


1 -Iht‘roduct'io-n..
1.1 Motivation

In the la.st fifteen years the role of low-dimensional spa.tially localised attractors i the nonlinear
_“partial differential equations has been widely appreciated, and a great depth of understa.ndlng
of their propertles achleved Especaa]ly well documented are the AC dnven damped sme~Gordon
gystem, - .

Grr = Goz + SN G = —0gr + I‘sm{w'r), . -

and its bmall—a.mphtude hrmt _the externally driven damped nonlinear Schrédinger equa.taon (NLS): -

A Ve 2O = S - ke @

'

»Both systems have numerous applications in a variety of ﬁelds, including iong Josephson Jurctions,

" easy-axis ferromagnets in microwave fields and an f-driven plasma.

The ﬁ.rst step in the analysis of the damped driven NLS solitois was made by Ka.up and
Newelt {I}. Under the asswmption that the damping and driving are weak, these authors developed
an Inverse Scattering-based adiabatic perturbatlon procedure to realise that solitons lock to the
frequency of the driver. For small A and v, there are two co-existing phase-locked solitons, one cor-
'respond.mg to focus and the other oneto’ saddle of Kaup and Newell’s adiabatic equations {i.e. one
so].lton is stable and the other one unstable against adiabatic perturbations of their amplitude and
phase.) This result remains valid for the sme-Gordon brea.t.her, whose smaﬂ amplitude counterpart
‘the NLS soliton is {2]. )

Subsequent computer- s1mula.tmns of eqs.(1} and (2) revea{ed a r1ch vanety of spa.tmlly ¢oher-

ent attractors, including-temporally periodic and chaotic statés [3)-5]. A particularly jmportant’

. observation was that even in chaotic regimeés, the spatial structure of the-field can be relatively

simple and described by only a few spa.tla!ly localised ‘solitonic modes. A special Tole of the soliton

{or soliton waye-fiain if periodic. bounda.ry conditions are amphed) has -therefore been reinforced
for the daniped driven systems.

The bifurcations and routes to chaos in the dynamics of a smgle sohton were studied both -
numerically and analytically, mainly within perturbative and variational approaches [6]-{13]. One .

- of the main difficulties hereis that soliton solutions are not available in closed form. (Here by soliton
we mean the NLS soliton, the sine-Gordon breathet, and thelr wave-train counterparts) Parmcuiar
relevant for the present work_ is ref.[9] where the spectrum of linearised excitations was studied

in order’ to understand the soliton’s instability fnechanism, A.lthough prov1dmg ‘an important

) qua,hta.twe mslght. into the dynarmcs of elgenva.lues on the compiex plane, the conclusions of {9]

were based on a heuristic ansatz for the sofution (the phase was assumed to be tonstant) and had .

to be verified using the numerically found seliton profiles (15},

" In the undamped case {7 = 0) the two coex:sting soliton solutions ¢an be found exphc:tly, the
stability problem, is also more amenable-to -analytical study in this case. In particular; one can
- prove that one -of the solitons-is always unstable for (ell &, not necessarily small ones). As far as
the second soliton is concerned, it can loose its stability only via a Hopf bifurcation.[14]. . -

Terrones, McLaughlin, Overman and Pearlstein considered the full damped driven NLS equation

on a finité interval (15]. They constructed z-petiodic solutions perturbatively, as a power series

over small parameter miltiplying the driver’s strength and dissipation coefficient; also-they have
~ computed these solutmns numerically. For small values of h and ¥ two soliton wave-trains were °

recovered- correspondmg to the saddle and focus of Kaup and Newell's adiabatic equations. In.
ref[15] the spatial period was linked to the value of the dissipation coefficient; more precisely,
Tertones et al took L = 16.18 for vy = 0.1000; L = 13,15 for y = 0.1333; L = 12.24 for y = 0.1538,
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and [ = 10.73 for v = 0.2000. For these values of L and v they solved numerically the linearised
cigenvalue problem and demonstrated the existence of the Hopf bifurcation.

An interesting phenomenon encountered in ref.[15] was the siability windows. Increasing the
driver’s strength for the fixed dissipation coefficient, the eigenvalue of the linearised operator crosses
the imaginary axis into the right half of the complex plane (unstable region), then returns to the left
half, and then crosses into the unstable region again. There are three Hopf bifurcations, therefore,
and there is a certain region where the spatially periodic solution regains its stability.

In this paper we consider localised solutions of €q.(2) on the infinite interval, L -+ oo. We
obtain thesc solutions, solitons, numerically, and then analyse their stability. Our main objective
is to construct the existence and stability chart on the {k,y)-plane. This chart will serve as the
first step towards the complete attractor chart of eq.(2), similarly to the attractor chart for the
parametrically driven NLS,

W U+ 2T = iy — AT ) (3)

which was constructed in refs.[16]-[17]. :

Although the solitons (i.e. solutions with $.(do0) = 0) and soliton wave-trains (for which
Wz + L) = (=) may look qualitatively sitnilar when plotted on a finite interval {—£4/2,1/2),
their respective domains of existence are different. Stability of solutions is also very sensitive to the
interval length; in particular, we demonstrate that, increasing L, the stability windows of Terrones
et al, “close”. There are no windows of stability on the stability chart of solitons {L = co).

The paper is organised as follows. In sec.2 we consider the spatially homogeneous (flat) solution,
and analyse its stability. In the next section, sec.3, the upper and lower boundaries of existence
domains of two solitons are found numerically. Sec.4 deals with the stability of the solitons. We
show that one of the two solitons is always unstable, and describe the stability Tegion of the other
one. The issue of stability windows is also addressed therein. Finally, in sec.5 our existence and
stability chart is compared with results of direct numerical simulations available in literature.

1.2 Relation to the sine-Gordon equation

Out of three parameters h,y and £, only two are significant. Indeed, if ¥(z,t) is a selution of
eq.(2) corresponding to k,y and £, %(z,1) = kU(kz, k%) is the solution corresponding to h =
4R, 0 = k?Q and # = k%y. Hence we may always fix e.g. £ = 1 and retain only k and -y as control
parameters [14, 15].

Next, the substitution ¥(z,f) = e'4(z, t) reduces eq.(2) to an autonomous equation

i+ P — o+ 2P = —ingp — . (@)

In this paper we will be always using the representation (4). On several occasions we will make
contact with results of Terrones et ai [15]. These authors study the NLS equation but present their
conclusions for the externally driven sine-Gordon, eq.(1). The correspondence between eq.(1) and
(4) is established by the following formulas:

¢(7, %) = 4eRe [irf2, z)e T + O(Ea), : ‘ {3)
=gz, t= %—T; (6)

o=¢ty, T =4k, (7

where ¢ is the detuning of the sine-Gordon driving frequency from unity:

2
g
w_l—-i. (8)



Eq.(6) implies that the sine-Gordon interval length, Lse, and the NLS interval LyLs are related
as

Lyis éEL.\_;'(‘,'.” e ’ (9)

For example, results of ref.[15] obtained for w = 0.87,cc = 0.04 and Leg = 24 correspond to our
eq.{4) with v = :1538 and Lyrs = 12.24: : . N )

2 Flat-locked solutions: existence and stability domains
2.1 Three Branches of flat solutions ”

We start with the é,naiygis of spatially homogeneous solutions {¥o, = 0) locked to the driver’s
frequency: ¥(z,t) = toe”. The complex amplitude o satisfies the algebraic equation

— -+ 2tho|Phy = —dyyho — B ' (10)
The equation (10) was, of course, discussed before [7}; for the most detailed analysis see Terrones
et al [15]. We are nevertheless going to reconsider it here because we will need some facls aboul
flat-locked solution in our study of solitons. The main distinction from the work of Terrones et al
is that we will consider eq.{10) in the whole range of parameters, while those authors restricted
themselves to small values of & and «. Also note that there are some notational distinctions: )
our NLE equation {2) has different coefficients with respect to those in [15]; (31} our driver & is real
and positive and 1y is complex whereas Terrones et al work with complex h and real positive o3
(it} conclusions of [15] are presented.in the sine-Gordon rather than the NLS notation.
o WWriting e =ae'? ;eq:(10) reduces-to-a-system - - :

:a-l'-"2a37: —kcosﬂ, : (11)
T ya=hsind. i (12)

Eliminating #, we obtain an equation cubic in pg = a*:

4p3 = 4pf + (147" )po — B = 0. _ (13)
Any positive root pg of this equation defines a flat-locked solution ¥y = ,/Poe’® where
tanfd = .
1—po

" The analysis of eq.(13) is straightfor.warél. First of é;ll, it cannot have real negative roots.
(Substitute pg = —¢ and obtain a sum of four strictly negative terms.) Hence there are cither three
positive roots, or one positive and two complex-conjugate roots. In terms of

P(po) = po [4p3 — 4po + (L + 7)),
~ eq.(13) is rewritten as
: ) P(po) = B (14}

" When 4% > 1/3, we have dP/dpg > 0 and so eq-(14) has just one real root, whereas when ¥2 < 1/3,
there can be either one or three real roots {Fig.1). ’
In the latter case the number of real roots is determined by the sign of the expression

o (P50 (£’

If @ < 0, there are three real roots; if § > 0, there is just one. After some algebra, this criterion
translates to the following one: . :

{ 3 roots if A_(7) < h < By (y)s

1 root otherwise, _(15)

where

)2
ha(r) = {é(ﬁ- Hedfs(5-7) } . s

Summnarising, we have two cases. First, for v 2 1/\/§ and all &, we have just one flat-locked
solution {the right-hand curve in fig.2). Second, for 7y < 1/+/3 (left-hand curve in fig.2) we have
three branches of solutions: there are three solutions for & lying between h_{¥) and h4(7), and
only one solution if b does not fall into this interval. The first (lowest) branch satisfies

0 < lghol® < p-(1)h

the second (middle) branch is
' p- (1) < Lgol” < P ()

and the third, upper branch is given by

Wol? 2 o4 (9)-

Here :
11
pe(n) = g £V 372 _ _ (7)

2.2 Stability of flat solutions

Next we proceed Lo the stability of the flat-locked solutions. Taking Pz, t) = P(z) 1 oy, 1) where
() is a stationary solution of eq.{4) and 81 is a small perturbation, and linearising eq.(4) about
() yields

J{ye +yy) = Hy.

Here y(2,1) is a two-component column comprising of the real and imaginary part of the pertur-

bation: Re s
. y(x’t):(lmﬁi)’

(0 %) (1)
-1 23E+ YD) —4pryy '
B = —apnpr 1203 YR )

and H and J are 2 x 2 matrices:

(19)

where 8 = #/8a. Finally, tr(z) and ¢z(z) represent the real and imaginary part of the solution
(z) whose stability is examined. In the case at hand, ¥r and 1; are the real and imaginary part
of the flat-locked solution o, i.e. ¥o = Pr + Py,

Separating the time variable, _ o
y(z,t) = Hz)e™, (20)



we arrive at the eigenvalue problem ) :
: Hz(z) = pdz(x), . (21)
where e o

Eo= Aty (22)
Tn general, g and #(x) are complex. The solution () will be stable if eq.(21) does not have
eigenvalues p with the real part greater than +y.

In the case of the homogeneous solution 1(2} = 4, the eigenvalue p and eigenvector z(z) can
be found explicitly. Writing z(2) = 2%, we obtain a matrix eigenvalue problem

(He—pl)z =0, (23)
where .
a. [(FH1-2080k ¥3) —4emir
k= —4gripy E2 41— 2039% + 42)

and Pr = Reo, ¥ = Im 1. Bquating the determinant of { Hy — p2J) to zero, we finally arrive at
— = (B 1 2lyel®) (B + 1 — 6[el®) (24)
If |2l < 1/8, there are no k’s such that
F(EY) = (20l — 1 - ) (Blel® — 1 - &%)

is negative, and so Rep is always zero and the flat solution is stable. Let us now assume that
[ho]? > 1/6. Here we have to differentiate between two cases. First, if jgho|* > 1/4, the minimum
of the parabola F(k?) occurs at k% = 4ghf2 — 1 > 0 and is equal to Frin = —4lgol*. The
corresponding Reyt is maximum and equals 2|tp|2. Consequently, the peturbation ¢ will grow in
this case if 2|4bo|* > . (This is the case of the modulation instability.)

Second, if 1/6 < |tol® < 1/4, the minimum of F(k?) occurs at k% = 0. In this case Fu =
(2l4ol? — 1){6lf> — 1), and the perturbation will grow. if

= (@bl — 1) Blwol® =) >¥% (25)

This is an instability with respect to spatially homogeneous perturbations. The inequality (25)
~ amounts to

p-(7) < Iehol® < p1l7),

with py as in eq.(17). Notice that since p_(7) < 1/4 only if ¥ < 1/2, this type of instability may
occur only in the region ¥ < 1/2. '

2.3 Summary of flat solutions

Summarising, we have three typical situations.

(a) 0 <y<1f2, This situation is presented in Fig.3(a). We have three branches of flat
solutions. The whale of the lowest branch is stable. (Here |1h|? < p_(y) and b < hy(y) ). The
whole of the upper branch as well as the upper part of the middle branch above |40l = 1/4, are
modulationally unstable. Finally, the lower part of the middle branch, p_(7) < E'l,b0|2 < 1/4 is
unstable with respect to flat perturbations.

(b) 1/2 < 7 < 1/+/3, Fig:3(b). Similarly to the case v < 1/2, we have three branches here.
However, only a part of the lower branch, namely |¢o|* < 7/2, is stable. The rest of it as well as the

other two branches. are modulationally unstalle, In terms of £ and 9, the inequality leg]? < 4/2

translates into h < () where
ho(¥) = V1 73— 42 4y f2. (26) -

{¢) v > 1/v/3. This situation is depicted in Fig.3(c). There is just one branch which is stable
for [wol* < 4/2 (ie. for fr < k.{7} ) and modulationally unstable otherwise.

Finally. our (&, y)-plane is decomposed into two infinite regious, sec Fig.1. A stable homogeneous
solution exists in the blank region: the domain of instability has been shaded. The boundary
hetween the two regions 1s given

byl v YL
hiv) = (27
h(h) 7 212

v

3 Solitons .

3.1 Asymptotic behaviour

Another tvpe of insight provided by the analysis of the Hat solutions. is into the asviptotic be-
haviour of spatielly locelised solutions. Indeed, if ¢{x) is a static solution approaching asy mptoll
cally the value i, then denoting 8¢ = ¢:(x) — 9 we find that

o _f Redwy
yle) = ( fin & )

.

satisfies
Hy(x) = yJy(x). (28}
with J and JI as in {i8) and (19): Writiug y{x) = e~ we obtain: .
(K% + U= 2pol®) (8% + 1 — 6jvl®) = 4% (29)

This equation has two roots, &% and k3. Cousequently, the general solution of eq.{28} is a sum
of four exponentials, et and ri""ﬁ” If both &, and k2 are real for certain [ee]o #{e) 35 not
localised and so eq.{4) can not have localised solulion in the corresponding region. Both k¥ and &3
are positive if the following three conditions are satisfied simultancounsly:
(i) The discriminant of (29) is positive:
p 3 ’ .
lfal® > 55 (30)
2
(ii) The product of two rools is positive:
. P NINT 2 .
(2al? - 1) (Blwnl® — 1) +% > 0; (30
(iii} The sum of two roots is positive: -

B2 —2 > 0. (32)

Again, we have lo consider several cases.

Ity > 1/V/3, the condition (30) is stronger than (32} while (31) is satisfied for all [i|. This
weans that the condition for the solitons nonexistence is simply |¥ol® > 9/2. orcin terins of &t and
Ty fe > ha{y) where Ay s as in eq.(26).



Iflj2<y < 1,"\/5, the inequality (30) is still stronger than (32) while eq.(31} amounts to
[%ol® € (0, p-) U {p4,50) . (33)

Taking the intersection of (33) and (30), one gets
lwﬂle (%,P—) U(P+!'X‘)! -

where py = px(%) are as in eq.(17).
Finally, when ¥ < 1/2, eq.{32) is stronger than (30}, while p. is smaller than 1/4. Thus the
intersection of (33} and (32) is simply

[ol® > py(¥).

- These conclusions are summarised in Figs 5 and 6. Tn Fig.5, dashed is the region where solitous
existence Is excluded by the above asymptotic reasoning. In principle, solitons could have existed
for 1y on the middle branch (i.e. between the curves jipol? = p_(¥) and |do[* = p4{y) on Fig.5). In
this case one pair of exponents &y 2 is imaginary, the other one (k3.4) is Teal. However, no solitons
with- asymptotic values on the middie branch were found (see subsection 3.4). As we will show
below, solitons exist only below the line

|¢ |2 . { p-—-(”.")! T i: 1/2;
S G 77 A - V-3

Consequently, the scliton's existence region lies on the lowest branch of || {see Fig.6 a-c).

Our final remark in this subsection is on the way the soliton approaches its asymptotic value.
Here our interest is motivated by indications that solitons with undulations on their spatial “tails”
can form bonnd states [18]. For [#]? < v/2, the exponents k; and k2 are a pair of complex-conjugate
values with nonzero imaginary part. Consequently, each of the four exponentials undergoes undu-
lations. On the other hand, when v < 1/2 there is a region where both k2 and k3 are negative,
This region is defined by the intersection of q.(31) and the inequality lps]® < 1/4; it is not difficult
to realise that this intersection is

T < Yol < p-(9). (34)

In this region solitons approach their asymptotic values monotonically; according to [18], no bound
states of solitons may emerge under such circumstances. This region pertains to the lowest branch
of the flat-locked solutions. In terms of h and 7, eq.(34) can be rewritten as

hn)<h<hutn) (12 5 (35)

3.2 Numerical solutions: the method

For ¥ = 0, the equation

Yoz — P+ 2|‘§!’)|21,b = —iyp-h (36)

admits a pair of exact soliton solutions [14}:

2sinh®a ) ] '(37)

Palz) = o (1 * T cosh o cosh (A)

Here ¢« is defined by
. 5 2
e 2 cosh a3/25 (38)
{1+2¢osh? &)
h(a) being a monotonically decreasing function, « is uniquely determined by h. Next, ¥y is the
asymptotic value of both ¢_ and 4, solitons: ;

Pe(e) — o as |z} — oo;

1p is real and positive:

Yo = S — _ (39)

1/2(1 + 2cosh? a).

Finally, A has the meaning of “twice the area” of ¢y and 7., and is equal to

" sinha
/1 + 2cosk® o

Solutions () and 1_(z) are plotted in Fig. 7. The domain of existence of both of these
extends from & = 0 to & = 00, or, in terms of the driver’s strength, from k=0 fo b = V22T &
0.2722.

For 4 > 0, no exact solutions are available. We therefore had to obtain solitons numerically.
Our numerical scheme was based on the continuous analogue of Newton’s method (see [19] for
review and references). :

Writing the discretized eq.(36) as

A=2 [ - )te = - (40)

Q) = 0, - (a1)

where 1 = (1,12, ..., %) is the discretized solation, ¥; = 9(x;), we introduce an auxiliary “evo-
lution” parameter 7 in such a way that (r) satisfies the differential equation

: o
G+ G =0 _ (42)

with the initial condition
$(0) = 9. ' (43)

Here 9 is an initial guess for the soliton solution. Since G((r)) — 0.as 7 — oo, P(00) satisfies
eq.(41). Our iteration algorythm is based on the discretization of eq.(42} with respect to 7:

-1
GH) ) _ ApGH) ?E) - )
900 = g0 - arbe) (33 G, @
where § = 0,1,2, ..., and Art+1) = #U+1) _ 0) | chosen so as to minimize the discrepance
§19) = m?x{|R£Gi(¢,(~j,))|a [tm Gi(" i} - : (45)

{For details see [19]). IR _ =

Our continuation strategy was as follows. First, we used the exact solutions {29) as an initial
approximation for ¥ = 0.02 and kb in the middle of the interval (0,4/2/27), ie. for b = 0.136.
Second, we utilised the obtained numerical solutions as initial approximations for the same -y =10.02
and k above and below 0.136. We advanced along the /& axis until the Newtonian iterations ceased
to converge. The absence of convergence may he caused by a bad initial approximation; for this



reason we had to decrease the increment Ak in the neighbourhood of the boundaries of the domain
of-existence. As a result, we were able to establish both the upper and the lower boundaries with
the desired accuracy, see below. Next, taking the nwmerical solutions at approximately the middle
of the domain of existence for 4 = 0.02, we employed them as initial approximations for the same
h with ¢ = 0.04; then advanced up and down in h, and the process repeated. )

The bulk of calculations was performed on an interval (-Lf2,L/2) = (—30,30), with the
exception of the neighbourhood of the upper boundary of the domain of existence, where the so.litons
decay very slowly in . In this neighbourhood the interval length I was increased appropriately.
(enerically, we utilised the second order Newtonian algorythm with the grid spacing Az = 0.1; the
neighbourhood of the upper boundary was, again, an exception (see subsection 3.4). )

Similarly to the case when vy = 0, in the case of nonzero dissipation solitons genericalty come
in pairs. By analogy with the y = 0 case, we denote them () and ¥_(z). Fig. 8 shows their
profiles for several typical k. Here we have chosen values of b not very close to the lower bcnlmdary;
the behaviour of solutions in the neighbourhood of the Jower boundary can be quite peculiar {see
Fig.10 below). : :

3.3 Existence domain. Lower boundary

The value of b demarcating the lower boundary is usually referred to as the threshold driving
strength: for a given v, no localised solutions are possible for 2 < k. Kaup a._nd Ne\lvell have
found [il, by means of the Inverse Scattering-based perturbation theory, the following estimaie for
the threshold value:

9 -
hne = —- (46)
™

Spatschek et al[11] and Terrones et al [15] reproduced eq.(46) by e.xpa,nding #_(z) in a perturbation
series in powers of small A and 7. ] )

" ‘The threshold value that we have found numerically is plotted in Fig. 13 at the end ?f this
section. For comparison, we. have also plotted the straight line & = (2/m)y in the same picture.
Surprisingly, the deviation of the actual Aenr from (2/7 )y is extremely small even for not very smali
. For example, for 7 = 0.48 we have

e _ 2 073 : (47)
~ T

for v < 0.48 the above difference is-even smaller. However, as ¥ grows beyond -y = 0.5, the actual
by gradually deviates from (2/7)7y. : : ) . .

For kb = huy the two branches of localised solutions, P, (#) and ¢ (z), merge. The point
h = hew is @ turning point, therefore. We illustrate this fact by plotting |¢(q)|2, the modulus
squared of the value of #(z) in the middle of the interval, as a function of & (Fig. 9).

Tt is interesting to follow the evolution of %4 and ¥_ when h approaches the threshold value
from above. The transformation of ¥4 into ¢ is illustrated in Fig 10.

3.4 ‘Existence domain. Upper boundary

Let us now turn to the upper boundary of the existence domain. The upper b_ounda,ry is different
for 4 and 4_ solitons, and depends on . Three typical region.s can be identified as follows.

(a) 0 < 7 < 1/2. Here we have three branches of flat solutions 1[)..} (fig.3a); the lowest bra,nclh
is stable, the other two branches unstable. All pumerically found solitons . and ¥ have their
asymptotic values lying on the lowest branch. It is natural to assume that the upger bou’ndary. of
the domain of existence of the . and .. coincides with the point A = by (), [¥ol® = p-(7) which

10

separtes the lowest hranch of |ig]? from the adjacent branch.” We have verified this hypothesis
miewerically. ’ ) :

Our sirategy was to find the solitons ¥, and .. with the asymptotic value [40f? as close Lo p_
as possible. As a closest asymptotic value we adopted F(y)} = p_(7) — 1.0 x 1072 and examined
an equidistant set of 4% between ¢ and 1/2 (7 = 0.02,0.04,0.06,...,0.48). For all these 7 we were
able to find both ¥y and ¥_ solitons with the asymptotic value |} = py). Cousequently. we
ean assert that the upper boundary of the existence domain {expressed in terms of lol?) is not
further away than 102 front the value g0} = p_(¥). In terms of &, the proximity is even closer.
Deviating [#o]? from p- by A {|¢0|?) = 1072 results in the deviation Ak in A; this deviation can
he casily found by means of the explicit formula eq.{13)}:

b= 3 /A]yal® — Ael® + (1 4+ +E)l¥ult. (48)

For 4 < 1/2 the above deviation is ~ 1079 (More precisely, as 7 is increased {from 7 = 0.02
through 4 = (L48, the deviation Ah decreases from Ak = 3.7 x 107% through Ak = 1.6 x 107%),
The smalluess of Al is explained, of course, by the fact that the derivative dhJdjio|? goes Lo zero
as |{1lg|2 — p_. i

Parameters of our numerical scheme were chosen consistently with the smallness of the incre-
wents Ah. In order to be able to approach the value i = fiy as close as the distance M ~ 104,
we had to require the discrepancy (45} to be not larger than #0) = 1077, Here we took the second
order Newtonian algorythm with Ax = 1073, i.e., the truncation crror was of order (Ar) = 107Y

Since we were looking for even solutions, it was sufficient to solve eq.(36) on a half-interval
(0, £/2) with the boundary conditions #.{0) = ¢(L/2) = 0. When & — oo, the solitons decay to
the value 1y exponentially, as exp (—|Imk|z), where & is given by eq.{29). When ) grows [rom 0.02
to 0.48, the exponent |lmk| corresponding to |#hof? = A, grows fram 0.07 to 0.2 . Consequently.
choosing the half-interval length £/2 = 300 we ensured that [¢he(L/2} — ¢u| would not exceed 107%,

Thus, our smmerical stidy shows that in the region 0 < ¥ < 1/2 the upper houndary of the
existence domain {for both ¥4 and ¥_ solitens) is given by |#o]? = p—(7) or. in terms of the driver’s
strength, by i = hiy{¥). As we approach the “kuee” of the hystheresis curve Jwal? = |yo|2(h). e,
as |ty|2 — p_, the soliton tfy(z) flattens oul so that when b = hy(y). the ¢y(x) merges with
the flat solution: $y{z) = . (See Fig.8 a,b). This is in agreement with the asymptotic analysis
presented in the previous subsection where we have shown that as i — hy(7) and |#o] — p-(1).
the decay exponents &y 34 — 0.

The second solution, ¥»_{=), does not fatten out as we approach the h‘vsteres]s-knoo - although
the decay exponents go to zero. The solution - remains localised (Fig.8 cat). but the decay
becomes polynomial not exponential. In the undamped case, v = 0, this can be demonstrated
explicitly. Sending o — 0 (h — /2/27) in eq.{37) yields

2
o) = =
vEr? 43 )

(b)Y 1/2 < 4 < 1/4/3 = 0.5774. In this region the curve ol = |4o*(R) is similar 1o the case
{a); there arc three branches. However, the flat solution looses its stabilily not at the “knee™ point
but earlier, at Ji%0]® = /2 (fig.4h). On the other hand, we know from the discussion in subsec.3.1
that there can be no solitons with |1g|* on the lowest branch above |4p]? = 7/2. Consequently, it
is natural 10 assume that the upper boundary of the soliton’s existence domain - hoth for the oy
and _ — corresponds to [#p|* = ¥/2. We examined this hypothesis using the samwe criterion as
in the region v < 1/2. Surprisingly, the results for the ¢, and t»_ Lurned out to be different.
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We examined 7 = 0.52,0.54 and 0.56. For all these y’s we were able to find the ¥y soliton at the
distance A ([#a|?) = 1.0 107 away from the value |y 2 = /2, i, for [wol* = (7/2)- 1.0% 1677
‘Fhe w4 solution is shown in Fig.11. '

As far as the'¥'_ is concerned, the upper houndary of its domain of existence was seen Lo deviate
substantially from /2. Namely, for v = 0.52 we were unable to find the ¥_ soliton for |yg|* closer
than 6 % 10=3 to 4/2; for 1 = 0.54 and 056 this gap was 8 x 102 and 11 x 10~3, respectively.
(See Table 1.) Here the parameters of the numerical scheme were Az = 1073, 54) = 1077 and
L/2 = 606. We do not plot the g_ solitons as they look qualitatively similar to those arising in
the region v < 1/2.

(e) 7> 1/+/3. In this region there is only one branch of flat solutions for each A, Similarly 1o
the case {b), the flat solution becomes unstable for [4h]? > /2 and similarly to that case, ihere
can be no solitons in the region [¢o|? > v/2. -Our numerical results in this region are also similar
to the case (b}. The 9, soliton exists for values of [#0|? up to and including (7/2) — 1075, On
the other hand, the upper boundary of the existence domain for the 4. soliton, was seen to be
lower {see the Table L}, Fig.12 gives the profiles of the 14 and ¥_ solitons in the region y > 1/V3.
The numerical parameters in the vicinity of the upper boundary were Az = 1073, §4) = 10~7, and
L{2 = 600.

3.5 Soliton existence region: summary

Our conclusions are summarised in Fig.13. The upper dashed line is given by eq.(27) and demarcates
the upper boundary of the domain of existence of the ¥, soliton. The upper solid line shows the
upper boundary for the 7. soliton’s domain of cxistence. For y < 1/2 this boundary is given by
the same eq.{27)} whereas for ¥ > 1/2 it deviates from eq.(27). This deviation is however quite
small (Ah ~ 1075 — 107*) and not visible in the plot. ' _ '

The lower dashed line is a straight line & = (2/m}y; it yields an approximation for the lower
houndary of the domain of existénce. The actual lower boundary hg, (which is the same for
both %4 and ¥_ solitons) is shown by the lower solid line. Again, the dashed and solid lines are
graphically indistinguishable. .

Finally, the middle solid line is the stability boundary of the . soliton. It will be discussed
helow (sec.4.2).

4 Stability of solitons

4.1. Spectrum structure

To analyse the stability of the b4 and #_ solitons; we numerically solved the eigenvalue problem
(21} with H as in ¢q.(19), and Pp(z), ¥i(x) being the real and imaginary part of the corresponding
soliton solution (found numerically beforehand.) Solution is considered stable if Rep < -y for all
cigenvalues ji-

Continuous spectrum. Before proceeding to results of the computation, we need to describe
the spectrum structure of the operator J7LH. When |z] — oo, the solitons ¥4 (x) approach the
value oy, eq.(21) reduces to a matrix eigenvalue problem {23), and the eigenvalue p and wavenumber
k are rotated by the dispersion formula (24). The number of real roots ki, kg, ... of eq.{24} determines
the multiplicity of the continwous spectrum. ‘

When |#o{2 < 1/6, the continuous spectrum occupies the whole imaginary axis of p outside the
gap —wy < Imp < g, Whsre” :

wo = v/ETHE ~ )P D, (49)
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When | > 1/6, the continuous spectrum fills in the entire imaginary axis and the region
—v < Rep < v on the real axis. Here )

Y= V(1 = 2spoM)(B10]? = 1), 1thof? < 1/4
2{ol?, Jol? > /4.

Discrete eigenvalues can be complex and real. If g is an eigenvalue with the eigen{unéfion
z{«), its complex conjugate u* is also an eigenvalue with eigenfunction z*(z}. This follows simply
from the fact that # is an operator with real coefficients. A less trivial observation is that (—p*)
will be an eigenvalue as well; the proof of the latter is relegated to the Appendix.

Thus, real eigenvalues of J~! I will always appear in ‘pairs, g and (—p); complex eigenvalues
will oceur in quadruplets: g, (—p), ¢, (—1*), For any values of k and v, the operator J~'H has
two discrete eigenvalues: v and (—4). (This is true for both .. and 1 solitons.) The eigenvalue
& = 7 results from the translational invariance. The corresponding exponent X in eq.(20) is equal
to zero; the corresponding eigenfunction z(z) is given by

@)= (hD) )

The other eigenvalue, gz = —7, arises due to the symmetry g — —pu discussed above.

4.2 Numerical solution of eigenvalue problem
We define a grid with spacing Az = Lf(N +1):
L
=g +nAz, n=12,.,N,
with 20 = -—L/2 and zys1 = L/2, and denote f;, = Red(z,}), gn = Im&ep(w,). Approximating
the derivatives by second order finite differences, we reduce the differential eigenvalue problem (21)

to a matrix eigenvalue problem of the form

Hz = pJz. . - (50
Here 2 is 2 2N-component vector,
) fi
In
4
VQ'N
and H and J are (2N x 2V) block miatrices:

. 2 .
H:( Ditu zw),
w -4

(%)
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The entries of the ¥ X N blo(.:k.s.u,;r},tb and [ are given by
i = {1 = 230h 4+ 9|, Jon
v = {1 - 20303 + 9B _ _ Jomni

UWyp = _4¢R¢I|m U, brun3
= Zn )

jmn:timn; m,n=1,2,...,N. (51}

Finally, D? is an N x N matrix arising from the discretisation of the second derivative:

2 -1 0 0 0-.... 0
1 2 -1 0. 0 ... 0
. 0 -1 2 -1 8 .. 0
¢ D . (52)
. .
(A 0 -1 2 -1 0

¢ ... 0 0 -1 2 -1
0 ... © 6 0 -1 2

Since we are interested in discrete eigenvalues, we imposed the Dirichlet boundary conditions:
§p(£L{2) = 0 which translate into

fo=fng1 =90 = gN+1 =0. (53)

Eqs.{53) have been taken into account in deriving eq.{52).

Having fixed v, we increased A from by, to B = hy{7); results turned out to be qualitatively
similar for all v < 0.3. Let us start with the 1. solution.

As we have already mentioned, there always is an eigenvalue po = 7 (ot, equivalently, there
always is an exponent Mg = 0} corresponding to the translational symmetry. When b = hipr, we
have a turning point and, coﬁsequently, there is one more zero exponent Ay = 0. That is, at
h = hgr we have two pairs of discrete eigenvalues: the translational eigenvalue py = 7 and its
negative flg = —7 (we shall disregard these two eigenvalues in what follows), and the turning point
eigenvalue pz; = 7 and its negative fih = —7. -

As we increase k, the eigenvalues gy and (—p;) approach each other along the real axis, coalesce,

" then pass on to the imaginary axis and the separation between them increases. As h is increased
further, ancther pair of pure imaginary eigenvalues, p2 and (—pz), detaches from the continuum.
{We remind that the continuous spectrum occupies the imaginary axis outside the gap —wo <
Imp < wo.) Subsequently, uy coalesces with p, i1 with iz, and all four eigenvalues move away
from the imaginary axis. We end up with a quadruplet g, p*, —p, and ~p*.

On further increasing k, the real part of g and p~ grows and, at certain b = fipgps, becomes
equal to y. This is a point of the Hopf bifurcation; for k> hpopi, the soliton .. is unstable.

The above scenario is almost coincident with the scenario described in {15); there is just one
distinction. Terrones at af ohserved what they called the stability windows: after the first Hopf
bifurcation, the pair of complex conjugate eigenvalues and p* crossed back into the stable half-
plane Rep < 7, and then returned to the unstable region Reg > -y again. On the contrary, no
stability windows were observed in our calculations. (This contradiction is to be rectified below).
After the pair of complex conjugaie eigenvalues have crossed into the unstable half-plane, their real
parts were monotonically growing. :

Curiously enough, as h approaches the upper boundary of the domain of existence (b — hy)
the limit value of Re s is almost independent of y. More precisely, as h — hy(7), the real part-of
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Je tends to approximately 0.3, This abservation provides a simple estimate for the value of 4 above
which no Hopf bifurcations may oceur. Indeed, for ¥ > 0.3, Re p cannot exceed ¥ and 50 the ¥
soliton is stable for all h {sce the stability chart Fig. 13}

Now we turn 1o the @y sofiton. As we have already mentioned, at kb = e {the-turning point
where ¢ and ¢ merge) there is a nontranslational eigenvalue pp = 7. (There is also its negative
parluer. @ = —v, but we are concentrating on the positive eigenvatue.) As b is inereased. this
real cigenvalue grows bevond 7. reaches a maximum and then starts decreasing. This evolution
is accompanied by the restructuring of the continuous spectrum. As [¢ol® grows beyond 1/6, the
gap —wo < < wy in the coutinwous spectrum closes. Now the continuous spectrum fills in the
entire imaginary axis and, on the top of this, the region —» < Rep < » on the real axis. The value
v is smaller Lhan 7 but grows as h is increased. Finally, when /& reaches the upper boundary of the
domain ol existence (A (v} for 4 < /2 and ho(y) for 4 > 1/2, respectively). » reaches 5. This is a
point of hifureation where the soliton 4, merges with the flat solution. Accordingly. at this A the
real cigenvalue ji reaches ¢ from above and immerses into the continuons spectrum.

4.3 Stability Windows

I is important Lo trace the origin of the contradiction between our results and conclusions of ref.[15].
in particular to clarify the issue of stability windows., We shall demonstrate that the contradiction
stews simply from the fact that Terrones ef al consider much shorter intervals f..

‘Terrones o1 @l impose periodie boundary conditions on perturbations dy{x).

B~ Lf2) = Bp(L{2 bl —L2) = Bl L[2), (54)
whercas in Sec.4.2 we worked with the Dirichlet conditions

Sp(EL/2) = 0. (55)
In order 1o eliminate a possii)]o. effect of the boundary conditions, we have anow replaced our

vanishing conditions (55) by the periodic conditions (54). In terms of the diseretised cigenfuactions.
this amounts to replacing eqs.(53) by

fo=Jn, fvai=hH, g=g9n. gNvp1 =0 (56)
The only conseguence of this substitution s thal the matrix =2, eq.(52). is replaced by

221 0 0 0

T (|
-1 2 -1 o 0 ... 0 0
| 0 -1 2 —1i 0 [CR ]
2 _—(A;r:)'2 .. (AN
0 0 ... 0 -l 2 =1 [t} ’
o 0o ... 60 0 -1 2 ~1
-1 o ... 0 0 o -1 2

The D? and D? are only different in their lower left and upper right corner entries.

I eqs.{51), 1h— = g+ iy satisfies its standard “open end” boundary conditions vk Lf2) =0
Since ¢_(x) is an even function, these boundary conditions are equivalenl to periodic conditions
(= L/2) = P(Lf2), Pa(—5/2) = P L/2). Thus, we examine stability of exactly the same solution
as Terrones et el
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Those authars repott the occurrence of the stability windows for the following, two sets of the
sine-Clordon parameters: Lgg = 24, = 0,04, (a) w = 0.87 and () w = 0.90. Using eqs.(7)-(9),
one gets the correspouding NLS values:

LR

; = 12.: = 0.1 h = —————;
(&) Lnps=12.2376, v 0.1538, h 05303

{b] LNLS = ]07331, q= 0.2000, h= m

(Here [ and k are the sine-Glordon and NLS driving strengths, respectively.}

We have calculated the eigenvalues g for the first set of control parameters, ie., we took L=

12.2376, fixed v = 0.1538 and varied A. The growth rate Reh = Rep— v is plotted in Fig.14a (solid
tine). Clearly seen is the region where ReA < 0, the stability window. The values of & at which the
solution restabilises exactly correspond to those given in ref.[15]. .

It is appropriate to emphasize here that although we have analysed exactly the same eigenvalue
problem as Terrones et al, their numerical approach was totally different. Those authors worked
with the (truncated) Fourier expansion while we use the finite difference approximation. Conse-
quently, the exact correspondence of our results with results of [15] allows to rule oui any chance
of numerical error.

We next increased the length of the integration interval (from L = 12.238 to L = 15) keeping 7
fixed. Surprisingly, this minor change resulfed in that the stability window has closed {short-dashed
curve in Fig. [4a). On further increasing L, the stability interval did not reappear. (Long-dashed
line in Fig. 14a shows the growth rate for L = 60.}

For the sake of comparison we repeated the calculation for the same values of L and 7, but with
the Dirichlet boundary conditions on eigenfunctions, eq.(55). Similarly to the periodic case, the
curve ReA(k) changes substantially as L is increased from 12.238 to 15, but on further increases,
results setife down (see Fig. 14b). For sufficiently large intervals (L == 60 in our case) discrete
eigenvalues are insensitive to the type of the boundary conditions. :

Coucluding, we may claim that stability windows may occur only for sufficiently small interval
lengths. This phenomenon is apparently of the same origin as the stabilisation of the upper branch
of the flat solution when the interval is made sufficiently short [15]. The instability is cavsed by
long wavelength perturbations which cannot arise on short intervals.

5 Concluding Remarks and Open Problems

1. The principal result of this study is the chart of phase-locked attractors on the (h,7)-plane,
Fig.13. This chart comprises the existence and stability domains of the spatially homogeneous
solution and two coexisting solitons, ¥4 and _. While 44 is unstable for all 2 and 7, stability
properties of ¥_ depend on whether 7 is greater or smaller than 7., where 7o =~ 0.3. When
% > Yer, the 9_ soliton is stable for all h; when v < Yo, the increasing of A results in 1. loosing
its stability via a Hopf bifurcation.

“The classification of the phase-locked attractors on the (h,y)-plane is the first step towards the
construction of the complete attractor chart. Cur next step will be to study nonlinear structures
in the region where the ¥_ soliton is unstable, i.e. above the Hopf bifurcation curve. Here somne
guidance can be gained from the analysis of a twin problem, namely the parametrically driven
NLS equation [16]. Fig.15 displays the existence and stability chart for the parametrically driven
damped soliton; it hears a striking similarity to our chart for the externally driven NLS, Fig.13. It
is therefore natural to expect that the structure of the attractor chart above the Hopf bifurcatrion
cueve will also be similar, Fig.16 Is the complete chart of attractors for the parametrically driven
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case which we reproduce from ref.[17]. Seen are two lines of different types of transition to chaos,
period-doiibling and quasiperiodic, meeting at a “tricritical point”. It is tempting to expect that
the topography of attractors of the externally driven NLS equation will be qualitatively similar.
Numerical simulations of eq.(2) available for several vy [6]-[12], do not contradict this hypothesis.

2. It is pertinent to emphasize two main distinctions of our study from the work of Terrones
et al [L5]. First, those authors analyse solutions on a finite interval (—L/2, L/2) with periodic
boundary conditions, whereas the present article deals with infinite intervals. In their numerical
calculations, Terrones et af focus on rather short intervals, L ~-10-15, for which the effect of the
boundaries cannot be neglected. Accordingly, some properties of their periedic solutions differ
substantially from properties of solitons reported in this paper. In particular, as we have observed
for v = 0.1538, it is sufficient to increase the interval length from L ~ 12 to 15 to see the stability
window of the 4_ solution closing. | '

Second, the aim of ref.{15) was to give a theoretical explanation for results of the available
numerical simulations; accordingly, the authors of [15] restricted their attention to several specific
values of 4. On the contrary, our objective here is to provide a global view: to chart the whole
{h,9)-plane according to habitats of various flat and solitonic attragtors. _

As we mentioned on several occassions, there are three characteristic regions of the dissipation
coefficient: y < 1/2, 1/2 < ¥ < 1//3, and 4 > 1/+/3. The existence and stability properties of
flat and solitonic solutions depend on which region we are in. Results of ref.[15] are confined to the
region v < 1/2. :

One may argue that in applications, the damping and driving are weak, so does it really malke
sense to consider large values of k and 47 The answer is that, apart from their own role in plasma,
optics and other applications, the damped driven NLS solitons describe small amplitude breathers of
the damped driven sine-Gordon, eq.(1). The damping and driving coefficients of the two equations

are related by eq.(7): r ) .
@
¥= 5_2’ h = E’ ’ (58)
where the detuning .
= VA=) . ~ (59
acts as a small parameter. Consequently, even if the sine-Gordon dissipation coefficient a and
driving strength T are small, their NLS counterparts may be quite large.

‘3. Tt is instructive to make a link to results of direct computer simulations of the sine-Gordon
and NLS equations available in literature. o _ '

Nozaki and Bekki [6] simulated the NLS (2) with v = 0.1 on a relatively large interval,
L = 50, and found that the soliton becomes unstable for k > 0.11. This is in a perfect agreement
with the value Apeps = 0.11 which we have obtained in the numerical solution of the eigenvalue
problem (subsec.4.2). '

Tn their computer experiments with the sine-Gordon eq.(1), Bishop, Forest, McLaughlin
and Overman [8] set & = 0.04, Lgg = 24, and produced an attractor chart on-the (T',w)-plane
for 0 < T < 0,19 and 0.82 < w £ 0.94. In terms of the NLS control parameters, these simulations
correspond to (.11 < v £ 0.33.

Eliminating ¢ between (58)-(59), we have

w=1-— 5; ) ) (GD)
Thus for the fixed $G damping o, the frequency w is completely specified by the NLS damping v;
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fixing w is equivalent %o fixing . The SG forcing T is then proportional to the NLS forcing h:

e (g)m h. (1)

Assume that the NLS damping coefficient v is fixed and forcing h varied. Fig.13 shows that the
larger the 1 is, tlie smaller is the range of & for which the NLS soliton is unstable. Translating to
the sine-Gordon variables, €gs.(60) and (61) imply that for the fixed & and w there is an interval of
T"s where the breather is unstable; this interval should shrink as w is increased. This was indeed
observed in [8] for not very small detunings, £ > 0.45 (that is, for w < 0.9), see their Fig.1. Yor
smaller detunings £ {larger w) results start to deviate. This may be attributed to the fact that Lthe
NLS interval corresponding to Lgg = 24 becomes very short (Lyzs = eLsa < 10.8).

Taki, Spatschek, Fernandez, Grauer and Reinisch [10] studied the sine-Gordon with
a = 0,004, Lgy = 80, w = 0.98 and 0.0585 < ' < 0.116. This corresponds to ¢ = 0.1 and
Lnps = 16. For T = 0.0038, the breather lost its stability via a Hopf bifurcation. The corresponding
h is equal to 0.12 which is close to our Ager = 0.11; the difference should be attributed to the
smallness of the interval.

Spatschek, Pietsch, Laedke and Eickerman [11] simulated the NLS eq.(2) on an interval
L = 40 for a variety of & and 7 (y < 0.25). Their experimental points fit very well into the y < 0.25
portion of our stability chart Fig.13.

4. Finally, it has remained unclear what happens to the soliton t.. as [#o}? — /2 in the region )

¥ > 1/2. As we mentioned in subsection 3.4, we were unable to find the solution _ close enough
to the value |dip|? = v/2; the Newtonian iterations ceased to converge a certain finite distance away
from /2. (This is in a sharp contrast to the case of the ¥, solitons which turned out to exist
arbitrarily close to the value Jio|? = v/2.) It would be interesting to understand whether the upper
boundary of the existence domain of the _ soliton is indeed different from |40)? = 7/2, or this is
simply a numerical effect caused by an anomalously small radius of convergence of the Newton’s
method in the neighbourhood of the boundary.

6 Appendix

The aim of this Appendix is to show that if g is a discrete eigenvalue of the operator J “LH eq.{2)),
_ {~p*) is an eigenvalue as well. To this end we define an auxiliary operator A,:

Ay = H—pd, (62)
where g is a complex parameter, and J is given by eq.(18). If n is an eigenvalue of A,
Aye(z) = n2(2),
3 will be an eigenv;adue of tlhe Hermitean-conjugate operator A,t, where
. Al it = He T = Ay

(Notice that taking the Hermitean conjugate amounts to replacing g by —p*.) Assume now that
Zofz) is an eigenfunction of the operator J1H corresponding to the eigenvalue pp:

Hzolz) = pod zo(x).
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Table L. The nmmerically calculated upper boundary of the existence domain for the y_ soli-
ton. Here p) denotes the value of [1g|? for which the v soliton still exists; fy is the corresponding
I by = M{m). Next, py is the lowest value of |#%|? for which Newtonian iterations did not converge
and we were unable to find the ¥_; ha is the caorresponding h: he = A(p,).

[ v [ os2 0.54 0.56 060 [ 061 [ 066
/2] 036 027 0.24 0.30 032 0.33
M 0.354 0.262 0.260 0.286 | 0.307 125 | 0.313 528
P2 0.255 0.263 0.2696 0.287 | 0.307 370 [ 0.319 310
Ju || 0360 785 10368 450 | 0.376 530 | 0.394 145 | 0414 125 | 0.4251
h; || 0.360 801 | 0.36% 184 | 0.376 552 | 0.394 213 | 0414 160 | 0-1252
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Fig.1 The cubic P(pg) for 2 < 13 and 42 > 1/3. Left to right: 3% = 0.5.0.35:0.08.
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Fig-2 The amplitude of the spatially-homogencous solution versus fr. Lefi-hand enrve: g <
1//3; nghl-hand curve: ¥ > 1/vV3.
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Fig.4 Regions of stability (blank) an:d instability (shaded)} of the flat-locked solution on the
(h,y)-plane.
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Fig.5 The asymptotic value |1po|? versus the damping coefficient, . Shaded is the region where
no solitons can exist due to the asymyptotic exclusion principle. ’
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Fig.8 Real and imaginary parts of the iy and ¢ solitons in the region 5 < 12 Here 3 = L2
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Lo (a), )
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Fig.11 The 1 soliton in the second region {1/2 < v < I/ﬁ). In this plot.-y = (L52. The
transformation of . is shown as A is increased from by, = 0.3319 through » = 0.360840 which is
close to the upper boundary of the existence domain, k, = 0.360843.
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Fig.12 Solitons in the third region (v > 1/+/3). a,b.,c): the i, soliten in the nelghb;urhr(;;d
of the upper boundary of the existence domain. In ‘f'.hlS plot v = .60 a.r‘id h = 0.394-9 . E tlc
upper boundary is k. = 0.32497.) d,e,f):- the 9 soliton for ¥ = 0.66. Solid line: solution ah' i
threshold, A = Ay, = 0.42425. Dashed line: solibon at the upper boundary, # = 0.4251. For this v
the value of &, is 0.4265; however no 1_ solitens with k > 0.4251 were found.

26

Fig.13 The existence anct stability chart for the soliton solutions of the externally driven,
damped NLS. The upper and lower solid lines show the uppet and lower boundaries of the solitons’
existence domain. The middle solid line is the line of the Hopf bifurcation: above this line the
soliton ¢ is unstable. The upper dashed line is given by eq{27} and demarcates the boundary of
slability of the flat-tocked solution; the lower dashed line is the straight line & = (2/7)y. Below
7 ~ 0.66,.these dashed lines are graphicaily indistinguishable from soliton’s existence boundaries.
They de nol completely coincide, however {see the text).
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Fig.14 The maximun growth rate ReA{= Rep ~ 7)Y as a function of It for
line: & = 12.238; short-dashed: L = 15; long-dashed: L = 60. (a)
for eigenfunctions; (b} vanishing boundary condjtions
the curves (where Re A = —) correspond to pure imn
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Fig.15 The existence and stability chart for the parametrically driven NLS equation (3) as f1'o1_u
sef.[16]. (The driving frequency € has heen normalised to unity.) The structure of the chart is
very similar to Fig.13. The lowest line is the lower houndary of the soliton exister_lce domain; in
the parametric case hy, = 7. The uppermost curve is given by h = /14 +?% and plays the role of
the upper boundary of the existence domair. Although the soliton does exist above this line, it is
unstable there, together with the zere solution, against continuous spectrum excitations. Finally,
the middle line is the curve of the Hopf bifurcation; on crossing this line the stationary soliton
looses its stability to a temporally periadic solution. The structure of the unstable domain (above
the Hopf bifurcation line) is shown in Fig.16.
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Fig.16 The altractor chart of the parametrically driven, damped NLS equation fro_m. ref 17.
Bolow the straight line & = v (the lowest line in this plot) the only atiractor is the trivial one,
¢ = 0. Above the fine & = /1 + 4% (the uppermost line in the picture) the trivial solution is

unstable w.e.i. continuous spectrum waves. Line 1 is the Hopf bifurcation curve; stable stationary -

solitons exist below and to the right of this curve. On crossing the curve I, stationary attractors
are teplaced. by temporally periodic solitons (marked by empty circles). These can subsequently
bifurcate into double-periodic, 4- and 8-periodie solitons {shadowed boxes). Small white blobs
and shadowed diamonds représent wore complicaled attractors (periods-6, 7, 10 and temporally
chaotic.) Above the curve 2, empty triangles mark the area where only the trivial attractor exists;
black triangles stand for spatio-temporal chaotic states. An aliernative scenario of transition to
chaos oceuts on crossing the line 3; here the periodic soliton is replaced by the spatio-temporal
chaatic atiractor without any intermediate period doubling. The two scenarios “meet” at a tricrit-
ical point & = 0.81,7 = 0.25. Finally, in the region above the line & = m and to the left
of the Hopl bifurcation curve 1, the instability of the zero solution develops into spatio-temporal

chaos. 28

This zg(x) is. at the same time. an eigenfunction of the operator A, pertaining to the parameter
value g = po and eigenvalue 7 = 0:

Aupzo(x) = (= pod 2ot} = 0.

The conjugate operalor ALD (= Aun) will alse have an eigenvalue i = 0; this implies that {—q)
ix an cigenvalue of STV, QE.D.

There is one point in the above proof that requires a word of caution. H 7715 an eigenvalue of .
a nonlermitean operator in the Hilbert space, the conjugate operator A¥ does not. in general. have
1o have an cigenvalue 3*. Cousider, for example, a shift operator T defined on infinite sequences
X = (& ity )

T(21,2, %3, 000 = (X2, 3. F4,5.-.) (63)

H 15 casy to sce that 3 = 0 is an eigenvalue of T'. with an eigenvector (1,0.0,...). However.
the conjugate operator Tt does not have a zeto cigenvalue. This follows from the fact that the
kerned space of i (i.e. the space of all x such that Tix = 0) is given by R({T)L. the orthogonal
complement of the range of 7. Since the range of the shift operator (63) obviously coincides with
the entire space, R{T)* consisls only of the zero element, and so Tt has o zero eigenvalucs.

Fortunately, Lhis sttuation does not arise for discrete eigenvalues of differential operators {whose
cigenfunciions are smooth and exponeutially decaving al infinities.}) The reason is that these
cigenvalues can be approximated by eigenvalues of finite-dimensional matrices. Lor instance. one
can approximate derivatives by finite differences (as we o in section -L2) or use a truncated
cxpansion over some complete set of functions (which is the approach of Ref. {15]). I any case.
sending N — co, one of the eigenvalues of the N x N matrix Ay will approach the discrete
cigenvalue of the differential operator A: iy — 5. On the other hand, if 5y is an eigenvalue of the
natrix Ay, the Hermitean conjugate matrix Ay will have an eigenvalue iy, When & — oc. the
sequence 37, converges 1o a discrete eigenvalue of the Hermitean conjugate operator AT whieh is
therelore cqual Lo %,

Coming back 1o the shift operator eq.{63), notice that its zero eigenvalue cannof be approxi-
maled by a sequence of finite-dimensional matrix cigenvalues. In particular, if we attempt 1o use
a finite-dimensional shift operator with periedic boundary conditions:

Tr(er, e ) = (T2, 830 0 BN EL),

we will immediately find that cigenvalues of the latter are givea by exp (2xin/N)on =0.1.... V- L.
None of these Lend to zero as N — oo.
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