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1 Introduction. Definitions. Results 

~ The boundary-value problem we consider is the following 

u" = J(u 2 )u, u = u(x), x E (0,1), 

u(O) = u(1) = 0. 

(1) 

(2) 

Here all quantities are real, f is a given sufficiently smooth func­
tion and u(x) is an unknown function of the argument x E [0, 1]. 
We consider solutions of the problem (1 )-(2) continuous on the 
segment [0, 1] and twice continuously differentiable in the interval 
(0, 1). The function u(x) _ 0 obviously satisfies the problem (1)­
(2) and we look for nontrivial solutions of this problem. Among 
others, we assume that 

f(O) 2:: 0 and lim f( u2
) = -oo. 

iui->oo 
(3) 

It is known (see, for example, [1]) that the condition (3) pro­
vides the existence of a denumerable set { un}n=;o,1 ,2 , ... of solutions 
of the problem (1)-(2) where for each integer n 2:: 0 the corre­
sponding solution un(x) has precisely n roots in the interval (0, 1). 
In the present paper, we are interested in the natural question, 
which is originated from the similarity in the qualitative behav­
ior of functions from the system { un}n=o,1 ,2 , ... and the functions 
en(x) = -/2 sin 1r( n + 1 )x (n = 0, 1, 2, ... ) (the latter functions ob­
viously form bases in standard spaces like L2 ( 0, 1)), if the system 
of functions { un}n=o,1,2 , ... is a basis of a functional space containing 
"arbitrary functions". 

The author knows several papers devoted to investigations 
of the completeness and related properties for systems of solu­
tions (or eigenfunctions) of nonlinear differential equations. In 
[2] results in this direction are announced ( -w·~thout proofs) for 
a nonlinear problem which arises from a linear one under small 
nonlinear perturbations. In our paper [3], the p~operty of be­
ing a basis in the space L 2 for the system of eigenfunctions of a 
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nonlinear Sturm~Liouville-type (or Schrodinger~type) eigenvalue 
problem (considered in a finite interval) is proved. In fact, this 
paper contains some mistakes which are corrected in the note [4]. 
In [5] we present an independent and shorter proof of the above­
indicated result from [3,4]. Also, in [6] the results of paper [3] 
are reestablished without proofs. Our approach in [5] is based 
on a theorem of N.K. Bary [7-9] stating that a system of func­
tions from the space L 2 minimal,... (or linearly independent) and 
quadratically close to a Riesz basis is a Riesz basis. In [3] we 
exploit other methods the main idea of which consists in a re­
duction of the nonlinear eigenvalue problem under consideration 
to a linear Sturm-Liouville eigenvalue problem with a potential 
depending on the spectral parameter. 

Let us introduce some notation. Let L2 (a, b), where a < b, 
be the usual Lebesque space consisting of real-valued functions 
of the argument x E (a, b), square integrable over the inter­

b 

val (a, b), with the scalar product (g,h)L2 (a,b) ~ J g(x)h(x)dx 
a 

1 

and the norm JJgJJL2 (a,b) = (g,g)L(a,b)" By ~ we denote the 

closure in the space L2 (a, b) of the operator - d~2 with the do­
main C3"(a, b) which consists of real-valued infinitely differen­
tiable functions of the argument x E [a, b] .becoming zero at the 
ends of this segment. Then, it is well-known that ~ is a self­
adjoint positive operator in the space L2 (a, b) which· also has 
a bounded inverse operator ~-I. For an arbitra_ry s :S 0, let 
Hs (a, b) be the completion of the space· L2 (a, b) equipped with 

··the scalar product (g, h )H•(a,b) = (~~ g, ~~ h )L2 (a,b) and the norm 
1 

JJgJJH•(a,b) = (g,g)ii•(a,b)" Then, it is clear that H 8 (a, b) is a Hilbert 
space for each s :S 0 and that H 0 (a, b)= L2 (a, b). Also, for a Ba­
nach space Bwith a norm JI·IJB, by £(B; B) we denote the space 
~f linear bounded operators acting from B into B, with the norm 

2 

JJAJlc(B;B) = sup JJAxJIB· 
:rEB 

llxlls=1 

Before formulating our results, we introduce some defini­
tions for the convenience of readers. Let B be a real Banach space. 

Definition 1. A system {gn}n=O,l,2, ... C B is called complete 
in the space B if and only if the set of all linear combinations 
N 

2.:= angn taken for all integer N > 0 and for all real coefficients 
n=O 
an is dense in the space B. A system {gn}n=O,l,2, ... C B is called 
incomplete in the space B if and only if it is not complete in this 

space. 

Definition 2. A system {gn}n=O,l,2, ... C B is called linearly in-
oo 

dependent in the space B if and only if the equality l:'angn = 0, 
n=O 

where an are real coefficients and the convergence of the infinite 
sum is understood in the sense of the space B, is possible only in 

the case an = 0 for all numbers n. 

Remark 1. Our definition of linearly independent systems in 
a Banach space is not standard and is taken in view of its conve­
nience for our purposes. Sometimes the linear independence from 
Definition 2 is called the w-linear independence. 

Definition 3. A syste1}1 {gn}n=O,l,2, ... C B is called a basis of 
the space B if and only if for an arbitrary point g E B there exists 
a unique sequence of real coefficients an ( n = 0, 1, 2, ... ) such that 

00 • 

g = 2.:= angn in the sense of the space B. 
n=O 

In accordance with papers [7,8] we introduce the following 

Definition 4. A basis {gn}n=O,l,2, ... of a Hilbert space H zs 
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<Xl 

called the Riesz basis of this space iff the series 2: angn with real 
n==O 

<Xl 

coefficients an converges in the space H if and only if 2: a~ < oo. 
n==O 

In fact, in [7,8] this definition is given for H = L2 (a, b). 

Now, we establish our results. First, we need the following 
•' 

Theorem 1. (a) Let f( u 2)u be a real-valued continuously dif­
ferentiable function of the argument u E R and let the function 
f(r) of the argument r E [0, +oo) be continuous and satisfy the 

condition (3). Then, there exists a denumerable set { un}n==o,1,2, ... 
of solutions of the problem (1 )-(2) such that for any integer n ~ 0 
the solution un(x) has precisely n roots in the interval (0, 1); 

(b) if in addition to the assumptions from the statement (a) 
the function f(r) is nonincreasing on the half-liner~ 0, then for 
any integer n ~ 0 the solution of the problem (1 )-(2) possessing 
precisely n roots in the interval ( 0, 1) is unique up to the coeffi­
cient ±1. 

Let us consider the function e ( s) 

argument s < 0. Obviously, since 

<Xl 

<Xl 

2:(21 + 1)s-l of the 
1==1 

e(-1):::; !(2x + 1)-2
dx =} 

1 
2 

·(this estimate takes place because (2x + 1)-2 is a convex function 
of the argument x > 0), the equation 

2v'67r-1[1- 247r-2e(-1)t~e(s) = 1 

with an unknown s has a unique negative root. We denote this 
root by s0 • 
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Our main result is the following. 

Theorem 2. Under the assumptions of Theorem 1 (a) for any 
.<> < s0 and for an arbitrary system of solutions { Un }n==O,I,2, ... of 
the problem (1 )-(2) given by Theorem 1(a) the system of functions 

{knun}n==O,l,2, ... , where kn = [luniiJi~•(o,I)' is a Riesz basis ofthe. 

space Jl 5 (0, 1 ). 

2 Proof of Theorem 1 

Of course, Eq. (1) can be solved by quadratures. However, we 
believe that the qualitative analysis we use for proving Theorem 
1 is simpler. The statement (a) of Theorem 1 is generally well­
known (for example, it follows from theorem 1 of paper [1]). Let 
us prove the statement (b). 

Let us consider the following Cauchy problem 

u"=f(u2)'!1, u=u(x), xER, 

u(O) = 0, u'(O) = p 

(4) 

(5) 

where p is a real parameter. Due to our assumptions, for any 
fixed value of the parameter p the usual local existence, unique­
ness and continuous dependence theorems are valid for the prob­
lem ( 4)-(5). Further, one can easily verify that any solution u(;r) 
of the problem (1 )-(2) continuous on the segment [0, 1] and twice 
continuously differentiable in the interval (0, 1) in view of Eq. ( 1) 
has first and second derivatives on the right and on the left, re­
spectively, at the points x = 0 and x = 1. Therefore, an arbitrary 
solution of the problem ( 1 )-(2) satisfies the problem (4 )-( 5) wit.h 
some value of the parameter p. Also, if u'(O) = 0 for a solution 
u( x) of the problem ( 1 )-(2), then u( x) _ 0 by the uniqueness 
theorem. So, u'(O) =J. 0 for an arbitrary nontrivial soluti(in of 
the problem (1 )-(2). Hence, since Eq. ( 1) (or (4)) is invariant 
with respect to the multiplication of the solution u( x) by -1, we 
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get, up to the coefficient ±1, all solutions of the problem (1 )-(2) 
considering solutions of the problem (4)-(5) when the parameter 
p runs over the half-line (0, +oo) and choosing those solutions 
which become zero at the point x = 1. 

Let us take an arbitrary p > 0. One can easily verify that 
for the solution u(x) of the problem (4)-(5) the following identity 
takes place 

~ {[u'(x))2
- U(u 2 (x))} = 0 

z 

where U(z) = J f(t)dt. Hence, one has 
0 

p2 = [u'(x)) 2
- U(u2 (x)) (6) 

for all values x for which the solution u( x) exists. Since in view of 
the condition (3) the function U(r2) of the argument r is bounded 
from above and lim U(r2) = -oo, the identity (6) implies the 

T-->00 

boundedness of the functions u(x) and u'(x) in the whole interval 
of existence of the solution u(x). Also, in view of Eq. (4), the 
second derivative u"( x) is bounded, too. These facts immediately 
yield the global solvability of the problem ( 4)-(5). Indeed, let us 
suppose that there exists a> 0 such that the solution u(x) of the 
problem (4)-(5) can be continued onto the half-interval [O,a) and 
cannot be continued on an arbitrary right half-neighborhood of 
the point x = a. Then, we set 

a a 

q = J u'(x)dx and q' = p + J u"(x)dx 

0 0 

and, considering the Cauchy problem for Eq. (4) with the initial 
• data u( a) = q, u' (a) = q', immediately get that our solution 
u( x) can be continued onto a right half-neighborhood of the point 

· x = a, i. e. we arrive at the contradiction. By analogy, the 
solution u(x) of the problem (4)-(5) can be continued onto the 
whole half-line x < 0. 
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So, for any p > 0 the corresponding solution u( x) of the 
problem (4)-(5). is global (can be continued onto the whole real, 
line). In what follows, under solutions of the problem (1)-(2) 
(or (4)-(5)) we mean maximal solutions defined for all x E Rand 
satisfying boundary conditions(2) (resp., the initial condition (5)) 
and Eq. (1) (resp., Eq. (4)) for all x E R. 

We need some properties of solutions un(x) of the problem 
(1)-(2) given by Theorem 1(a). We establish them with the fol­

lowing 

Proposition. Let the hypotheses of Theorem 1(a) be valid and 
let n be an arbitrary nonnegative integer. Then, for an arbitrary 
solution un(x) of the problem (1)-(2) possessing precisely n roots 
in the interval (0, 1) the following properties take place: 

1) the roots of the solution un( x) are precisely the points n!l 
where k runs over all integers; 

2) between any two nearest roots n!l and :t~ , of the solu-

tion un(x) this function has the unique point of extremum 2{:t~)' 
I ( ) --/. O · th · t l ( '2k-l 2k+l ) d ( 2k+l +. ) Un X I zn e zn erva 2(n+l), 2(n+l) an Un · 2(n+l) X 

Un ( 2{:t~) .c._ x) for any x E R (here k = 0, ±1, ±2, ... ); .· 

3) Un (x + n~l) = -un(x) for any X E R. 

Proof of Proposition. Let us fix an arbitrary integer n 2: 0 
and consider a solution un(x) of the problem (1):.(2) poss~ssing 
precisely n roots in the interval (0, 1). As earlier, without loss 
of generality we can accept that u~(O) > 0. Then, th~ function 
Un(x) satisfies the problem (4)-(5) ta~en with p = u~(O) > 0. 
Further, since p > 0, there exists a U:eighborhood of the point 
x = 0 in which the function Un ( x) strictly inc~eases. Then, si'nce 
Un(1) < 0, there exists a point d E (0, 1) such that u~(d) = 0 
and u~(x) > 0 for any x E [O,d). Due to the uniqueness theorem, 
the autonomy of Eq. (4) and its invariance with respect to the 
changes of variables x +a~ a-;; and u(x) ~ -u(x) (where a 
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i~ an arbitrary real COnstant) 1 We get that Un ( d + X) = Un ( d - X), 

un(2d)= 0, un(2d + x) = -un(x) and un(2d + x) = -u(2d- x) 
for any X E R. Hence, d = ?(n~1)' and Proposition is proved.D ' 

Clearly, to prove the statement (b) of Theorem 1, it suf­
fices to prove that there are no an integer n 2: 0 and two real 
values Pv, Pw : · 0 < Pv < Pw of the parameter p such that 
each of the corresponding solutions v(x) and w(x) of the prob­
lem ( 4)-(5) taken respectively with p = Pv and p = Pw has pre- . 
cisely n roots in the interval (0, 1) and becomes zero at the point 
x = L Let us suppose that this is not the case, and such num­
bers n,pv,Pw exist. By Proposition, v'(x) > 0 and w'(x) > 0 

in the half-interval [ 0, 2(n~l)) and v' ( 2(n~ 1)) = w' ( 2 (n~ 1)) = 

0. Further, by the identity (6), we have 0 < v'(x1 ) < w'(x2 ) 

for any X1, x2 E ( 0, 2 (n~ 1)) such that v(x1 ) =:= w(x 2 ). Hence, 

0 < v.(x) < w(x) and, consequently, f(v 2 (x)) 2: f(w 2 (x)) for any 

x ~ (o, 2 (n~1 )) (because otherwise. there exists d E ( 0, 2(n~l)) 
such that 0 < v(x) < w(x) for x E (O,d) and v(d) = w(d), there­
fore v'(d) 2: w'(d)) .. Also, one can easily observe that there exists 

an interval (c,d) C (o, 2(n~1)) such that f(v 2 (x)) > f(w 2 (x)) 
for all x E (c, d). Indeed, this follows from the continuity of the 
function f(r 2

) for r > 0 and the fact that d:f(r2) < 0 for some 

r E '(o,f ( w2 
( 2(n~l)))) (otherwise f ( w 2 C(n~1))) · f(O) 2: 0 

in the contradiction with the maximum pr,inciple). Let us multi­
ply Eq. (ii) written for u(x) = v(x) by w(x), the same equation 
written for u(x) = w(x) by v(x), subtract these identities from 
ea:ch other and integrate the obtained equality between 0 and 

1 . 

2(n+l). Then, we get 

, I 

1

2(n+l) 

[v'(x)w(x)- v(x)w'(x)] 
0 

= 

8 

I 
2(n+l) 

j v(x)w(x)[f(v2(x))- f(w 2 (x))]dx. 
0 

Buthere the left-hand side is equal to zero and the right-hand side 
is positive. Therefore, we get the contradiction. Thus, Theorem 
1 is proved.D 

3 Proof of Theorem. 2 

Let { Un }n=O,l,2, ... be a system of solutions of the problem ( 1 )-(2) 
given by Theorem 1 (a). As in Section 2, without loss of generality 
we accept that u~(O) > 0 for all n = 0, 1, 2, .... Further, let vn(x) = 
.. uli(x) (n = 0, 1·, 2, ... ). For an arbitrary integer n 2: 0 let. us 

Un £ 2(0,1) 

consider the function wn(x) = Vn (n~1 ). Due to·Proposition, Wn 

is a continuous function positive in the interval (0, 1 ). Therefore, 

(X) 

w~(x) = L akek.(x) 
k=O 

in the space L2 (0, 1) where ak are real numbers and 
a0 = ( Wn, eo)L2 (o,l) >. 0. Hence, 

(X) 

lfn(x) = L bkek(x) 
k=O 

(7) 

where b(k+l)(n+l)-1 :::::; ak and b~ = 0 if m =/= (k + 1 )(n + 1) - 1 
for all integer k 2: 0 (here, of course, the Fourier series converges 
in the sense of the space L2 (0, n:1 ) ). Then, since by Proposition 

Vn (n~l + x) = -vn (n~I - x) and since the direct. verification 

shows that C(k+1)(n+l)-1 (n~I + x) = -e(k+l)(n+I)-1 C'~ 1 - :r) for 
any integer m and for any x E R, t.he equality (7) also holds· in 
the sense of each of the spaces L2 (';:.+;., n~I) where m = 2, n + I. 
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Hence, the equality (7) is valid in the sense of the space L2 (0, 1). 

Remark 2. We obviously have b~ · = a3 > 0 for each num­
ber n. Therefore, taking into account the facts that the matrix 

. · ( bk')n,k=0,1,2, ... is upper triangular and that all elements of its prin­
,cipal diagonal are nonzero, one may think that the system of 
functions { vn}n=0,1,2, ... is always complete (for example, in the 
space L2(0, 1) ). Here, we demonstrate with the following simple 
example that it is not so and generally the system of functions 
{ vn}n=O,l,2, ... can be incomplete: 

Example. Let H 'be a separable real Hilbert space with a 
scalarproduct (·, i)H and the corresponding norm II· IIH and let 
{en}n::::o,i,2, ... be an orthonormal basis in this space: Let 
fvn}n.~o,l,2, ... be a; sequence of elements of the space H normal-
ized toJ and such that the expansions (7) take place with en = 

en, Vn = Vn (n = 0, 1, 2, ... ),· b~ = bE. (0, 1), bri+l = --/f=bZ 
and bk' = 0 for all other valuesof n and k (here b is a constant inde­
pendent of nand k;). Let also B-:- vti:b2

• We choose bE (0, I) to 
satisfy the condition B 2 3 and want to show that th,e system of 
functions {vn}n=o,1,2, ... is incomplete inthe space H. For this aim, 
it suffices to prove that there exists c > 0 such that: II am II H 2 c for 
all m -.:J, 2, 3, .. ,; all positive integers Nm and all real coefficients 

Nm 
c: (n = 0, 1, ... , Nm), where am = 2: c:vn- e0 • Let us suppose 

· , n=O 

that this is not right and there exist sequences of positive integers 
Nm and of real numbers c:, ~herem ='1,2,3, ... and n = O,Nm, 
such that llamiiH ~ 0 as m ~ oo. Setting /m,n = (am, en)H, we 
easily derive (by multiplication the expressions for am by elements 
en in H) that 

c;;' = b-1 (1 + lm,o) and c: = Bc:_1 + b-1/m,n for n = 1, Nm. 
l 

Also, since am~ 0 in Has m .. ~ oo,.we have that Li!,n ~ +0 
n 

as in -t oo. Hence, c~ -t b-1 > 1 as m -t oo and, using the 
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\J 

induction a~d the facts that B 2 3, and bm,n I :::; b for all suffi­
ciently large numbers m ahd for all n, we get 'that lc:l 2 1 for 
all sufficiently large numbers m and for'all n ='l,N,n. But then 
llamllk 2 (c]Vm)2(1- b2

) 2 1- b2 > 0 for all sufficiently large 
numbers m, and we get the contradiction.D 

Let An = max Un (X) and Bn _:_ max Vn (X) .. In view of Pro po-
x X 

sition An= Un C(n~l)) and Bn . Vn( 2(n~l)). 
Lemma 1. For any E'> 0 there exists a number No >' 0 such 

that Bn :::; .J3 + E for all numbers n ~ N0 • · · 

Proof. By the usual comparison theorem we get that An '--+ 

+oo as n -t oo., Let us take an arbitrary 1 E (0, 1) and let 
D~ = {x E R: un(x) E [0,/An]}. Let us provethat 

A~1 min lu~(x)l-t +oo: as n -too. (8) 
· xED~ 

For this aim,· let us consider the identity ·( 6) written for' u( X) = 
un(x ). Then, we get that u~(O) . [-U(A~)]L Also, in view 
of the condition (3) An _:_ o([-U(A~)]t) ,as n ~ .oo. Further, 
for any x E R we have [u~(x)] 2 = [u~(0)] 2 + U(u~(x)). Hence, 
since in view of the condition (3) U(u~(x)) 2 U(J2 A~) for all 
x E D~ and for all sufficiently large ;numbers n·and since by (3) 

· U(A2 )+U( 2 A2 ) · ' . ' . · lim - n"Y n = +oo we get (8); . A2 . ,, . ' 
n-+oo n , ""' 

Clearly, lluniiL2 (o,I) ::;_An f()r all;numbers n.,.Also, solutions 
of Eq. (1) become concave inthe domain u > c for a constant 
c > 0. For an arbitrary number n 2 .Olet us consider the linear 

f t . l ( .) _ 2(n+l)(AnBn:.....c) ( ).+ .i_ h . E (o _1 -) unc lOll n X - A;.(l:.....2pn(n+l)) X- Pn .·. An' .w ere Pn ·.. ' 2(n+l) 
is a point such that vn(Pn) . . L (we recall that, according to 
Proposition, the. function: vn(x) monotonously increases in the 

interval ( 0, 2 (n~l)) ). Th~s fun~ti?n ~oincides ·with· the function 

vn(x) at the pointsx = ]J~ and x =2(n~l) and'l_n(x):::; vn(x) for 

all x E (Pn, 2(!+1)) in view ofthe concavity of the. function vn(x) 
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in the interval X E (Pn, 2(n~l)). Also, 2i..~Pn = o'by (8). Let us 

take an arbitrary E > 0. Then, in view of the above arguments 
and Proposition, we get 

I 
2(n+l) 

1 = JlvnllL(o,t) = 2(n + 1) J v~(x)dx ~ 
~· 0 

I 

2('n+T}Jn+ I B2 
~ 2(n + 1) 1~(x)dx = f + Dn 

Pn 

where Dn ---+ 0 as n ---+ oo. Therefore, 0 < Bn ~ .J3 + E for all 
sufficiently large numbers n. D 

Lemma 2. For any E > 0 there exists a number N 0 > 0 such 
that for all numbers n ~ N 0 and for all positive integers 1 one has 

Jb(21+1)(n+l)-tl ~ ;({}:tf) and b~l(n+t)-t = 0 (we remind that in the 
expansions (7) b~ = 0 if m ~ 0 and m =/= (k + 1)(n + 1) -

1 for all k = 0, 1, 2, .... ) 
Proof. We have b(2l+t)(n+l)-l = ( Vn, e(21+l)(n+l)-t)L2 (o,t)· Let 

us consider the segment [0, n~1 ) (here n~t is the minimal pos­
itive root of the function vn( x )). On this segment the func­
tion e(21+t)(n+t)-t(x) has 21 + 2 roots Xk = ( 21+-~' . _, where k = 

0, 21 + 1. Consider the following integrals: h = 
Xk 

J · vn(x)e(2I+t)(n+l)-t(x)dx where k = 1, 21 + 1. Then, due to 
Xk-1 

the properties of the function Vn ( x) established in Proposition, 
we have JI1+tl > Jid = lh+2l > ... > lit!= II21+tl and signh+t = 
-signh = -signh+2 = ... = ( -1)1signlt = ( -1)1signJ21+t· Hence, 
due to Proposition Jb(2l+t)(n+t)-tl ~ (n + 1)Jh+tl· 
. Let us take an arbitrary E > 0. Then, for all sufficiently 
large numbers n we have by Lemma 1 

Jb(21+t)(n+l)-tl ~ 

12 

1+1 
(:il+l)(n+l) 

·( r,; E) · J . . 2V6 + E < v6+- (n+1) sm[7r(21+1)(n+1)x]dx= (.l ) 7 2 cJT 2 + 1 
I 

( 21 fTY[Ti+T) 

Finally, we remark that similar arguments show that for 
any integer n 2: 0 and I= 1, 2, 3, ... one has b~l(n+l)- 1 = 0 because 
according to Proposition the function Vn ( x) is even with respect 
to the point x = 2 (n~l) and, for each 1 = 1, 2,3, ... ,the function 
e21(n+1)_1(x) is odd with respect to thispoint.D . . 

For an arbitrary s ~ 0 and a nonnegative integer 'n .we ob­
viously have JJenJI~s(o,1 ) = 7r

25(n +1)25 : Further, the sequence 
of real numbers b~ = ( vn, en)L2 (o,1) where n ~- 0, 1, 2, ... is ob­
viously bounded, hence, by Lemma 2 and since the functions 
en(x ), n = 0, 1, 2, ... ,are. pairwise orthogo!lalinthe space .Hs(o, 1) 
where s ~ 0 is arbitrary, for any s ~ 0 there exist positive con­
stants C1 and C2such that 

00 

JJvnJI~s(0,1) -~ 7r
25 (n + 1) 25 (b~) 2 + C1 L(2/ + 1)25- 2(ri + 1)25 ~ 

A /=1 

~ C2(n + 1)25 

for all sufficiently larg~ numbers n. Therefore, forany 8 < 0_ there 
exists c3 > 0 such that 

JJvnJI~·(0,1) ~ Ci(n +1)25 .· UJ) 

for all n = 0, 1, 2, . . . . . . 
Let us estimate the coefficients- b~ in the expansions ( 7). 

In view of Lemma 2, we have for sufficiently. small c.>· 0 and 
sufficiently large numbers n 

I 

b:" {, _ ~ ",~:~: ~)' r __:[I_ (24+ <)1r-
2
<(-1 )Jl ( 1 0) 
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where ~( -1) :=;; ~ as in Section 1. The above arguments including 
the estimate (10) imply, in particular, the existence of constants 
0 < bt < b2 such that 

bt ::; b~ ::; b2' n = 0, 1, 2, ... (11) 

Due to the estimate ( 11), we have for any s :=;; 0 

llvnll~·(o,t) ~ 7r 2s(n+1)2s(b~) 2 ~ br7r25(n+1)2S, n = 0, 1,2, ... 
(12) 

We denote v~ = (b~t 1 (n + 1)-s7r-5Vn. Then, in view of the 
expansions ( 7) and by Lemma 2 

00 

s ~ bn,s s 
vn = L k ekl n = 0, 1, 2,_ ... , (13) 

k=O 

in the spaces L2 (0, 1) and Ht(O, 1) (t :=;; 0) where 

e~ = 7r-
5 (n + 1)-sen (n = 0, 1, 2, ... ), 

b(~;+1)(n+1)-1 = (b:)-
1
(2! + 1Yb(2l+l)(n+l)-ll 

b;:t=O if m#(2l+1)(n+1)-1 forall 

l = 0, 1, 2, ... and b~·s = 1. (14) 

In view of the estimates (9) and (12), for any s :S 0 there exist 
positive constants C' and C" such that 

C' :S llv~IIH•(o,1) ~ C", n = 0,1,2,... (15) 

Due to Lemma 2, (10) and (14), for an arbitrary :s :=;; 0 and 
a sufficiently small t > 0 there exists a number N1 = N1(s, t) > 0 
such that for all n ~ N1 

lb('~;+I)(n+l)-11 :S 

::; [(1- 2471"- 2~( -1) t t + t]2v'67r-1 (21 + 1y-t, l = 1, 2, 3, ... 

/ 
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Also, if s < s0 , then in view of the definition of the number s0 

there exist to = to( s) > 0 and li = 8( s) > 0 such that 

00 

_L)(l- 2471"- 2~( -1))-t + t0 ]2v'67r-1(2l + l)s-1 = 
1=1 

= [(1- 2471"- 2~(-1))-t + t0]2v'67r- 1 ~(s) ~ 1-8. 

Therefore, if s < s0 , then 

00 

L sup lb(~;+I)(n+I)- 1 1 :S 1 - 8. 
l=1 n?N1 (s,•o) 

(16) 

Let us fix an arbitrary s < s0 and let L be the closure in the 
space H 5 (0, 1) of the linear span of the functions {e~}n?Nl(s,•o) 
equipped with the topology of the space H 5 (0, 1). Let us consider 
the following linear operators acting in the space L: 

A is the identity operator; 
G1 is the operator which for any integer n ~ N1 ( s, to) trans­
forms the function e~ in the function b(~;+I)(n+I)- 1 e(2l+I)(n+l)-1 

(l = 1,2,3, ... ); 
00 

G = l:G1; 
l=l 

A=A+G 
(we mean that the operators G1 and G are extended onto all fi­
nite linear combinations. of functions e~, n 2: N1 (s, to); too). 
Clearly, IIGd l.c(L;L) :S sup lb(~;+I)(n+I)-J Therefore, due to 

n?Nl(s,Eo) 
the estimate (16) 

00 

IIGII.c(L;L) ~ L IIGdlqL;L) ~1- 8. (17) 
1=1 

The inequality (17) shows that A is a bounded linear operator 
from L into L. We denote N = N1 (s, to) and remark that the 
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operator A transforms any e~, where n ~ N, into v~. Also, due 
to (17) this operator possesses a bounded inverse one A -l = A + 
00 2:( -1YGr (for the proof of this fact, see, for example, [10]). 

r=l 
The following Lemmas 3 and 4 are in fact proved in [8,9]. 

However, since proofs of these statements are short and simple, 
we present them for the convenience of readers. 

.,; 

Lemma 3. For our s < s0 the system of functions 
{v~}n=o,1 , 2 , ... is linearly independent in the space H 5 (0, 1). 

Proof. Let us suppose that the statement of this lemma is 
invalid and there exist real coefficients an not all equal to zero 
and such that 

00 

LanV~ = 0 (18) 
n=O 

m the space H 5 (0, 1). Let l ~ 0 be a number such that ao = 
= az_1 = 0 and az =f. 0. Formulas (13) and (14) show that 

( v~, e:n)H•(o,l) = 0 for arbitrary numbers m < n. Using this fact 
and multiplying the equality (18) bye[ in the space H 5 (0, 1), we 

bl s 0 . h d' . get az z' = , 1. e. t e contra IctiOn.D 

Lemma 4. For our s < s0 { v~}n~N is a Riesz basis of the 
space L. 

Proof. Let us take an arbitrary v E L and let u = A -lv E L. 
00 

Then, u = 2: cne~ in the space L for some real coefficients Cn· 
n=N 

00 00 . 

We have v = Au= 2: cnAe~ = 2: cnv~ where the infinite sums 
n=N n=N 

converge again in the space L. Therefore, in view of the linear 
independence of the system of functions { v~}n~N in the space L 
given by Lemma 3, this system of functions is a basis of the space 

00 

L. Also, obviously, the infinite sum 2: Cne~ with real coefficients 
n=N 

16 

00 

Cn converges in the space L if and only if I: c~ < oo. Hence, first, 
n=N 

00 00 

if I: c~ < oo, then the infinite sum I: cnv~ converges in the 
n=N n=N 

space H 5 (0, 1) and, second, if the latter series converges in the in-
oo 00 00 

dicated space, then A- 1 I: Cn~~ = L cnA- 1 v~ = L cne~ E.L, 
n=N n=N n=N 

00 

1. e. L c~ < oo. Thus, Lemma 4 is proved.D 
n=N 

Lemma 5. For our s < s0 the system of functions 
{ v~}n=O,I,2, ... is a Riesz basis of the space H 5 (0, 1). 

Proof. Let again N = N 1 (s, to) and P be the orthogonal 
projector in the space H5 (0, 1) onto the subspace LN spanned 
over the functions eg, ... , e]v_1 . By (13) and (14) 

00 

P s s ~ bn,s s vn = vn - L..,; k vk, n = O,N -1 (19) 
k=N 

in the space H 5 (0, 1). Since dimLN =Nand since in view of the 
formulas (13) and (14) the functions Pv~, ... , Pv'N_ 1 are linearly 
independent in the space H 5 (0, 1 ), these functions form a basis 
of the space LN. Therefore, in view of Lemma 4, the system.of 
functions { Pv~} n=O,N-1 u·{ v~}n~N is a basis of the space H 5 (0, 1 ). 

Let us take an arbitrary u E H 5 (0, 1). Then, due to the 
above arguments, there exists a unique sequence { cn}n=O,l,;, ... of 
real numbers such that · · 

N-1 oo 

u = L CnPv~ + L Cn V~ (20) 
n=O n=N 

in the space H 5 (0, 1). Substituting the expansions (19) into (20), 
we get 

N-1 oo ( N-1 ) 

U = ~ CnV~ + ~ Cn - ~ Cmb:•s V~ 
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in the space H 5 (0, 1). Hence, in view of Lemma 3, the system of 
functions { v~}n=o, 1 , 2 , ... is a basis of the space Hs(o, 1). Finally, 
the fact that this system of functions is a Riesz basis of the above 
space follows from Lemma 4. Thus, Lemma 5 is provcd.D 

Now Theorem 2 follows from Lemma 5 and the inequalities 

(15).0 
.,• 

The author is thankful to Mrs. T. Dumbrajs for editing the 

text. 
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