

(z > y > z) for different divisions.

Monomial : . Multiplicative. varlables .

T] J P|1|11|DL[DDL|DDRL
22y bz |y zlyz| 2| 2 z T z’
zz |~ ]| Y,z z | z|=2 z |z,z | z,z
v |yl g |welyly | ny | sy |y
vz = z |z |~|wz| sy |syz|zy2
2 z z |z |z z |zyz| =z z.
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If U is a finitely generated monomial set with respect to the involutive division L, then
its finite completion gives an involutive basis of the monomial ideal generated by U.

~--There may be different involutively autoreduced bases of the same monomial ideal. For

instance, from the definitions given in Examples 3.1 and 3.2 it is easy to see that any
finite monomial set is Thomas and Janet autoreduced.. Therefore; enlarging ‘a Tomas
or Janet basis by a prolongation of any its element and then completing the enlarged
set leads to another Thomas and Janet basis, respectively. Similarly; Division I and an
Induced division do not. provide uniqueness of involutively autoreduced: bases whereas
Pommaret: lelsnon and Division II do, as well as any globally deﬁned d1v1s1on [2]

Deﬁmtlon 3. 9 Let L be an mvolutwe d1v151on and [ d(U ) be a monomnal 1dea1 Then :
its L—involutive basis U will be called minimal if for any. other involutive basls V of
the same ideal the inclusion U C V holds.

Proposition-3.10 [2] IfU.C M is a finitely generated set with respect to a constructive
involutive division, then the monomial ideal I1d(U) has a unique minimal involutive
basis.

If L is constructive, then to compute the minirnal involutive basis for an ideal generated
by a given finite monomial set one can use the following algorithm [2].

Algorithm MinimalInvolutiveMonomialBasis:

Input: U, a finite monomlal set - :
Output: U, the mmxmal 1nvolut1ve basls of Id(U) o

begin 1
U:= Autoreduce(U) 2
choose any admissible monomial orderlng < 3
while exist u € U and z € NML(u U) s.t. 4

u - z has no involutive divisors in U -do . 5
choose such u,z with the lowest u -z w. T. t. < 6
U:=0u{u- :c} : 7
end .8
-9

end’

Here Autoreduce(U ) stands for the conventnonal (non 1nvolut1ve) autoreductlon

Remark 3.11 With line 2 omitted the algorithm produces the minimal completion
of a finitely generated set for any admissible orderlng in lme 3:1] which we shall call
selection ordermg

Rt Q,‘

’Remark 3. 12 leen a constructlve dmsnon Landa ﬁmtely generated L-—autoreduced

monomial set U, the number of monomials added in the course of completing the set as
well as the number of reducible nonmultlphcatnve prolongatlons checked do not depend
on the completnon ordernng in lme 3 of the above algorlthm oo e

Let -1 and >2 be two. dnﬂ'erent completlon ordermgs of U to U a.nd Nl a.nd Ng be the
correspondmg numbers of the reducible prolongations in the course of the completion



.procedure.- Assume that Ni > N,. ‘As proved in [1] (c.f. the proof of Theorem 4.14) the
number of irreducible prolongations is invariant on the completion ordering. Therefore,
" there are reducible nonmultiplicative prolongations at completion with >, which are
not considered at completion with . Let u-z =vxw,u,v € U, C U be the first such
prolongation in the course of the first completion procedure with U; being the current
monomial set.  Then, by admissibility of both orderings, for the second completion
procedure we obtain u x £ = v X w, u,v € Us which contradlcts the property (b) in
Definition 2.1.°
We would hke to stress that just the ﬁrst computer experiments with the package
directed our attention to this property of tlle completion procedure.

Example-3.13 {Continuation of Example 3.8). The minimal involutive bases of the
ideal generated by the set U = {z’, J:z,yz, yz,23}(z > y > z) are given by

Ur ='{.1:2y2z3:cyz :z:yza:y,:cyz J:yz :l:yz:_::y,:.::z3

z22? 2%z a:y 2%, zy?2? zy z a:y , Y2, 2y’ zyz, 222, 27,

zz,y Z'ry 22 7y Zay ’yz ,yZ y Yz, 2 }7

l_jJ = {z2ya$22a $y2,1y2,127 y21 y=z, 23} )
Uy = {22y2z3 22y222 z*y’z, 3%y, 2?y2®, 2%y, 2y z, 2y, zy 23

Iy 2 1zy zizy 1xyz 1Iyz ’zyz,zz:s’zzz’zz’y z 7y Z b

vz,9%, 2% y2,yz, 2,

Un = {2%? 2%, 2y zyz, 22,97, y2, 2%},
Up = {e%,22%22,9%,y2%y2,2%),
Upr = {z%,z2,9y% yz,2%},
Uprt = {2%,zy% z2,v% vz, 2%},

where k,l € N (k,{ > 2), and subscripts in the left-hand sides stand for different invo-
lutive divisions considered-in Section 3. This example explicitly shows that Pommaret
division is not noetherian, since it leads to an infinite monomial basis."

4 Ifhplementationin Mathematica

Our goal was to produce a package for exploring different involutive divisions. In doing
:s0, we have not paid much attention to efficiency issues, but rather tried to allow for
hlgh flexibility and easy extensibility. s

~In this section we will also describe some observations that al]ow to speed up the
steps of the algorithm MinimalInvolutiveMonomialBasis significantly. The basic
operations on monomial sets are the same for the computation of involutive bases of
polynomial [3, 2] and differential systems [9], so the 1mprovements described here can

~~be'used if these cases, too. - - e B

Language dependent optlmrzatlons were only made where they were straightforward
and promised a big gain in speed. For examp]e, we use- complled versions of the
functxons wthll lmplement term. ordermgs ‘ e

Monomials are represented as multiindices, i.e. t]le monomlal 1, e a;';l" is rep-
resented as the list of its exponents {iy..on ,l,,} Thus, the set I/ = {uy;.2 ,u,,.} can
be’ considered as ‘a #i X 11— matrix of integérs. For every imonomial u, we use two
additional lists of length'n: a list' giving the separation of the variables for u, and'a"
similar list containing notes aboit' the prolongations that have already been done.

In the following, we will apply functions like lcm also to multundxces, with “the
obvious meaning. The set notation will'be used for lists, assuming that' the order of
the elements is given somehow.,

Building a flexible and extensible system is helped by some e features of Mathematica.
We used a functional style of programming, making extensive use of high Ie\ el functions’
- such as Sort, Select, Map ~ for manipulating lists.

We pass the term ordering function as a parameter to functions like minimal-
InvolutiveMonomialBasis. The parameter is just the name of the ordering function.
In the following example, the built-in function Sort is used to sort a list {7 of monomials
with respect to lexicographic ordering:

w1

U Sort’ [U leerder] )
The functlon lexOrder when called for two multiindices a, b gives True if a>;..b, False
otherwise. To add a new termorder called ord, one.Wwould only have ‘to write:a
corresponding function similar to lexOrder. Then the symbol ord can be passed to-
other functions without the need to change any part of the pacl\agc
We chose to pass the involutive division as a parameter, too. The function sep~
aration computes’ the separation: of a monomial u'w.r.t.a monomlal set U aud dn‘
involutive division. For example, DI IR -

separatlon [Janet] [u , U]

returns a list, {sy,...,sn} where s; = 1 if 2/.€ M(w,U) , and s; = 0 otherwise. .-
. The following statement returns the mininal lnvolutlve basis of {/, with respect to .
Janet division and with ]ex1cograplnc selection orderlng :

minimalInVeIntiveHonomivaiBasi'sv[Janet‘] [U iein‘der] \, . : ;

An induced’ lelSlOIl lll\e DL is glven by thc expressron inducedDivision [1ex0rder] a
Using a parameter to spec:fy the involutive division makes |t easv to progxam a ge ueral
version. of ‘some operation now, “and supp]cment it by more optum/( d ve rslons for
spec1ﬁc divisions later. For example, the table that 51ves the scpdratxon for each u E i
is by default’ computed using the function sepat1onsOneByUne which takes eacli u; € U
and determines’ My (ui, U) or NML(u.,U) accordmg to the dermtlon of th( m\olutn(' -
division given.in the. parameter e o e e



separations [diu,] [U.List] = sepazjationSOneByOhe[div]‘ ful

separauonsOneByOne [div ] [U.List].:=Map [separatxon [div] [# U] & ul;

We use the pattern div_ here to mean “any division”. -Of course, there are often
more efficient ways to compute separations, based on special properties of a particular
division. As a simple example, consider Thomas division (Example 3.1), where one
has to compute the maximal degrees only once. We added a specialized version of
separations which computes the maximal degrees and then separates the variables
for each u € U accordingly (this is done in the function thmult):

separations[Thomas] [U.List] .; Module[{maxima},
maxima = Map [Hax, U/ / Tratnspoée] ;
Return[
Map [thmult[#, maxima]&, U]

]

The point here is that. Mathematica will automatically dispatch to the specialized ver-
sion, because the argument Thomas is more specific than the general pattern div_[16].
A similar behavior is known in other programming languages as “overloading” or
“polymorphism”.. To extend the package for a new involutive division (called, say,
newDivision), one would only have to write the specific version of the function sep-
aration:

separat1on[newD1v1s1on] [u_,UList] :

= ALl the- other’steps in the-algorithm- would- then: be executed by functionsthat ~are>

generically defined for any involutive division. When it is needed, a more efficient
version of separations can be added, like in the following fragment:

separations[newDivision] [UList] :=

This incremental development, starting with few generic functions that are then sup-
plemented by more efficient ones for special cases, helps to find the right balance
between “program efficiency” i.e. the time your program spends on computing, and
“programmer efficiency”, i.e. the time you spend on programming.
~ We will now describe observations that can be used to make some operations of
_the ‘algorithm MinimalInvolutiveMonomialBasis faster. In the following we will
consider the list U = {u,,...,un} of monomials, and u js always an element of U.
The first step is to compute the separation for each of the input monomials. For

globally defined divisions, this is done irrespective of the other monomials in U. The -
lmplementatlon for Thomas division was shown above, the only improvement over -

separationsOneByOne being that we compute lem{uju € U} only once. For Janet
division (Example 3.2), we made use of the following remark:

10
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Remark 4.1° When the list ‘U is sorted lexrcographrcally in decrea.smg order, the"
groups {d;,...,d;] mentioned in the definition ‘are "grouped together. These groups are
sorted lexrcographlcally with respect to their labels of any fixed length 7.  The sorted
list starts with the group labeled [d} jnas], dl maz = maz deg,u, the monomials in [dl ,,.,,,]v
have z, as a multiplicative variable. We can then split:the list into groups given by
labels of length 1 and proceed recurswely w1thm each of them, next consxdermg degrees
in the second variable 2, and so on. : L : :

For a division D, (Example 3.6) that is induced by some ordermg >—, we. can use an
auxiliary list: : :

Remark 4.2 Let the monomials be sorted in descending order:- u; > ... > 'u,,.‘ We
call the elements of the list cm(U) := {my, ..., malm; = lcm(u;, S Un) i =1,
the cumulated multiples of U. By definition, variable z; is nonmultlpllcatrve for u; if
and only if it has a higher degree in m;: deg;u; < deg;m;. Thus, all we have to do is
compute the list cm(U) of cumulated multiples and then compare each u € U against
its corresponding entry in em(U).

For Division I, we are not aware of any property that would allow us to accelerate the
computation of separations in a manner similar to Janet or Induced divisions.

The following observation can be used to speed up the process of ﬁndmg a minimal
nonmultiplicative prolongation (line 6 of the algorithm). Let'us denote the minimal
(w.r.t. the chosen ordering ) nonmultlplrcatlve prolongatlon by a glven va.rlable z
with P>(z) ~ :

Remark 4.3 Let U be sorted w.r.t. the completion ordering: uy > ... > u,. Let
u;'and z be fixed such that u;- z is a’minimal nonmultiplicative prolongation’ w.r.t.
>.  Then u; - z is'an element of the set {P,.(zl), yPu(za)} - 'This follows directly
from the minimality of u; - z. Furthermore, u; is the minimal monomial havmg zasa
nonmultlpllcatlve variable, because vz >-u-z lmplles v>u :

The remark obviously extends to the more general situation of the a.lgorlthm where
some of the nonmultrpllca.tlve prolongatrons have already been considered.
The next step in the algorithm is to search for an involutive divisor w of a nonmulti-
plicative prolongation v = u - z. In the polynomial case, the efficiency of this search
can be even more important, since we may want to 1nvolut1vely reduce every term of
a prolonged polynomial: ‘Recall that for. an involutively reduced set U, there can be
at most one such w. We present now some optlmxzatlons that apply to mcreasmgly
specialized situations. e

An involutive divisor is also a conventional one: wILv = wlv , and thus'w <o
w.r.t any admissible term ordering. Consequently, we can keep the list- U sorted .in
descending order w.r.t. >, and use binary search to find the greatest u; € U such that
u; < v. All candidates for an involutive divisor are then among uj,...,tm: 7

.The binary search technique does not make much use of the properties of mvolutlve

dmsnons, in fact it is already applicable to finding conventional divisors of v.” We have
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implemented: this technique’ but found that it:did not give improved timings:- This

is due'to the overhead involved in the binary search that-we had-to program in the

Mathematica language as opposed to the very fast built-in function Select for linear
seerching. The advantage of using binary search.will surely realize for very large lists,
or when used in an‘implementation in some other programming language.

The following remark uses’ a special property of involutive-divisions, taking into
account that v is a nonmultiplicative prolongation of an element of U.

Remark 4.4 Let U be an involutively autoreduced set of monomialsand v = u -z a
nonmultiplicative prolongation of some u € U. If 2 monomial w € U is an involutive

divisor of v then deg,w = deg,v. Since u -z $hould be involutively reducible by w, we.
can write -z = w X (u-z/w). f w = v = u-z, we are done. If w # u-z and wlu, then

=w X (u/w) which contradicts our assumption that U is involutively autoreduced

One can gain even more by considering particular divisions.

Remark 4.5 Let us assurne that we want to compute a minimal involutive Janet basis,
and that we search for an involutive divisor w of some noninultiplicative prolongation
v.=;u;: &;.. Then, w is in the class:[deg,u, .. dng 14, deg;u + 1] because w has to
divide'u:- z; and thus deg,w <.deg ufor k = 1 vJ — 1. In fact, these degrees have
to be equal,: because :deg,w. < degyu-would mean that Tk I nonmultlphcatlve for w.
Furthermore, deg;w = deg,u + 1 according to Remark 4.4.

Consequently, there holds u -z, W~ u,-which can also be.used to narrow thesearch
range for an'involutive divisor.! “There are similar relations for Pommaret and induced
divisions.' Namely, for Pommaret division, w is reverse lexicographically greater.than
u, and for a division that is induced by. >, either -z = w or u > w holds. ;:

‘These properties together with Remark 3.12 suggest that one should keep the mono-
mials sorted with respect to some order that is most suitable for ﬁndmg involutive

- divisors; and'use this order'as completion order, t06. -

Fmally, when' we find no involutive d1v1sor, we haVe to add the prolongatlon to the
set and adjust séparations accordlngly '

o

Remark 4. 6 For: all divisions dlscussed ‘80 far, the followmg holds.for a monomial’

u €V: NM(u,U U {v}) = NM(x, U)UNM(u, {u 0}):

. A detaxled dlscusslon of thlS fact can be found in [15] So, after a.ddmg a monomxel v

to U, we have.to compute the separation of v, and then only # palrWlse .separations
for every u €U, -

Again, for special divisions, we can make more improvements.

: 41Herev‘>!g‘:“d‘enotes the Iexicographicql ordering compatible with (1). ©
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Remark 4.7 Let v = u - x; be some nonmultiplicative prolongation, and assume that
v has no involutive divisor in the Janet-autoreduced set U. Then, the separation may
only change for monomials in the class [deg u, ..., deg;_ u, deg;u + 1].
Remark 4.8 Consider the same situation but with some induced division D,.. Only:
the variable x; can change from multiplicative to-nonmultiplicative, and it can do-so°
only for monomials s > v satisfying deg;s = deg;v — 1.

Of all the improvements mentioned abO\e, only Remarl\ 4.4 is implemented in the
current version of the package. :

We have applied the package to examples taken from various sources. For each
polynomial system, we computed the degree reverse lexicographical Grobner basis and -
took the resulting set of leading monomials as input to the algorithm Mlmmallnvo-‘.
lutiveMonomialBasis. As we will describe in the following section, thie output can
then be used to compute the Hilbert function, the Hilbert polvnomlal and the index
ol regulauty of the correspondmg polynomial ideal.

Example 4.9~[5, p. 455] U = {23y, zy:%}.

Example 4.10 [17] Consider a n x n mattix 4 = (a;),, with unspecified entries.
The condition A% = 0 leads to a system of n? polynomial equations in the variables :
L1y eey Quny 021y ooy . We treated the leading ‘monomials of the degree reversc
lexicographic Grobner basis, where the variables are ordered according to ay; .. >
Qip > Q2] > ... > Qg ’ -

Example 4.11 The system of “n -th cyclic roots” is a well knowu cxample.. For n = 4
, 1t is given by:

1‘1+1‘2+'l'3+T1=0
-’L'11‘2+T2E3+1‘3~l‘4+ 42y =0 ,
117721‘3+I21‘3F4+1‘3!’41’1+T41‘1P2——0 .

117325 = 1=0

The followmg table shows the results of applymg the algorlthm Mmlmallnvolutlve-
MonomlalBasns to our examples. In the first thret" columns, the size of the input is
given where m is the number of monomlals, n is the number of vanablex and d is the
maximum total degree of the mput ‘monomials. The divisions are m(hcat( d by the ab-
breviations used above. For each division, we give the length of the mmunal inv olutlv :
monomial basis, the number of prolongahons considered dunng compl(hon and the

portion of reducible prolongatlons Thus, 100% reducnble prolongations 1 means that’
the input is already an involutive basis. An empty entry in the column for Ponmmaret’

division means that we did not compute a' minimal Pommaret basis because the-ideal
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" is not zero dimensional. For the other divisions, it means that the timing is larger than
9999 seconds at our computer?. ’ ‘ : o ShEES

Input Size Division
m|n|dl J [ T | P T I | I [ D, [Dpp] DoL
8 29 26 | 8 7 | 6 5

Ex.38 |5 |3 (3| 1 55 - |47 | 11 9 | 8 6

R | 3% | 57% . 55% [ 73% | 78% | 88%. |100% -
5 14 , 3 [12 | 3 3 3

Ex.49 | 2 |3]|9]| 4 19 o= | 2 17 2 | 2 2
, ; 25% . | 371% _150% | 41% | 50% | 50% | 50%
e 410 f 15 | 25 | 25 | 12 | 10 | 5 5
g 5 14l3f 7 49 — 49 |21 | 18 7|7

100% | 59% _ 59% | 67% | 72% |100% |100%:
Ex 410 56 612 | 531 |1711 [1479.
Sy 25 | 9 [4] 239 - — | — 2972 |2920 | 9362 | 8044
| 87% 80% |83% | 82% | 82%
1324 ;
Ex. 4. :

410 e felefusse | ~ | - | - | - | = | - | -
Tl—4 B : -
E a1l | T[98 198 [25 |41 |9 | 7.
o 7 |4 )6| 14 | 242 | = |22 |55 f'92-| 20 |14

100% | 62% 62% | 67% | 63% | 90% ‘| 100%

Ex A1l | 23 |1010 [ 23 | | 93 154 | 135 | 106

o 205 |8 76 |3544 |76 | — | 297 | 488 | 548 7| 419

, 96% | 72% |96% 5% | 72% | 79% | 79%
Ex A1 16 46 201 | 385 | 841 | 972
hee 45 |6 |9f 194 | — [194 | — |807 [1527 |4230 | 4899
99% 99% 81% | 78% | 81% | 81%

L

For some examples, bases for two different divisions may coincide. For Example 3.8
; all bases are different, the input is already a basis for the division Dpr. For the system’
of EX,"FWPI‘?"‘-Q’, bases for Division I, Dr, Dpgy, and Dp. coincide. The bases for
Thomas and Division I coincide in Example 4.10 with n = 2, also the input is a base
for Janet ’divis'gqn_ and for the Induced di‘visions'DDR[,'é“n‘d Dpy. For the fourth ‘éyﬂic
roots (Example 4.11), the bases for Thomas division and Division I, as well as those
for Janet division and the induced division Dpy coincide, respectively. o

.- The computations with monomial sets should give at least some hint to the f)ér— \

formance of different divisions in the polynomial and differential cases. From our

experltenc’e‘,k.]ar}et division, generally, and Induced divisions, sometimes, seem to be

———-—---£--23-200°'MHz 586 running Linux
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the most promising in terms of prolongations that have to be considered. Pommaret

. division — even though it is not noetherian — deserves further investigation, because it

is globally defined and rather “compact”, too.

5 Computation of Hilbert Function, Hilbert Poly-
nomial and Index of Regularity :

Analysis of arbitrariness of the solution space for systems of PDEs was just one of the
basic motivations for the development of the Janet-Riquier theory of involutivity [6, 18]

and the corner stone for, the following research activity related with completion to

involution (c.f. (8,11, 13, 19, 22, 23]). Already Janet [6] relying on the concept of
an involutive system and taking into account the uniqueness of .involutive divisors,

gave explicit expressions for the number of monomials which have no divisors among

the leading terms of the system. Janet’s formulas are written in terms of the Cartan
characters of. They are defined for an involutive basis of (maximal total) degree g as
a number of monomials in M of the total degree q and with k¥ Pommaret, multiplicative
variables which have no involutive divisors among the leading monomials of the basis.
Janet obtained, in particular, the following presentation of the Hilbert polynomial of
an ideal I = Id(U) generated by a set U of monomials of degree g, which was’ later
wedin 8,13, 1) S el e

- 7;,.1‘ k—l R L E K
vHP](S):E(s_*- : )a':;,p we .. (5)

: k=1 k-1 R ) . ‘

Recently in paf)er [10] it was observed that the affine Hilbert function for a monomial
ideal I C K[z1,.:.,Zn), given its L — reduced involutive basis U can be written in the

following simple and elegant way: 7 i ‘ ,
o Cfnts\ & i — deg(u) +mu) —1\..

. _ \_ , (6

’ \\HF{(s) ( . ) gmzv( Cm@-1 ) (6)

where m(u).is a number of‘ multiplicative vﬁ;iables of u. This ‘fdrmula is an easy
consequence of the fact that any monomial w € [ has.a unique_involutive divisor

in U which implies the equality w = u x (w/u). The first term in (6) stands for
the total number of monomials. in M of degree less or. equal s and the double sum
counts the number of such monomials which have involutive divisors in U. Though
this presentation, for a:Pommaret  basis, is completely equivalent to Janet’s explicit
formulas, it is more compact, valid for arbitrary involutive divisions and more directable

for computation of Hilbert functions.. .
If s > $m, where :

CemZmeleg)leery, O

then one can rewrite - - - o T T T T
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:

v &L (1= deg(u) + m(u) — 1 2 deg(u) + m(u) —1Y  {s— deg{u) + m(u)
Z -1 = Z - -1 ] =
=0 m(u) i=deg(u) m(u) m(u)

and thereby obtain from (6) the following compact formula for the afﬁne Hllbert poly—
" homial of T represented by ‘ifs involutive bas:s

a‘HP’(s)z(n-:s) s (sfdeg(")m("))_ ®

. ' S uelU m(u)
* Much hke (6), this formula not only generallzes (5) toarbitrary lnvolutlve d1v1snons,
_‘but also gives'a simpler representatxon for the Hilbert polynomial.
The above introduced s,, gives an upper bound for the index of regularity [5] of

““ideal 1, that is, such mlmmal integer so > 0 that for all 52> s0 the followmg equahty
holds

- L 4 . QHP,(S) BHFI(S) . (g)

The mdex of regularity can be easlly found numerlcally from the explicit formulas (6-8)
. by starting at the bound (7) and checking the equality (9) for .decreasing 1nteger values
_of s,

For Jllustratlve purposes consxder Example 4.9. The generated 1deal is two—drmen-
sional, and its affine Hilbert polynomial computed by formula (8) for any Jnvolutxve
d1v1s10n is 25% -+10s - 53. The values of this polynomial for integer arguments together .
" ‘with ones of the affine Hilbert function computed by formula (6) are plotted at Fig.1.
The mdex of regularlty is 8.

250 ¢
200 |
150
)

_50 - sl b A:‘ :

“*As a more nontrivial example consider now the polynomial ideal generated by squaring
a4x4 matrix in Example 4.10 all the elements of which are consxdered as vanables The

-7 16

)

g

reduced degree reverse lexncographlcal Grébner basis computed with \Iaihematu-a in
about 5 minutes at our 200 MHz 586 computer contams 161 elements. Janet basis of
the monomial ideal genera.ted by lea.dmg monomials of the Grobner basxs contams 1374
elements, and gives the follonmg afﬁne Hllbert pol_ynomlal

S o »
1 oa 158 113 . 3250 ., 617 607 2 a1
—_ T2 : 20 —s+3
o P Tt mt T et »1443 190 tast

w1th 2 as index of regularlty The current first 1mplementatlon in Maihemahca as \\e‘
discuss in Sect.4, does not take into account many specific properties of the inv olutne'
technique \whlch we expect will drastically decrease the timings. By this reason the
computation of the Janet basis took about 2 hours \\hereas computa.tlon of the Hllbert
polynomial took only 2 seconds

6 Conclusion

The practical efficiency of the algorithm MinimallnvolutiveMonomialBasis de--
pends on the efﬁcnency of the followmg basic operatlons glven a monomxal set U and
its separa.tlon :

1. Selectlon of a mlmma.l nonmultiplicative prolongatlon uX r in the current mono-
mial set U with respect to the completion ordering:

2. Search for an involutive divisor in U.
3. Recomputing the separation for U U {u-z}.

As we lave noted ‘the first’ xmplementatlon descnbed in Sect.4 is far from bcmg op-
timal. In the next version we shall improve, first of all, the |mplementahon of the
above ‘mentioned operations taking into account both specific algonthmlc l'eatures of
invclutive dwnsnons and related programming in Maihemahm :

The basic operations remain of great 1mportance for the unplemcntahou ol' the,
polynomial .involutive algorithm of paper- {2] which we plaii to do as a.next step.. 'I‘hen
we want to"extend the polynomial Mafhemahca code to linear PDEs. T his class of
differential equations is of interest by its own, and also for the Lie symmetry analvsn
of nonlinear, dlﬂ'erentra.l equa.tlons. The most nontnvnal step liere is integration ol' (lu-.
determmmg systems of lmear PDEs for the symmetry generators [’0] Thcse 'stems’

: a ¢

rithmic scheme for therr exphcxt solvmg The oompletlon of nonlmcar PDE

to mvolutlon mvolvs, generally, their sphttmg into a finite numl)er of: subsystems as:
was shown already by Thomas [7]. The subsystems contain not only cquations: but
also mequa.htlw much llke regular systems produced by the. Roscnl'cld~(.robm-r calgo-
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. The separation of independent variables into multiplicative and nonmultlphcatne
allows one to obtain the integrability conditions of PDEs from their. nonmultxphcatnve
prolongatlons There is also another method of computatlon of lnteglablhty conditions
which does not use the separatlon [22]: The related snmphﬁed form of PDEs called
reduced involutive form is a generalization to nonlinear cases of a standard form [73]
The standard form was proved to be a differential Grébner basis for linear PDEs in [24].

We believe that. the lmplementatlon of the involutive division algorithms for differ-
ential equations together with its experimental and theoretical comparison with other
computer algebra packages available for general analysis of PDEs [13, 21, 22, 25] will
allow one to improve the algonthms and lmylementatlons The latter is necessary for
solvmg real problems with PDEs_ which is significantly ha.rder than algebraic equa-
tions with corresponding numbers of mdependent variables and of ‘degree. The notable
progress in efficiency of algebralc Grdbner basis algorlthms over the la.st years, and
application to real problems may exert influence on their counterparts in PDEs: char-
acteristic sets, differential Grobner bases, involutive systems, etc.
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