


1 Introduction. Definitions. Results

. The boundary-value problem we consider is the following
u' = f(u2)u’ u = u(.’D), T € (0’ 1)’ (1)
u(0) = u(l) = 0. : - (2)

Here all quantities are real, f is a given sufficiently smooth func-
tion and u(z) is an unknown function of the argument z € [0,1].
We consider solutions of the problem' (1)-(2) continuous on the
segment [0,1] and twice continuously differentiable in the interval
(0,1). The function u(z) = 0 obviously satisfies the problem ( )-
(2) and we look for nontrivial solutions of this problem. Among
others, we assume that

f(0) >0 and llllm f(u?) = —o0. (3)
It is known (see, for example,' [1]) that the condition (3) pro-
vides the existence of a denumerable set {un }n=0,12,.. of solutions
of the problem (1)-(2) where for each integer n > 0 the corre-
sponding solution u,(z) has precisely n roots in the interval (0,1).
In the present paper, we are interested in the natural question,
which is originated from the similarity in the qualitative behav-
ior of functions from the system {u,}n=0,12,. and the functions
en(z) = V2sinw(n+1)z (n=0,1,2,...) (the latter functions ob-
viously form bases in standard spaces like Ly(0, 1)), if the system
of functions {uy, }n=0,1,2,... 1s a basis of a functional space containing

"arbitrary functions”. : '

The author knows several papers devoted to investigations
of the completeness and related properties for systems of solu-
tions (or eigenfunctions) of nonlinear dlfferentlal equations. In
[2] results in this direction are announced (w1thout ‘proofs) for
a nonlinear problem which arises from a linear one under small
nonlinear perturbations. In our paper [3], the property of be-
ing a basis in the space L, for the system of eigenfunctions of a
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nonlinear Sturm-Liouville-type (or Schrédinger-type) eigenvalue
problem (considered in a finite interval) is proved. In fact, this
paper contains some mistakes which are corrected in the note [4].
In [5] we present an independent and shorter proof of the above-
indicated result from [3,4]. Also, in [6] the results of paper [3]
are reestablished without proofs. Our approach in [5] is based
on a theorem of N.K. Bary [7-9] stating that a system of func-
tions from the space L; minimal (or linearly independent) and
quadratically close to a Riesz bas1s is a Riesz basis. In [3] we
exploit other methods the main idea of which consists in a re-
duction of the nonlinear eigenvalue problem under consideration
to a linear Sturm-Liouville eigenvalue problem with a potential
depending on the spectral parameter.

Let us introduce some notation. Let Lj(a,b), where a < b,
be the usual Lebesque space consisting of real-valued functions
of the argument z € (a,b), square 1ntegrable over the inter-

val (a,b), with the scalar product (g h)Lz(a by = fg (z)dz

/ 1
and the norm ||g||r,(ep) = (g,g)zz(a,b). By A we denote the

closure in the space Ls(a,b) of the operator —% with the do-
main C§°(a,b) which consists of real-valued infinitely differen-
~ tiable functions of the argument z € [a,b] becoming zero at the
ends of this segment. Then, it is well-known that A is a self-

-adjoint positive operator in the space Lq(a,b) which-also has
~a bounded inverse operator A~!. For an arbitrary s < 0, let
H?(a,b) be the completion of the space'Lg(a, b) equipped with
" the scalar product (9, h)rsap) = (Azg, A%h)Lz(a 5) and the norm

, “9||H=(a b = (g, g)H «(ap)- Lhen, it is clear that H*(a,b) is a Hilbert

space for each s < 0 and that H(a,b) = Ly(a,b). Also, for a Ba-
nach space B with a norm || ||, by £(B; B) we denote the space
of linear bounded operators actlng from B into B, with the norm

I|Allcemimy = Slelg | Az||-
l=llp =1
Before formulating our results, we introduce some defini-
tions for the convenience of readers. Let B be a real Banach space.

Déﬁnition 1. A system {gn}n=01,2,.. C B is called complete
in the space B if and only if the set of all linear combinations

N

S angn taken for all integer N > 0 and for all real coefficients
n=0

a, is dense in the space B. A system {gn}n=01,2,.. C B is called

incomplete in the space B if and only if it is not complete in this
space.

Definition 2. A system {gn}n_o 1.2,.. C B is called linearly in-

dependent in the space B if and only if the equality Z angn =0,
=0

where a, are real coefficients and the convergence of the infinite
sum is understood in the sense of the space B, is possible only in
the case a, = 0 for all numbers n.

Remark 1. Our definition of linearly independent systems in
a Banach space is not standard and is taken in view of its conve-
nience for our purposes. Sometimes the linear independence from
Definition 2 is called the w-linear independence.

Definition 3. A system {gn}n=01,2,. C B is called a basis of
the space B if and only if for an arbztmry poznt g € B there exists
a umque sequence of real coefficients a, (n=0,1,2,.. .) such that

g= Z angn in the sense of the space B.
n=0

In accordance with papers [7,8] we introduce the following

Definition 4. A basis {gn}n=01,,. of a Hilbert space H is



called the Riesz basis of this space iff the sertes ) angn with real

n=0

- - ke V
coefficients a, converges in the space H if and only if 5 a? < oo.
‘n,:O

In fact, in [7,8] this definition is given for H = Ly(a, b).

Now, we establish our results. First, we need the following

o

Theorem 1. (a) Let f(u?)u be a real-valued continuously dif-
ferentiable function of the argument uw € R and let the function
f(r) of the argument r € [0,+00) be continuous and satisfy the
condition (3). Then, there exists a denumerable set {un}n=01.2,..
of solutions of the problem (1)-(2) such that for any integer n > 0
the solution u,(z) has precisely n roots in the interval (0,1);

(b) if in addition to the assumptions from the statement (a)
the function f(r) is nonincreasing on the half-line r > 0, then for
any integer n > 0 the solution of the problem (1)-(2) possessing
precisely n roots in the interval (0,1) is unique up to the coeffi-
cient £1.
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Let us consider the function £(s) =

(20 4+ 1)*7! of the
i=

=1

~argument s < 0. Obviously, since
/ 2z + 1) %dz = 1
4

(this estimate takes place because (2z +1)~2 is a convex function
of the argument z > 0), the equation

2v6r 1 — 247 ~2¢(—1)]"3¢(s) = 1

with an unknown s has a unique negative root. We denote this
root by sq.

e

Our main result is the following.

Theorem 2. Under the assumptions of Theorem 1(a) for any

s < sg and for an arbitrary system of solutions {tun}n=01.2.. of

the problem (1)-(2) given by Theorem 1(a) the system of funclions
{knttnfn=01,,., where ky, = “u"“I—Jls(o,l)) ts a Riesz basis of the

space H*(0,1).

2 Proof of Theorem 1

Of course, Eq. (1) can be solved by quadratures. However, we
believe that the qualitative analysis we use for proving Theorem
1 is simpler. The statement (a) of Theorem 1 is generally well-
known (for example, it follows from theorem 1 of paper {1}). Let
us prove the statement (b).

Let us consider the following Cauchy problem

= 1), w=u(z), z€R, (4)

u(0) =0, w'(0)=p (5)
where p is a real parameter. Due to our assumptions, for any
fixed value of the parameter p the usual local existence, unique-
ness and continuous dependence theorems are valid for the prob-
lem (4)-(5). Further, one can easily verify that any solution u(x)
of the problem (1)-(2) continuous on the segment [0, 1} and twice
continuously differentiablé in the interval (0,1).in view of Eq. (1)
has first and second derivatives on the right and on the left, re-
spectively, at the points £ = 0 and = = 1. Therefore, an arbitrary
solution of the problem (1)-(2) satisfies the problem (4)-(5) with
some value of the parameter p. Also, if ©'(0) = 0 for a solution
u(z) of the problem (1)-(2), then u(z) = 0 by the uniquencss
theorem. So, u/(0) # 0 for an arbitrary nontrivial solution of
the problem (1)-(2). Hence, since' Eq. (1) (or (4)) is invariant
with respect to the multiplication of the solution u(x) by —1, we
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get, up to the coeflicient £1, all solutions of the problem (1)-(2)
considering solutions of the problem (4)-(5) when the parameter
p runs over the half-line (0,4+00) and choosing those solutions
which become zero at the point z = 1.

Let us take an arbitrary p > 0. One can ea51ly verify that

for the solution u(z) of the problem (4)-(5) the following identity
takes place

@) - U (=) = 0

where U(z) = [ f(t)dt. Hence, one has

0

' = [ (2)) - U(x*(2)) (6)

for all values z for which the solution u(z) exists. Since in view of
the condition (3) the function U(r?) of the argument r is bounded
from above and lim U(r?) = —oo, the identity (6) implies the

r—00

boundedness of the functions u(z) and u/(z) in the whole interval

of existence of the solution u(z). Also, in view of Eq. (4), the
“second derivative u”(z) is bounded, too. These facts immediately

yield the global solvability of the problem (4)-(5). Indeed, let us
suppose that there exists @ > 0 such that the solution u(z) of the
- problem (4)-(5) can be continued onto the half-interval [0,a) and
cannot be continued on an arbitrary right half-neighborhood of
. the point £ = a. Then, we set

a a

q= /u'(:r:)dx and q':p+/u" z)dz

0 0

and, considering the Cauchy problem for Eq. (4) with the initial
+data u(a) = ¢, u'(a) = ¢', immediately get that our solution
u(z) can be continued onto a right half-neighborhood of the point
‘T = a, i. e. we arrive at the contradiction. By analogy, the

solution u(z) of the problem (4)-(5) can be continued onto the
wholg half-line z < 0.

So, for any p > 0 the corresponding solution u(z) of the.
problem (4)-(5).1s global (can be continued onto the whole real
line). In what follows, under solutions of the problem (1)- (2)
(or (4)-(5)) we mean maximal solutions defined for all z € R and
satisfying boundary conditions (2) (resp., the initial condition (5))
and Eq. (1) (resp., Eq. (4)) for all z € R. o o

We need some properties of solutions u,(z) of the p‘robleiri
(1)-(2) given by Theorem 1(a). We establish them with the fol-

lowing

Proposﬂ;lon Let the hypotheses of Theorem l(a) be 'ualzd and
let n be an arbitrary nonnegative integer. Then, for an arbitrary
solution u,(z) of the problem (1)-(2) possessing precisely n roots
in the interval (0,1) the following properties take place:

1) the roots of the solution un(x) are precisely the points —~ +1
where k runs over all integers;

2) between any two nearest roots —+f and f{-_l of theziollu—

tion u,(z) ‘this functzon has the unique point of extremum -2(—71}3,

u' (z) # 0 in the mter'qal (2—%2—4_}5, 22(’::_1)) and un (2%:3) + :c) =

Up (E'—l— - :z) for any = € R (here k= 0,41,£2, r);

2(n+1)
) un (:E—I— n+l) = —un(z) for any = € R.

Proof of Prop051t10n Let us fix an arbltrary 1nteger n > 0
and consider a solution u,(z) of the problem (1)-(2) possessing
precisely n roots in the interval (0 1). As earlier, without loss
of generality we can accept that u/(0) > 0. Then, the function
un () satisfies the problem (4)-(5) taken with p = un(O) > 0.
Further, since p > 0, there exists a nelghborhood of the pomt
z = 0 in which the function un(:z:) strlctly increases. Then, since
un(1) = 0, there exists a point d € (0,1) such that ul(d) =0
and u/ (:c) > 0 for any z € [0,d). Due to the uniqueness theorem,
the autonomy of Eq. (4) and its invariance with respect to the
changes of variables z +a — a—T and u(z) — —u(z) (where a

7



is an arbitrary real constant), we get that u,(d+ z) = u,(d — z),
un(2d) = 0, un(2d + z) = —u,(z) and u,(2d + =) = —u(2d — z)
for any z € R. Hence, d = é_(51+_1)’ and ‘Proposition is proved.O ‘

Clearly, to prove the statement (b) of Theorem 1, it suf-
fices to prove that there are no an integer n > 0 and two real
values p,,py © 0 < py < py of the parameter p such that
each of the corresponding solutions v(z) and w(z) of the prob-

lem (4)-(5) taken respectively with p = p, and p = p,, has pre- .

cisely n roots in the interval (0,1) and becomes zero at the point
z = 1. Let us suppose that this is not the case, and such num-
bers n,pu,pw exist. By Proposition, v'(z) > 0 and w'(z) > 0

“in ‘the half-interval [0, 2—(:?1)) and v’ (2(711_“)) = (ﬁ) =
0. Further, by the identity (6), we have 0 < v'(z1) < w'(z3)
for any 1, T2 € (0, m) :s’uch th:a,t v(zq) :w(xz) Hence,
0 < vz )< w(z) and, consequently, f(v*(z)) > f(w?(z)) for any
T E (0, ) (because otherw1se there exists d € (0, At

such that 0 < v(z) < w(z) for z € (O,d) and v(d) = w(d), there-
fore v'(d) > w'(d)).- Also, one can easily observe that there exists
an interval (c,d) C (0, 2(n+1)) such that f(v?(z)) > f(w?(z))
for all z € (¢,d). Indeed, this follows from the contlnulty of the
function f(r?) for r > 0 and the fact that & f(r?) < 0 for some

(0 f( (2( +1)))) (otherwiSef( (2(n1+1)))' = f(0) >0

in the contradiction with the maximum pr1nc1ple) Let us multi-
ply Eq. (2) written for u(z) = v(z) by w(z), the same equation
written for u(z) = w(z) by v( ), subtract these identities from
7 each other and integrate the obtained equality between 0 and
m “Then, we get

' (@)w(@) - (@)

1
2{n+1

= [ @@ e) - S @)ds.

0 , o R
But here the left-hand side is equal to zero and the right-hand side
is positive. Thercfore, we get the contradiction. Thus, Theorem
1 is proved.O

3 Proof of Theorem. 2

Let {un}n=01,2,. be a system of solutions of the problem (1)-(2)
given by Theorem 1(a). Asin Section 2, without loss of gencrality
we accept that u’ (0) > 0 foralln'= 0,1,2, ... Further, let v,(z) =
un(z) (n =0,1,2,...). For an arbitrary integer n > 0 let us

lunllL,(o,)

consider the function wy(z) = v, (n%)

is a continuous function positive in the interval (0,1). Therefore,

= ajex(z)

k=0

Due to ‘Proposition, w,

in the space L3(0,1) where a}} are real numbers and
ag = (wn, €0)r,(0,1) > 0. Hence, -

)= Her(s) (7
k=0 , :

where bf 1)1y = @k and 87 = 0 if m # (k + D +1) -1
for all integer k > 0 (here, of course, the Fourier series converges
in the sense of the space L, (0, +1)) Then, since by Proposition

(n+1 +x) = —v, (m —x) and since the direct verification
shows that C(k+1)(n+1)—-1 (n+1 -+ LII) :,_C(kfi—l)(n+l)f1 (;::i- — ’l) rO[-
any integer m and for any z € R, the equality (7) also holds’in

the sense of each of the spaces L, (’:+11, n+1) where m = 2,n + 1.



- pendent of n and k). Let also B =

allm=1,2,3,.

’ Hence’,f’the\equality (7) is valid in the sense of the space L,(0,1).

Remark 2. We obviously have 57 = a2 > 0 for each num-
ber n.- Therefore, taking into account the facts that the matrix
- (b)nk=0,12,... is upper triangular and that all elements of its prin-
_ cipal ‘diagonal are nonzero, one may think that the system of
functions {vn}n=0,1,2,.. is always complete (for example, in the
space L3(0,1)). Here, we demonstrate with the following simple
example that it is:not so and generally the system of functions
{vn}n_o 12, can be 1ncomplete &

Example Let H be a separable real Hilbert space with a
scalar’ product (*,*)u and the corresponding norm || - ||z and let
'{Gn}n-o 1,2,... bean orthonormal basis in this space. Let
'{vn}nzoyl,g,_“ be asequence of elements of the space H normal-

ized to:1 and such that the expansions (7) take place with e, =
&, U =0n (n=0,1,2,.0),

b, =b€(0,1), Bliy=—-V1-8
and b} = 0 for all other values of n and k (here bis a constant inde-
\/W We choose b € (0,1) to

satisfy the condition B > 3 and want to ‘show that the system of
functions {T, }n=o1.2,.. is 1ncomplete in the space H. For this aim,
it suffices to prove that there exists ¢ > 0 such that. lam|ln > c for

.«;y-all positive integers N,, and all real coefficients
Lo Nm
i (n = 0, 1,.. N ), where A, = Z "D, — €. Let us suppose

~ that thls 1s not rlght and there ex1st sequences of pos1t1ve integers
N, and of real numbers ¢, where m = 1,2,3,... and n = 0 0, N,
~;such that [|am||ly = 0 as m = oco. Settmg Ymn = (Qm, €)1, We
easily derive (by multlpllcatlon the expressmns for a, by elements

5 n1nH)that
‘Co =b (1+'ymo) and c' = B 1-{—b Y for n=1, 1, N,.
,Also since am—>01nHasm—>oo we have thatZ’ymn—>+0

as'm — oco. Hence, ¢ — b1 > 1l as m — ooand using the

10
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induction and the facts that B >3 and l')’mnl < b for all sufﬁ—
ciently large numbers m and for all n, we get that || > 1 for
all sufficiently large numbers m and for all n =1,'N,,,. But then
lamll}r > (cf,)%(1 —b%) > 11— > 0 for all sufﬁc1ently large
numbers m, and we get the contradlctlon O

Let A, = max un(:c) and B, :'"ma_x vn(z). In view of‘Propo—'

sition A, = u, (ﬁ) and B, =vy (Z(nl-i-l))

Lemma 1. For any ¢ >0 there ezists a number Ny >'0 such
that B, < /3 + ¢ for all numbers n > Ny.~

Proof. By the usual comparison theorem we get that A —
400 as n — oco., Let us take an arbitrary v € (0,1) and let
Di={z€eR:u ( ) € [0,7An]} Let us prove, that :

| A rgln Iu (z )| —»-}-oo as n—»oo (8
For this aim, let us con31der the 1dent1ty (6) written for’ u(:c) =
un(z). Then, we get that ul(0) = [— U(Az)]2 ‘Also, in view
of the condition (3) A, = o([-U(A2)]7) as'n — oo. Further,
for any z € R we have [ul(z)]? = [u n(O)]2 + U(u (:1:)) ‘Hence,
since in view of the condition (3) U(u (x)) > Uy 2A2) for all
z € D7 and for all sufﬁc1ently large numbers n and s1nce by (3)

U(A?‘)+U(72A2) = +oo we get (8)

Clearly, ||unl|L2(0 1y < A for all numbers n. Also solutlons
of Eq. (1) become" concave in the, domaln u > c for a constant
¢ >'0. For an arbitrary number'n > 0 let. us cons1der the l1near

2(n+1)(AnBn=c)
irenlle e ol

“An(1=2pn(n+1))
is a point such that v,(p,) = (we recall that accordmg to
Proposition, the funct1on vn(:z:) monotonously increases:in: the

lim

function I,(z) =

interval (0, 2(n+1) ) Thls functlon c01nc1des w1th the function

2(_4-1l and’ l (:1:) < vn(:c) for

all z € (pn, 2(n+1)) in v1ewpo}f:ﬂthe co‘ncay1ty of the funct1on v’n‘(:c)

vn(z) at the pomts z = pn and z, f'

S



in the interval z € (pn, erl-—l-—l_)) Also, 711er.1° pn = 0 by (8). Let us
take an arbitrary € > 0. Then, in view of the above arguments
and Proposition, we get

1
2(n+1

1= o2, 00 = 2(n + 1) / v2(z)dz >
" 0
2 n1+1 32
> 2n +1) / P )dm—?-i-(sn
Pn E |

where §,, — 0 as n — oo. Therefore, 0 < B, < V3 + € for all
sufficiently large numbers n.0

Lemma 2. For any € > 0 there exists a number No > 0 such
that for all numbers n > Ny and for all positive integers  one has
’ |b(2,+1)(n+1) < :(‘2/16:1‘) and b;,.q), =0 (we remind that in the
- expansions (7) 0, =0 if m>0 and m# (k+1)(n+1)—
1 for all k=0,1,2,....) :
" Proof. We have b?21+i)(n+l) 1= (’Un,6(21_*_1)("_*_1),_1)[,2(0,1). Let
.us consider the segment [0, +1] (here —+—1 is the minimal pos-
itive root of the function wv,(z)). On this segment the func-
tion e(ai41y(n+1)-1() has 21 + 2 roots zx = m where k£ =
0,20 + 1. Consider the following integrals: I =

, 75Un($)€(21+1)(n+1)—1($)d$ where k = 1,21+ 1.. Then, due to

L Tkl

~ the properties of the function vn(z) established in Proposition,

we have |I141] > || = |Li42] > ... > || = |121+1| and signlj4; =

—signl; = —signljyg = ... = (—1)'signl; = (- 1)!signlz4q. Hence,

* . due to Proposition |b(2l+l)(n+l) A < (n+ Dl

. Let us take an arbitrary € > 0. Then, for all sufficiently
" large numbers n we have by Lemma 1

Ny )1l <

12

< (VB+3) (1) sinfr(2+1)(n+ Delde = o

t
CIF(n+1)

Finally, we remark that similar arguments show ‘that for
any integer n > 0 and [ = 1,2,3, ... one has boy (nt1)-1 = = 0 because
according to Proposrtlon the functlon vn(m) is even with'respect
to the point z = m and, for cach [ = 1,2,3,.
eai(n+1)-1(z) 1s odd with respect to thls pomt D

For an arbitrary s < 0 and a nonnegatlve mteger n we ob—
viously have ||e,||%. (o1) = = 7%(n + 1)25: Further the sequence
of real numbers b" = (vn,en)L2(0 1y where n =0,1,2,...'is ob-
viously bounded, hence, by Lemma 2 ‘and since the functlons
en(z), n=0,1,2,..., arepairwise orthogonal in the space H*(0,1)
where s < 0 is arbltrary, for any s < 0 there exxst posrtlve con-
stants C) and Cj such that

.-, the "fu’nrction-

[onllFreq o ° <a¥(n+ 1)25(b") +C S@+1E 2 1)* <
\ =1 - ek
< Cy(n +1)*

for all sufficiently large numbers n. Therefore, for any s < 0 there
exists C3 > 0 such that : :

ol 3 01)_cs<n+1>v W

for all n =0,1,2,.

Let us estlmate the coefficiants b" in the expanslons (7).
In view of Lemma 2, we have for sufﬁuently small € > 0 d]ld
sufficiently large numbers n ‘ o

i {1 % %‘17} R SR

=1

13



where {(—1) < 1 as in Section 1. The above arguments including
the estimate (10) imply, in particular, the existence of constants
0 < by < by such that ‘

b] Sb;sz, n:0,1,2,... (11)
Due to the estimate (11), we have for any s <0

loallireoa) 2 7 (n+1)*(87)* 2 bir™(n+1)*,  n=0,1,2,...
(12)

We denote v: = (b7)"}(n + 1)~*7~%v,. Then, in view of the

expansions (7) and by Lemma 2 :

3c=n
I
M 8

e, n=0,1,2,.., (13)

x~
I

, 0
in the spaces L,(0,1) and H*(0,1) (¢ < 0) where
e =7°(n+1)""es (n=0,1,2,...),
Bty 1) mt 1)1 = (bZ) (204 1)°8] (2041)(n4+1)=1>
=0 if m#(2l+1)(n+1)—1 forall
[=0,1,2,... and b° =1 (14)

In view of the estimates (9) and (12), for any s < 0 there exist
positive constants C’ and C” such that

C' < |willasny £ C", n=0,1,2,.. (15)

Due to Lemma 2, (10) and (14), for an arbitrary 5 < 0 and
: a{\sufﬁciently small € > 0 there exists a number N; = N;(s,€) > 0
such that for alln > N;

|bGatyne)-1] <

éx [(1_ — 247r-2§(—1))—% + €2vBr(20 + 1)1, 1= 1,2,3,...

14

Also, if s < sg, then in view of the definition of the number sg
there exist g = €o(s) > 0 and & = é(s) > 0 such that

S0 - 24772E(—1))7F + eo]2v6r (20 + 1)1 =
=1

= [(1 = 247726(=1))"% + eol2v/Br1e(s) < 1 — 6.
Therefore, if s < s, then

o0

sup ]b |<1-6. (16)

n> Ny (5,60 (21+1)(n+1)-1
=1 "=

Let us fix an arbitrary s < sp and let L be the closure in the
space H°(0,1) of the linear span of the functions {e2}n5n, (se0)
equipped with the topology of the space H*(0,1). Let us consider
the following linear operators acting in the space L:

A is the identity operator;
G, is the operator which for any integer n > Ni(s,€) trans-

forms the function el in the function b?27+1)(n+1) 1‘3(2I+1k)(n+1)—1

(1=1,2,3,.);
G = ZG,,
A=h+G

(we mean that the operators G and G are extended onto all fi-
nite linear combinations of functions e, n > Ni(s,€); too).
Clearly, ||Gil|z;Ly £ sup |b Therefore, due to

2l1)(n 1)1l
n>N; (5:60) (21+1)(n+1)-

the estimate (16)

”G”E(LL)<Z||GI”L(LL)<1_5 . an

=1

The inequality (17) shows that A is a bou‘nd)kedi Iiﬁéar operator
from L into L. We denote N = Ni(s,¢€) and remark that the
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operator A transforms any e?, where n > N, into v}. Also, due
to (17) this operator possesses a bounded inverse one A T=A+

i(-—l)’G’ (for the proof of this fact, see, for example, [10]).
r=1

The following Lemmas 3 and 4 are in fact proved in [8,9].
However, since proofs of these statements are short and simple,
we present them for the convenience of readers.

Lemma 3. For our s < sg the system of functions
{vEtn=0,1,2,... 15 linearly independent in the space H*(0,1). '

Proof. Let us suppose that the statement of this lemma is
invalid and there exist real coefficients a, not all equal to zero
and such that

> awi=0 (18)

n=0 )

" in the space H*(0,1). Let { > 0 be a number such that aq =
.= a;_; = 0 and a; # 0. Formulas (13) and (14) show that

(v5, €5, )me0,1) = 0 for arbitrary numbers m < n. Using this fact

and multlplylng the equality (18) by e in the space H°(0,1), w

" get alb =0, i. e. the contradiction.D

Lemma 4. For our s < s {vi}n>n ts a Riesz basis of the
space L.
Proof. Let us take an arbitrary v € L and let u = A™'v € L.

oo
“Then, u = Y c,¢€’ in the space L for some real coefficients c,.
. n=N
! ‘ et ot . . -
We have v = Au = Z anes >~ c¢qvs where the infinite sums
=N n=N

converge again in the space L. Therefore, in view of the linear
~independence of the system of functions {v]}n>n in the space L
~ given by Lemma. 3, this system of functions is a basis of the space

L Also obviously, the infinite sum Z cned with real coefficients
- n=N .

16

I ,
¢n converges in the space L if and only if 3 ¢ < co. Hence, first,
n_N

if Z c2 < oo, then the infinite sum Z ¢, v converges in the
n=N n=N

space H*(0,1) and, second if the latter series converges in the in-

dicated space, then A™! Z C v = cnATE = Z cned €. L
n=N n=N n=N

Z ¢2 < 00. Thus, Lemma 4 is proved.D

n=N

Lemma 5. For our s < sg the system of functions
{v2}n=0,1,2.. is a Riesz basis of the space H?*(0,1).

Proof. Let again N = Nj(s,¢) and P be the orthogonal
projector in the space H°(0,1) onto the subspace Ly spanned
over the functions e, ...,e%_;. By (13) and (14)

Py} = v: - z‘b:’svz, n=0,N—1 (19)

in the space H*(0,1). Since dimLy = N and since in view of the
formulas (13) and (14) the functions Puvg,..., Pv%,_, are linearly
independent in the space H*(0,1), these functions form a basis
of the space Ly. Therefore, in view of Lemma 4, the system .of
functions {Pv;},_57—7U{v] }n>n is a basis of the space HS(O 1).

Let us take an arbitrary u € H*(0,1). Then, due to the
above arguments, there exists a unlque sequence {Cn}n—O 1,2,.. of
real numbers such that

n=N

Az
JL

(20)

3

Il

=}
:u:

in the space HS(O, 1). Substituting the Vexpa,ns‘i‘_(.)n.s (/19):int.yol(20),

we get
N-1 oo N-~1
u = z cnv, + z (cn — Z cme"s> vl

n=0 n=N m=0

17



in the space H*(0,1). Hence, in view of Lemma 3, the system of
functions {v:}n=01,2,.. is a basis of the space H*(0,1). Finally,
the fact that this system of functions is a Riesz basis of the above
space follows from Lemma 4. Thus, Lemma 5 is proved.O

Now Theorem 2 follows from Lemma 5 and the inequalities

(‘15).0

text.

The author is thankful to Mrs. T. Dumbrajs for editing the
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