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1 Introduction. 

J.l MQtiwtion 

In the last_ fifteeri years the role of low-dimensional sPatially localised attractors i~ th~ nonlinear 

p!J.rtial differential equationS has been widely appfeciated, · and a great depth of UJJ-derstanding 

6f their prop~rties achieved. Especially well documented are the AC-dri~en_ damped sj~e-Gordon 
system, 

qTT - qzz +Sill q = -O.q'T + r Sill (wT), (I) 

and its small-amplitude limit,. the externally ~riven damped nonli~ear SchrOdinger equattoll (NLS): 

iWt + W~:z; + 2IWI2 W = .:....ijw- hei~t. (2) 

-Both systems have numerous applications in a variety of fields, including long Josephson junctions, 

· easY-axis ferromagnets in microwave fieldS and an rf~driven plasma. 

The first step in the- analysis of the damPed driven .NLS solitons W3.!' made by Kau~ and 

New~ll [1]: Under the assumption that the damping and driving are weak, these-authors developed 

an Inverse· Scattering-based adiabatic perturbation procedure ta- realise that solitons lock to the 

frequency: of the driver. For sma.Ilh and 1 , there are two co-exis-ting phase-locked solitons, one cor­

~e:sp-Ondi.ng to focus and the Other One-to-saddle ·of Kaup (!.nd Newell's adiabatic equations (i.e. one 

soliton is st~ble and· the _other one unstable against adiabatic pertUrbations of their amplitude and 

phas-e.) This result remains Valid for the sine-Gordon breather, whose small amplitude counterpart 

the NLS soliton is [2}. 
Subsequent computer-simulations of eqs.(l)'and (2) ~evealed a_rich variety of spatially toh_er­

. e~i attractors, including--temporally periodic and chaotic stR.tEis [3]-[5}. A particularly important· 

observation Was that even in chaotic regimes, the spatial s_tructur~ Of the-field can he relatively 

sit;npie and descrihed b:y: only a-tew_ spatiaily lOcalised ·solitonic modes. A special-role of the soliton 

(or soliton waVe-train if periodic_ boundary conditions are· implied) has therefore· been reinforced 

for the damped driven systems. . 
The bifuications and· routes to chaos in the dynamics of- a sili:gle soliton were studied- both 

numericitlly and analyticiilly, mainly' Within pertUrbative attd variational approaChes (6Hl3]. One 

· of the mai_n difficulties here is tha.t soliton solutiolls ar_e not available in' closed form. (Here by solito]l 

we mean the N'LS so_liton, th:e sine-Gordon.· breather, and their wave-train-couriterP3.rts).· Particular 

relevant for· the present ~ork. is ref.[9J where the Spectruni of linearise.d excitations w~ stud.ied 

in order' to understjl.~d the sqliton's inst~bility ·mechanism. Although Providing :an important 

qualitative in~ight into the dynamiq; Of eigenvalUes on the complex _plane,- the conclusions of [9] 
were based Una heuristic ansatz for the ~olution' (the phase_ was assumed to be i:onstant) and had 

to be verified using the numerically found .soliton profileS (15]. · 

In the u'ndamped cB.se { 7 = 0) the two coeXisting soliton solutions can be ·found explicitly; tll~ 

stability problem. is also more amenable to ·arialytical study in this case. I_n 'Particular, one can 

prove that one ·of the solitons is always unstable for (all h, not' necessarilY small ones). As far as 

the se<:ond soliton is concerned, it !-Can loose its stability only·via a· Hopf bifurcation -(14]. 
Terrones, MCLaughlin, Overman arid Pearlstein considered the full dampe.d driven NLS equatiori. 

on a ·finite interval [15}. They· constructed x-per.iodic solutions perturbatively, as a p~w.er- series 

ove.r small parameter multiplying the driVer's strength and dissipation- coefficient; alsO--they have_ 

computed these so!utions tiumerically. For small value~ _of h and 7 two Soliton wave-trains were 

recovered- coirespondi'ng to the saddle and focus· _of Kaup and Newell's adiabatic equations. In 

ref.{15] the sPatial period was linked to the value ~f ,the dissipation coefficient; 'mo're precisely, 

Terrones et al took L; 15.18 for 7 = 0.1000; L == -13:15 for j ~ 0.1333; _L = 12.24for "-y = 0.1538, 
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and[,= 10.73 for 7 = 0.2000. For these values of Land 1 they solved numerically the linearised 

eigenvalue problem and demonstrated the existence of the Hopf bifurcation. 

An interesting phenomenon encountered in ref.[l5] was the stability windows. Increasing the 

driver's strength for the fixed dissipation coefficient, the eigenvalue of the linearised operator crosses 

the imaginary axis into the right half of the complex plane (unstable region), then returns to the left 

half, and then crosses into the unstable region again. There are three Hopf bifurcations, therefore, 

and then> is a certain region where the spatially periodic solution regains its stability. 

In this paper we consider localised solutions of eq.(2) on the infinite interval, L -0 oo. We 

obtain tlwse solutions, solitons, numerically, and then analyse their stability. Our main objective 

is to wnstruct the existence and stability chart on the (h,7)-plane. This chart will serve as the 

first step towards the complete attractor chart of eq.(2), similarly to the attractor chart for the 

pliJumetrically driven NLS, 

i'Wt + W.,., + 2[W[2 W = -i-yW- heifltll!*, (3) 

which was constructed in refs.[l6]-[17]. 
Although the solitons (i.e. solutions with f/>.,(±oo) = 0) and soliton wave-trains (for which 

1/>(x + L) = i,b(x)) may look qualitatively similar when plotted on a finite interval (-Lf2,Lj2), 

their respective domains of existence are different. Stability of solutions is also very sensitive to the 

interval length; in particular, we demonstrate that, increasing L, the stability windows of Terrones 

et al, "close". There are no windows of stability on the stability chart of solitons (L = oo ). 
The paper is organised as follows. In sec.2 we consider the spatially homogeneous (flat) solution, 

and analyse its stability. In the next section, sec.3, the upper and lower boundaries of existence 

domains of two solitons are found numerically. Sec.4 deals with the stability of the solitons. We 

show that one of the two solitons is always unstable, and describe the stability region of the other 

one. The issue of stability windows is also addressed therein. Finally, in sec.5 our existence and 

stability chart is compared with results of direct numerical simulations available in literature . 

1.2 Relation to the sine-Gordon equation 

Out of three parameters h,J and .!1, only two are significant. Indeed, if W(x, t) is a solution of 

eq.(2) corresponding to h,7 and .!1, W"(x,t) = k'I!(kx,k 2t) is the solution corresponding to h = 

k3h, {/, = k2.!1 and 1 = k27. Hence we may always fix e.g . .!1 = 1 and retain only hand 7 as control 

parameters [14, 15]. 
Next, the substitution W(x,t) = eit'if;(x,t) reduces eq.(2) to an autonomous equation 

i,P, + "'"- "'+ 21>/>1
2

>/> ~ -i1>/> -h. ( 4) 

In this pap~r we will be always using the representation ( 4). On several occasions we will make 

contact with results of Terrones et al (15]. These authors study the NLS equation but present their 

conclusions for the externally driven sine-Gordon, eq.(l). The correspondence between eq.(l) and 

( 4) is established by the following formulas: 

q( r,z) ~ 4£Re [i,P(t, x )e_;w'l + O(o3
); 

X= €Z, 

a= £2/, 

,, 
t= 27j 

r = 4£3h, 

where £ is the detuning of the sine-Gordon driving frequency from unity: 
,, 

w = 1- 2' 
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Eq.(6) implies that the sine-Gordon interval length, Lsa, and the NLS interval LNLS are related 

OS 

Lions =ELsa- (9) 

For example, results of ref.[15] obtained for w = 0.87, a = 0.04 and Lsa = 24 correspond to our 

eq.(4) with I= 0.1538 ~nd LNLS = 12.24; 

2 Flat-locked solutions: existence and stability domains 

2.1 Three branches of flat solutions 

We start with the analysis of spatially homogeneous solutions (lllxx = 0) locked to the driver's 
frequency: W(x,t) = 1/Joe•t. The complex amplitude -ij;0 satisfies the algebraic equation 

- 1/Jo + 2llfoi 21/Jo = -i'Y'I/Jo- h. (10) 

The equation (10) was, of course, discussed before [7]; for the most detailed analysis see Terrones 
et al [15]. We are nevertheless going to reconsider it here because we will need some facts about 
flat-locked solution in our study of solitons. The main distinction from the work of Terrones et al 
is that we will consider eq.(lO) in the whole range of parameters, while those authors restricted 
themselves to small values of hand 'Y· Also note that there are some notational distinctions: (i) 
our NLS equation (2) has different coefficients with respect to those in [15]; (ii) our driver his real 
and positive and 'if;o is complex whereas Terrones et al work with complex h and real positive f/;0 ; 

(iii)- conclusions of [15] are presented in the sine-Gordon rather than the NLS notation. 

- WritiJ?:g 'if;o = ae18 i ~<]_:(l~):re_?u_~~~~t~_:_a-system-

-a+2a3 = -hcosO, 

-ya = hsin8. 

Eliminating 8, we obtain an equation cubic in p0 = a2
: 

4pg- 4p5 + (1 + -y2 )p0 - h2 = 0. 

Any positive root p0 of this equation defines a flat-locked solution '¢0 = ...;poe;8 where 

tanO = - 1-. 
1- Po 

(ll) 

( 12) 

(13) 

The analysis of eq.(13) is straightforward. First of all, it cannot have real negative roots. 
(Substitute Po= -q and obtain a sum offour strictly negative terms.) Hence there are either three 

positive roots, or one positive and two complex-conjugate roots. In terms of 

P(po) =Po [4pS- 4po +(I+ 12
)], 

eq.(13) is rewritten as 
P(po) = h2

• (14) 

When -y2 ;:: ij3, we have dPfdp0 ;:: 0 and so eq.(14) has just one real root, whereas when -y
2 < 1/3, 

there can be either one or three real roots (Fig. I). 
In the latter case the number of real roots is determined by the sign of the expression 

Q = (''-//3)' + (''~1/9 -h')' 
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If Q < 0, there are three real roots; if Q > 0, there is just one. After some algebra, this criterion 

translates to the following one: 

where 

{ 
3 roots if h_(-y)::; h.::::; h+('Y); 

1 root otherwise, 

h±C1l = {!c,' + !l ±! 3 9 3 
! (! )3}''' 3 3_'Y2 

(15) 

(16) 

Summarising, we have two cases. First, for 'Y 2: 1/V§ and all h, we have just one flat-locked 
solution (the right-hand curve in fig.2). Second, for 'Y < lf,J3 (left-hand curve in fig.2) we have 
three branches of solutions: there ate three solutions for h lying between h_(-y) and h+('Y), and 
only one solution if h does not fall into this interval. The first (lowest) branch satisfies 

0 < I.Pol 2 <: p_(-y); 

the second (middle) branch is 
P-h)<: I.Pol' <: P+(1); 

and the third, upper branch is given by 

I.Pol' ~ P+(1)· 

Here 

I I 
P±(1) = 3 ± 6y'1- 31'· 

2.2 Stability of flat solutions 

(17) 

Next we proceed to the stability of the·flat-locked solutions. Taking '1/J(x, t) = ,P(x) + 8'if;(x, t) w-here 
1/J(x) is a stationary solution of eq.{4) and 8'1/J is a small perturbation, and line:arising eq.(4) about 

1/J(x) yields 
J(yd 1Y) = Hy. 

Here y(x,t) is a two-component column comprising of the real and imaginary part of the pertur­

bation: 

( 
R.e8,P) 

y(x,t) = Im8,P ' 

and H and J are 2 x 2 matrices: 

( 
0 -I ) 

J = 1 0 , 
(18) 

( 
-82 + I - 2(3,Ph + ,Pj) -4,PR1>I ) 

H = -41>R1>I -82 + I - 2(3,Pj + 1>1) 
(19) 

where{}= {}jOx. Finally, 1/JR(x) and 1/JI(x) represent the real and imaginary part of the solution 
'lj;(x) whose stability is examined. In the case at hand, '!fJR and '1/JJ are the real and imaginary part 

of the flat-locked solution '¢0 , i.e. 1/Jo = 1/JR + i'lj;J. 
Separating the time variable, 

y(x,t) = z(x)e>.t, (20) 
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we arrive at the eigenvalue problem 
Hz(x) ~ pJz(x), (21) 

where 
p~i>+-y. (22) 

In general, f.L and z(x) are complex. The solution 1/J(x) will be stable if eq.(21) does not have 
eigenvalues J.t with the real part greater than "f· 

In the case of the homogeneous solution 1/J(x) = 1/Jo, the eigenvalue f.t and eigenvector z(x) can 
be found explicitly. Writing z(x) = z0e-ikx, we obtain a matrix eigenvalue problem 

(H,- pJ)z, ~ O, (23) 

where 

( 
k2 + I - 2(3¢'1, + ¢j} -4¢R¢I ) 

Hk = -4'¢n1J!1 P + 1- 2(3'¢} + Vlk) ' 

and 1/JR = Re 1/Jo, 1/!1 = Im Wo: Equating the determinant of (H k - pJ) to zero, we finally arrive at 

- p2 ~ (k' +I- 2IV>ol2) (k2 +I- 6IV>ol2). (24) 

If I1/Jol2 S 1/6, there are no k's such that 

F(k2 ) ~ (2IV>ol2 - I- k') (6IV>ol 2 - I- k2
) 

is negative, and so Rewis always zero and the flat solution is stable. Let us now assume that 
I1/JoJ2 > 1/6. Here we have to differentiate between two cases. First, if 1Wol 2 > 1/4, the minimum 
of the parabola F(k2 ) occurs at k2 = 4j1j;0 j2 - 1 > 0 and is equal to Fmin = -411fo!4

• The 
corresponding Rep is maximum and equals 2j'¢>0 j2 • Consequently, the peturbation Otj> will grow in 
this case if 2I'I/Jol2 > "f· (This is the case of the modulation instability.) 

Second, if 1/6 < 11/lo12 ~ 1/4, the minimum of F(k2
) occurs at k2 = 0. In this case F,nin = 

(21'\bo12 - 1)(611/Jol2 - 1), and the perturbation will grow if 

- (2IV>ol2 - 1) (6IV>ol2 - 1) > -,'. (25) 

This is an instability with respect to spatially homogeneous perturbations. The inequality (25) 
amounts to 

P~('Y) < IV>ol2 < P+h), 

with P± as hl eq.(17). Notice that since P-(J) < 1/4 only if-/< 1/2., this type of instability may 
occur only in the region 1 < 1/2. 

2.3 Summary of flat solutions 

Summarising, we have three typical situations. 
{a) ·o < 1 < 1/2. This situatiOn is presented in Fig.3(a). We have three branches of flat 

solutions. The whole of the lowest branch is stable. (Here l'¢0 12 < P-("f) and h < h+(J) ). The 
whole of the upper branch as well as the upper part of the middle branch above l'¢ol2 = 1/4, are 
modulationa.lly unstable. Finally, the lower part of the middle branch, p_(l) < !1fol2 < 1/4, is 
unstable with respect to flat perturbations. 

(b) 1/2 < 1 < 1/V'3, Fig.3{b). Similarly to the case 1 < 1/2, we have three branches here. 
However, only a part of the lower branch, namely 1tfo1 2 < J/2, is stable. The rest of it as well as the 
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othN two hraurhes, are modulationally unstable. In tPrlllS of hand 1· tlw im'(juality ll'o1 2 < 1/"2 
1 ranslat(•s iuto h < h*( /) when• 

h.(o)=' v1'-co2 +1/2. (261 · 

{c) 1' > I//3. This situat-ion is depicted in Fi,e;.:-l(c). There is just one branch which is stable 
for 1~·u1 2 < 1"/2 (i.e. for h < h*{))) and modulalionally unstah\1? otherwisf'. 

Finally. our (h.1·)-plane is decompos('d into two infinite regions. see Fig..t. A stablf' homogeneous 
solution ('xists in th-f- blank region: the domain of instability has been shaded. Thf' boundary 
h!'twl'l'll thP two regions is givP11\y 

3 Solitons 

3.1 Asymptotic behaviour 

h( -i) = 
{ 

"+11). 1 s 1/2; 

h~(/ ). 1 ~ 1/2. 

(21) 

Another lyJH' of insight providNl by the analysis of tiH• flat solutions. is into tiH' asymptotic lw­

haviour of spatially localised solutions. Indeed, if ~··(:r) is a static solution approaching asymptoti­
rally t.lw valu(' if•0 , then denoting lil/• = if•(;t)- ~··0 we find that 

( 
nolo· ) 

y(.r.) = lml>~· 

sa.tisliPs 
/Jy(x) ~ 1./y(x). (~('oi) 

with.] and II <IS in {18) and (19). Writiug y(;r) = r-ih, we obtain: 

(k2 +I- 2li•ol2
) (k' +I- 6\d·ol') ~ -o'. (2!J) 

This <•qua.tion has two roots, kf and k~. Cons~'(Jtlently. the general solution of l'q.(2X) is a t>\1111 

of four exponPntia.ls, c±ikJ.>· and c±ik2.r. If both k1 and k:z a.r(' n•al for rt'l'tain [co[. y(.r) is not 
lora.lisPd and so eq.(4) can not have localised solution in t.h<• <·orn•spomliug region. Both ki and q 
an' posit.ive if the following thrf'f' wnditions are satisfie-d simultan<'onsly.: 

(i) The discriminant of (29) is positiv(': 

1if•o]2 > 2. 2' 
(:101 

{ii) The produd of two roots is positiv('; 

(21</•ol 2
- l) (6li•ol'- I)+ 12 > 0; (:ll I 

(iii) The sum of two roots is positiv(': 

Hl</•ol 2
- 2 > 0. (:12) 

Again, we have to r.onsider SC'Veral casf's. 
If "f > I/ /3, the condition (30} is stronger than {32) while (31) is s;l.tisli<•d for all 1 t 'nl· This 

mPans that tlw nmdition for thP solitons llOIH'Xistenn• is simply ]if•o]2 > 1/2. or. iu I !'TillS of l1 and 
f, h > h*("f) whl'n' h* is a,<; in e<J.(26). 
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If 1/2 < 1 < If/3, the inequality (30) is still stronger than (32) while eq.(31) amounts to 

IV>ol' E (O,p-)U(p+,oo). (:!3) 

Taking the intersection of (33) and (30), one gets 

• I>Pol' E G·P-) U(p+,ov), 

where P± = P±bl are as in eq.(17). 
Finally, when "{ < 1/2, eq.(32) is stronger than (30), while P­

intersection of (33) and (32) is simply 

is smaller tha11 1/4. Thus the 

lt11ol 2 > P+(/). 

These conclusions are summarised in Figs 5 and 6. In Fig.5, dashed is the region where solitous 
existence is excluded by the above asymptotic reasoning. In principle, solitons could have existed 
for lfJo 011 the middle branch (i.e. between the curves ltPol2 = p_(-y) il.nd ltPol2 = P+(-y) on Fig.5). In 
this case one pair of exponents k1,2 is imaginary, the other one (k3,4 ) is real. However, no solitons 
with asjmptotic values on the middle branch were found (see subsection 3.4). As we will show 

below, solitons exist only below the line 

I>Pol' = { 
P-io), 

7/2, 
'" l/2; 
':> l/2. 

Consequently, the soliton's existence region lies on the lowest branch of ]1/lol (see Fig.6 a-c). 
Our final remark in this subsection is on the way the soliton approaches its asymptotic value. 

Here our interest is motivated by indications that solitons with undulations on their spatial "tails" 
can form bound states [ 18}. For 1Wol 2 < 'Y /2, the ('Xponents k1 and k2 are a pair of complex-conjugate 
values with nm1zero imaginary part. Consequently, each of the four exponentials undergoes undu­
lations. On the other hand, when "{ < 1/2 there is a region where both ki and ki are negative. 
This region is defined by the intersection of eq.(31) and the inequality l1/>o1 2 < 1/4; it is not difficult 
to realise that this intersection is 

I < lwol2 <P-h). 
2 

(34) 

In this region solitons approach their asymptotic values mo_notonically; according to [18), no bound 
states of solitons may emerge under such circumstances. This region pertains to the lowest branch 
of the flat-locked solutions. In terms of hand-y, eq.(34) can be rewritten as 

h,(7 ) < h < h+l<l (o <:D. (35) 

3.2 Numerical solutions: the method 

For 'Y = 0, the equation 
V'u -,P + 211>1 21' = -i"{jb- h (36) 

admits a pair of exact soliton solutions [14]: 

W±(x) =,Po (1 + 
2sinh

2 
o: ) 

l±coshacosh(Ax) · 
(37) 
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Here a is defined by 
h = Y2 cosh

2 
a 

(1+2cosh2 o) 312
; 

(38) 

h( a-) being a monotonically decreasing function, a is uniquely determined by h. Next, '1/Jo is the 
asymptotic value of both 1/J- and 1/J+ solitons: " 

1/J±(x) ______,. 1/lo as lxl-+ oo; 

7/>0 is real and positive: 
1 

V>o =. . 
.j2{1 + 2cosh2 a) 

(39) 

Finally, A has the meaning of "twice the area" of 1/>+ and 1/1-, and is equal to 

A = 2 jc '¢~ -1/J5)dx sin~ a 
JI+2cosh2 o 

(40) 

Solutions 1/J+(x) and 1/J-(x) are plotted in Fig. 7. The domain of existence of both of these 
extends from o: = 0 to a-= oo, or, in terms of the driver's strength, from h = 0 to h ~ -.j2f27-;::;; 
0.2722. 

For "f > 0, no exact solutions are available. We therefore had tp obtain solitons numerically. 
Our numericitl scheme was based on the continuous analogue of Newton's method (see [19] for 
review and references). 

Writing the discretized eq.(36) as 
G(¢)=0, ( 41) 

where 1/J = ('¢1 ,'¢2 , ... ,1/Jn) is the discretized solution,'¢;= 1/>(x;), we introduce an auxiliary "evo­
lution" parameter r in such a way that 1/J(r) satisfies the differential equation 

d 
dr G(,P(r)) + G(,P(r)) = 0 (42) 

with the initial condition 
,P(O) = .pl01. (43) 

Here "1/J(o) is an initial guess for the soliton solution. Since G(1/J(r))-+ O_as T-+ oo, 1/J(oo) satisfies 
eq.( 41 ). Our iteration algorythm is based on the discretization of eq.( 42) with respect to r: 

.pli+II = .p(il_ t.r(i+ll (aa) _, . G(.p(il), 
a.p .P=.P"' 

where j = 0, 1, 2, ... , and .6.rU+1 ) = rU+t) - T(j) is chosen so as to minimize the discrepance 

6(ii = max{IR.eG;( .p!iiJI, lim G;( .f>lil)l). 
' 

(For details see [19]). 

(44) 

(45) 

Our continuation strategy was as follows. First, we used the exact solutions {29) as an initial 
approximation for "f = 0.02 and h in the middle of the interval (0, J2727), i.e. for h = 0.136. 
Second, we utilised the obtained numerical solutions as initial approximations for the same 'Y = 0.02 
and h above and below 0.136. We advanced along the h axis until the Newtonian iterations ceased 
to converge. The absence of convergence may· be caused by a bad initial approximation; for this 
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reason we had to decrease the increment t'lh in the neighbourhood of the boundaries of the domain 

of existence. As a result, we were able to establish both the upper and the lower boundaries with 

the desired accuracy, see below. Next, taking the numerical solutions at approximately the middle 

of the domain of existence for 1 = 0.02, we employed them as initial approximations for the same 

h with "/ = 0.04; then advanced up and down in h, and the process repeated. 

The bulk of calculations was performed on an interval (-L/2,L/2) = (-30,30), witl1 the 

exception of the neighbourhood of the upper boundary of the domain of existence, where the solitons 

decay very slowly in x. In this neighbourhood the interval length L was increased appropriately. 

Generically, we utilised the second order Newtonian algorythm with the grid spacing E!..x = 0.1; the 

neighbourhood of the upper boundary was, again, an exception (see subsection 3.4). 

Similarly to the case when 1 = 0, in the case of nonzero dissipation solitons generically come 

in pairs. By analogy with the 1 = 0 case, we denote them -¢+(x)·and "l/'-(x). Fig. 8 shows their 

profiles for s'everal typical h. Here we have chosen values of h not very close to the lower boundary; 

the behaviour of solutions in the neighbourhood of the lower boundary can be quite peculiar (see 

Fig.lO below). 

3.3 Existence domain. Lower boundary 

The value of h demar_cating the lower boundary is usually referred to as the threshold driving 

strength: for a given "/, no localised solutions are possible for h < htlrr· Kaup and Newell have 

found [1], by means of the Inverse Scattering-based perturbation theory, the following estimate for 

the threshold value: 2 
htlrr = -"{. 

• 
(46) 

Spatschek et al [11] and Terrones et al [15] reproduced eq.(46) by expanding 1jJ_(x) in a perturbation 

se,ries in powers of small h and 1. · 

The threshold _value that _we have found numerically is plotted in Fig. 13 at the end of this 

section. For comparison, we. have also plotted the straight line h = (2/7rh in the same picture. 

Surprisingly, the deviation of the actual htlrr from (2/7r )"'is extremely small even for not very small 

1- For example, for 1 = 0.48 we have 

htlrr _ ~ = l0-3; 

' . (47) 

for 1 <; 0.48 the above difference is even smaller. However, as 1 grows beyond 1 ~ 0.5, the actual 

htlrr gradually deviates from (2/7r)'Y. 
For h = htlrr the two branches of localised solutions, '¢+(x) and 1JI-(x), merge. The point 

h = hthr is a turning point, therefore. We illustrate this fact by plotting \-¢(0)\2
, the modulus 

squared of the value of 1JI±(x) in the middle of the interval, as a function of h (Fig. 9). 

It is interesting to follow the evolution of-¢+ and 'ljl_ when h approaches the threshold value 

from above. The transformation of lfJ+ into 1/J- is illustrated in Fig 10. 

3.4 Existence domain. Up-per boUndary 

Let us now turn to the upper boundary of the existence domain. The upper boundary is different 

for 1fl+ and 1/J- solitons, and depends on 'Y· Three typical regions can be identified as follows. 

(a) 0::; 1 :-; 1/2. Here we have three branches of flat solutions 1/Jo (fi.g.3a); the lowest branch 

is stable, the other two branches unstable. All :numerically found solitons -¢+ and 1/J- have their 

asymptotic values lying on the lowest branch. It is natural to assume that the upper boundary of 

the domain of existence of the lfJ+ and 1/J- coincides with the point h = h+(/), \l/Jol2 = p_(l) which 
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S('par<itPs the lowest branch of lr/•or.l from the adjacent branch. We have verified this hypothesis 

numNical\y. · 

Our strategy was to find the solitons lfJ+ and ~'1_ with the asymptotic value \-r:•of.l as close to P­

as possib[P. As a closest asymptotic value we adopted P('Y) = p_("')- l.O x w-3 and examined 

an equidistant set of 7's b('tween 0 and 1/2 (1 = 0.02,0.04,0.06, ... ,0.48). For all these 1· we were 

able t.o fiml both -r,l•+ and 7/1_ solitons with th(' asymptotic value \1/'oF = PO). Cons('quently. we 

r;m a!;sNt that the upper boundary of the existenrC' domain (expressed in terms of l~t•of.l) is not 

furtll('r away than w-3 from the value 11/•012 = p_('Y). In terms of h. th(' proximity is e\"('n doser. 

De\·iating \V•o\ 2 from P- by C. {IV1o\ 2
) = 10-3 results in the deviation C.h in h; this deviation can 

lw ca;;ily found by m<>ans of the ('Xplicit formula NJ.(l3): 

h ~ v'liv•ol" -ll<•ol' + (! +o'llv•ol'· (48) 

For "f < 1/1. the above deviation is "' 10-ti. {Mor(' precisely, as 1 is increased from 1 = 0.0:2 

through 1 = 0.4fl, the deviati011 C,/t d('crcases from C.h = 3.7 X JO-G through j.h = l.6 X 10-0). 

Th<> smallnesl'i of fl.h is explained, of cmJr;;P, by the fact that the d('rivativ(' dhfdh1•0 \2 goes to ZNO 

<~s \rJ•o\ 2
----; P-· 

Parameter.'! of our lltllllerical schemE' wen• chosen consistently with th(' smallness of tlu> incre­

ments b..h. In order to be able to approach the vahw h = h+ as close as th(' distance J.h ,._ to-!i. 

we had to require the discrepancy (45) to be not larg('r than ('iti) = w-'. Here W{' took th(• .st•rorul 

orde>r Newtonian algorythm with .b...a: = to-3 , "i.t>., the truncation error Wa,<; of ord('r ( ~.r r' ::::: w-9• 

SinH' W(' were looking for even soh1tions, it was suffici('l\t to solvP P<J.(:I6) on a half~intNval 

(0, L/:2) with the boundary conditions 1/\.-(0) = if•~·(D/2) = 0. Wiwn .1· ~ oc, \h(' ,;olitons <h·ray to 

the value 1/1o exponentially, as exp ( -\hnkja:), where k is giv('n by t>q.(:29). Wh(•n ) grow,; from 0.0:2 

to 0.-18, the exponent Jlmkl c.orresponding tO \1/•ol2 = p, grows from 0.07 to 0.1 . Conli('(JUPntly. 

choosing the,half-intervallength L/2 = 300 we ensured that \1/•±(L/2)- ~·o\ would not ('XC('ed 10-11 • 

Thus, our nmnerical study shows that in tht> r('gion 0 < 1· < 1/2 tltc uppN boundary of t.l!(' 

existencc domain (for both tf•+ and t/1_ solitons) is given by \~··ol 2 = P-(1) or, in t('nns of\IJ(' driwr"s 

strength, by h = h+("f). As we approach the "kuf'P" of thc hy;;th£'fPsis fllfW I!J•ol2 = l~··o\ 2(h), i.e. 

a.s \1/1o\ 2 
---> p_, the soliton 1/1+(x) flattens Ollt so that when h = h+(1'). t.he !}•+(J") mNg('s with 

tlw flat solution: ¢+(.1:) = 1/Jo. (See Fig.8 a, b). Thi.'! is in agrC''enwnt with tlw a.<;ympt.otic analysis 

presented in the previous subsectio11 wher<> W(' hav(' shown that ash_. h+(1) and \!l•o\ _. P-(1). 

tlw decay expo1l(mts kl,".l,3,4 ....... 0, 

The second solution, 1/•-(x ), do<>s not flatten out a.'> we approach the h_vstcr(':;;is kn<>c although 

the deeay exponents go to zero. The solution 1/•- l"Pmains localisNI (Fig.H <",tl). but tl](' d<•ray 

bec.omcs polynomial not expmwntia.l. In the undamtJed case, 1 = 0, t.his ran lw dPmOlJStrat.cd 

explicitly. Sending a---> 0 (h---> J2!27) in eq.(:H) yields . 

I x 2 - 9 
1•-(x)__,. j6;r2+3" 

(b) 1/2 < "{ < 1/../3 ~ 0.5774. In this region the r.urve l~'ol2 = j1.1•0 \2 (h) is similar to tlw <·asP 

(a); there arc three branches. However, the flat solutionloosPs its stability 11ot at t.IH• ''knep" point 

but earlier, at 1Wol2 = 'Y/2 (fig.4b). On tlw oth<>r hand, we know from the discussion in snbs('C.3.l 

that there can be no solitons with \V1o\ 2 on the lowest braneh above l1/'o12 = ; f'l. Con;;pqupntJy. it 

i~> natural to assume that the upper boundary of tlw soliton's existenrl:' domain - · both for t.lw ~'+ 

and 1/J- - corresponds to IV,ol2 = 1/2. We examined this hypothesis tlsing the samP nil.('fion as 

in the region 1 < 1/2. Surprisingly, tl1e results for the V•+ and 1/•- tunwd out to be clifrNI'nt.. 

11 

II 

1( 

II 
if 
:1 

fl ;: 
n 
I 
~ I, 
~ 
l 
d 

i
ii 
. 
h 



I 
i. 

II 
I ' 

I[ 

!I 

~I 
·' ! 
I, 

I· 

'I 
\, 

We examined '} ::::: 0 . .52, 0.54 and 0 .. 56. For all thesP 1's we were able to find the 1/'+ soliton at the 
distance .:l (jt1•o\2 ) = l.O X 10-:l away from the value \¥-•o[2 = 1 j'l, i.e. for \1/Jo\ 2 = ('r /2)- 1.0 x 10-

3
. 

The lf'+ solution is shown in Fig. II. 
As far as the 11•- is concerned, the upper boundary of its domain of existence was seen to deviat(' 

substantially from 'Y/2. Namely, for 1 = 0.52 we were unable to find the 1/J_ soliton for IV•oP' closer 
than 6 x w-3 to 1 /2; for 1 = 0.54 and 0.56 this gap was 8 x 10-3 and ll x 10-3

, respectively. 
(See Table I.) Here the parameters of the numerical scheme were Ax = 10-3

, 6Ul = 10-
7 

and 
L/2 = 600. We do not plot the Jj;_ solitons as tlwy look qualitatively similar to those arising in 

the region 7 < 1/2. 
(c)-,> lj-,/3. In this region there is only one branch of flat solutions for each h. Similarly to 

the case (b), the flat solution becomes unstable for I1/Jol 2 > 1/2 and similarly to that ca:>e, there 
can be no solitons in the region hbol2 > 1/2. -Our numerical results in this region are also similar 

to the case (b). The 1/J+ soliton exists for values of I'I/Jol 2 up to and including (1/2)- w-3
. On 

the other hand, the upper boundary of the existence domain for the 1/J- soliton, was seen to be 

lower {see the Table 1 ). Fig.l2 gives the profiles of the 7/J+ and 7/J- solitons in the region 1 > 1/ .,fJ. 
The numerical parameters in the vicinity of the upper boundary were 6.x = w-3

, 5(j) = 10-
7

, and 

L/2 ~ 600. 

3.5 Soliton existence region: summary 

Our conclusions are summarised in Fig.l3. The upper dashed line is given by eq.(27) and demarcates 
the upper boundary of the domain of existence of the 1/J+ soliton. The upper solid line shows the 

upper boundary for the 1/J_ soliton's domain of existence. For 1 < 1/2 this boundary is given by 
the same eq.(27) wherea..<; for 1 > 1/2 it deviates from eq.(27). This deviation is however quite 

small ( 6.h'"" w-~ - 10-4 ) and not visible in the plot. 
The lower da..<;hed line is a stralght line h = (2/11")1'; it yields an approximation for the lower 

boundary of the domain of existence. The actual lower boundary htltr (which is the same for 
both lP+ and "if;_ solitons) is shown by the lower solid line. Again, the dashed and solid lines are 

graphically indistinguishable. 
Finally, the middle solid line is the stability boundary of the 7/J- soliton. It will be discussed 

below (sec.4.2). 

4 Stability of solitons 

4.1 Spectrum structure 

To analyse the stability of the 1/J+ and 1/J- solitons, we numerically solved the eigenvalue problem 

(21) with Has in eq.(l9), and 'if'R(x), 1/JI(x) being the real and imaginary part of the corresponding 
soliton solution (found numerically beforehand.) Solution is considered stable if Re,u < 1 for all 

eigenvalues fL. 
Continuous spectrum. Before proceeding to results of the computation, we need to describe 

the spectrum st.ructure of the operator J-1 H. When lxl _,_ oo, the soli~ons 1/J±(x) approach the 

value 1/Jo, eq.(2l) reduces to a matrix eigenvalue problem (23}, and the eigenvalue ,u and wavenumber 
k are related by the dispersion formula (24). The number ofreal r9ots k1 ,k2 , ••• of eq.(24) determines 

the multiplicity of the continuous spectrum. 
When I7/Jol2 < l/6, the cm1tinuous spectrum occupies the whole imaginary axis of ,u outside the 

gap -w0 < Irn,u < w0 , where 
wo ~ v'C2R'~I2 - 1)(6l</>ol2 - 1). (49) 
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When I1/Jol 2 > l/6, the continuous spectrum fills in the entire imaginary axis a.nd the region 

-v S Re,u S v on the real axis. Here 

{ 
y'(1- 2IV>oi')(6IV>ol'- 1), 

v ~ 21</>ol', 
IV>ol2 < 1/4 
IV>ol 2 > 1/4. 

Discrete eigenvalues can be complex and real. If ,u is an eigenvalue with the eigenfunction 
z(x), its complex conjugate 11-* is also an eigenvalue with eigenfunction z*(x). This follows simply 
from the fact that ·H is an operator with real coefficients. A less trivial observation is that ( -,u*) 

will be an eigenvalue as well; the proof of the latter is relegated to the Appendix. 
Thus, real eigenvalues of J-1 H will always appear in ,pairs, ,u and (--,u); complex eigenvalues 

will occur in quadruplets: J.t,(-,u),J-1!,(-J.t*). For any values of h and-J, the operator J-1 H has 
two discrete eigenvalues: 1 and ( -J}. (This is true for both 1/J- and¢+ solitons.) The eigenvalue 
J.t = 'Y results from the translational invariance. The corresponding exponent ). in eq.(20) is equal 

to zero; the corresponding eigenfunction z(x) is given by 

d ( Re</>±(x) ) 
z(x)~ dx lm</>±(x) · 

The other eigenvalue,. J.l = -1, arises due to the symmetry ,u _,_ -J.L discussed above. 

4.2 Numerical solution of eigenvalue problem 

We define a grid with spacing .6.x = Lj(N + 1): 

L 
Xn=-2+n.6.x, n=1,2,, .. ,N, 

with xo = -L/2 and XN+l = L/2, and denote fn = Re51jJ(xn), Un = lm5¢(xn)· Approximating 
the· derivatives by second order finite differences, we reduce the differential eigenvalue problem (21) 

to a matrix eigenvalue problem of the form 

Here z is a 2N-component vector, 

Hz= j.tJz. 

z~ 

It 

fN 
g, 

YN 

and H and J are (2N x 2N) block matrices: 

H~(-D'+u w) 
w -D2 +v ' 

( 0 -I) J ~ I 0 . 
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The entries of the N x N blocks u, v, w and I are given by 

Umn ~ {1- 2(3,PJ. + <PlJI _ }omn; 
X- X'n 

Vmn = {1- 2(3¢J + 1/J'ft)l _ }Dmni 
X- Xn 

Wmn = -4t/;nt/JJI Omn; 
X= Xn 

Imn=8mni m,n=1,2, ... ,N. (51) 

Finally, D 2 is an N x N matrix arising from the discretisation of the second derivative: 

2 -I 0 0 0 0 

-I 2 -1 0 0 ... 0 

0 -1 
2 -1 0 . 0 j· 

, 1 I (52) 
- D ~ (!lx)' 

0 ... 0 -1 2 -1 0 

0 ... 0 0 -1 2 -1 

0 0 0 0 -1 2 

Since we are interested in discrete eigenvalues,' we imposed the Dirichlet boundary conditions: 

8tf;(±L/2) = 0 which translate into 

fo = fN+1 = 9o = 9N+1 = 0. (53) 

Eqs.(53) have been taken into account in deriving eq.(52). 

Having fixed -y, we increased hfrom htlrr to h = h+(1'); results "turned out to he qualitatively 

similar for all1 < 0-.3_. Lei us -start with the 1/J- solution. 

As we have already mentioned, there always is an eigenvalue J.Lo = 'Y (or, equivalently, there 

always is an exponent ..\0 == 0} corresponding to the translational symmetry. When h = hthn we 

haVe a turning point and, consequently, there is one more zero exponent ..\1 = 0. That is, at 

h = htlrr we have two pairs of discrete eigenvalues: the translational eigenvalue /LO = 'Y and its 

negative flo= -1 (we shall disregard these two eigenvalues in what follows), and the turning point 

eigenvalue /Ll = 'Y and its negative jl1 = -'"(. 

As we increase h, the eigenvalues itt and ( -,u1 ) approach each other along the real axis, coalesce, 

then pass on to the imaginary axis and the separation between them increases. As h is increased 

further, another pair of pure imaginary eigenvalues, ,u2 and (-~Lz), detaches from the continuum. 

(We remind that the continuous spectrum occupies the imaginary axis outside the gap -wo < 

Imp < ~·) Subsequently, ,u1 coalesces with JL2 , jl1 with ji,2 , and all four eigenvalues move away 

from the imaginary axis. We end up with a quadruplet ,u,p*, -JL, and -p*. 

On further increasing h, the real part of p and p* grows and, at certain h = hHopf• becomes 

equal to 'Y· This is a point of the Hopf bifurcation; for h > hHopf• the soliton 1/J- is unstable. 

The above scenario is almost coincident with the scenario described in [15]; there is just one 

distinction. Terrones at al observed what they called the stability windows: after the first Hopf 

bifurcation, the pair of complex conjugate eigenvalues JL and JL• crossed back into the stable half­

plane Reit <'"(,and then returned to the unstable region ReJL > 'Y again. On the contrary, no 

stability windows were observed in our calculations. (This contradiction is to be rectified below). 

After the pair of complex conjugate eigenvalues have crossed into the unstable half-plane, their real 

parts were monotonically growing. 

Curiously enough, ash approaches the upper boundary of the domain of existence (h __,. h+) 

the limit value of Rep is almost independent of 'Y· More precisely, ash__,. h+('Y), the real part of 
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J! \.Pnds to ,approximately 0.3. This observati011 provides a simple estimate for the value of ''i above 

which no Hopf bifurcatiOJlS may orrnr. Indeed, for 1· > 0.3, Re Jl cannot excPed 1· and so the Jj;_ 

:-;o\iton is stahlf' for all h (S<'C' tlw stability chart Fip;. 13). 

Now wP turn to the!/'+ soliton. As we have already mentioned, at h = hthr (the.·turning point 

where ~:'+ an<! 1/•- merge) there is a nontranslatioual eigenvalue p. = 'Y· (There is also its negative 

parln<'f. ft = -1, but we are concPJltrating on the positive eigenvalue.) Ash is iu.crC'ased. this 

I"Pal l'i!!/'llvahH' p;rows \)('yOJld 1· rC'adws a maximum and then starts decreasing. This p\·olution 

i:-; arroltlpauied hy th<• rpstrncturing of thP continuous spedrum. As ll/"ol2 grows bPyond l/6, thP 

gap -...Jo < lml'· < Wo in the wntinuous spectrum dose:;. Now the continuous spectrum fills in the 

Pntire imaginary axis and, on the top of this, the rcgion -11 < Re1t < 11 on th<' real axis. The value 

11 is smaliN than 'Y but grows ash is inrn'ilH~d. Finally, when h reach<'s the upper boundary of the 

domain nf<'xbt<'llCC' (h+b) for 1· < 1/"'l. and h~b) for 1 > 1/"'l.. respe,.tively). 11 readws 1· Thi:; is il 

poiut l)f hifnn·ation wlwre the so\ito.n 1/'+ mNgPs with thP 1\a.t. solution. Arwnlingl~·. at this h tlw 

f('<tl PigPnvaht<' 11 reaches 'Y from a.bov(' and imlllNses into th(' continuous spPrtrnm. 

4.3 StabilitY Windows 

It i.<. important to trar.c the origi11 oft h(' mntradietion b<'hV('('ll otlr resu Its a ml t"Oltr\usiuus of r('f.[ I ,'5]. 

iu particular to darify Lite issu<' of stilhility windows. \V<' slmll demonstrat<' that. t h<' rontradietion 

stems siluply from tlw fact that Terron<'s cl a/ emtsidt•r murh shortPr intNvals /,. 

'l'c-rronf's d ul impose periodic botmdary conditions on pNturbations btr{.t). 

8</•(- D/2) = 6</•(1./2); 8 I•A- D/2) = 8</•,.( L/2). (5·1) 

wlLPrca:; in Sce.4."'l. we workC'd with tlw DirkhlPt ronditions 

8/•(±L/2) = 0. (5!'">) 

In order to climinatP a posl'iihl<' cffer.t of tlw boundary conditions, W<' han• now rPplared· our 

v;tnishinF; conditions (55) by t lw p<'riodi<- condit.ion:-; ( 511). In t<'nns of t.lw disrn·thwd <·ip;t•nfundions. 

thi:-; amounts to r('placing <'<Js.{5:3) by 

/o = fN, fN+l =/1, _qo = g,v, 9N+1 = 91· {56) 

Tin• only t·onsctpl('JH:c of this substitution is that the matrix -/)2 • PtJ.{r>"'l.). is l"t•plan•d h~· 

r 2 

-I " " 0 0 -I 
-I 2 -I 0 0 ... 0 0 

0 -I 2 -I 0 ... 0 0 
- 2 1 I ([>I) 

- D = (-"'")' 
0 0 " -I 2 -I " 0 0 " 0 -I 2 -I 

-I 0 ... 0 " 0 -I 2 

The /J
2 and fJ 2 are only different in thf?ir lowl'r IPft a.nd UJlJH'r right \OfllN Putrit•s. 

In eqs.( 51), 1{1_ = 1/JR+i'l/'1 iia.tisfics its standard "open end" boun<la.ry ronditions t''J·( ± 1./"'l.) = 0. 

Since 1{1_(x) is an even function, th('S<' boundary conditions are CtJHivalt•nt to JWriodif wnditions 

1{1( -l .. f"'l.) = 1/J( L/2), 1{1x{- L/2) = ·1{1:c( L/2). Thus, W<' Pxamin<' stability of Pxortly tin• :-;;une solution 

;ts Terrom•s et a/. 
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Those authors report the occurrence of the stability windows for the following two sets of the 

sine.Gordotl parameters: 1-sc; = 24,a = 0.04, (a) w = 0.87 and (b) w = 0.90. Using eqs.(7H9), 

one gets tl1e corresponding NLS values: 

(a) LNLS = 12.2376, 'Y = 0.1.')38, 
, r 

h = 0.1)303; 

(b) IJNLS = 10.7331, 'Y = 0.2000, 
r 

h = 0.3578" 

(Here f and h are the sine·Gordon and NLS driving strengths, respectively.) 

\Ve have" calculated the eigenvalues J.l for the first set of control parameters, i.e., we took L =~ 

12.2376, fixed 7 = 0.1538 and varied h. The growth rate Re>. =Ref!-"( is plotted in Fig.14a (solid 

line). Clearly seen is the region where Re..\ < 0, the stability window. The values of hat which the 

solution restabilises exactly c.orrespond to those given in ref.[15]. 

It is appropriate to emphasize here that although we have analysed exactly the same eigeJJVahle 

problem as Terrones et al, their numerical approach was totally different. Those authors worked 

with the (truncated) Fourier expansion while we use the finite difference approximation. Conse­

quently, the exact correspondence of our results with results of [15] allows to rule out any cha11CC 

of numerical error. 
We next increased the length of the integration interval (from L = 12.238 to L = 15) keeping "f 

fixed. Surprisingly, this minor change resulted in that the stability window has dosed (short-dashed 

curve in Fig. l4a). On further increasing L, the stability interval did not reappear. (Long-dashed 

line in Fig. l4a shows the growth rate for L = 60.) 

For the sake of comparison we repeated the> calculation for the same values of Land f, but with 

the Dirichlet boundary conditions on eigenfunctions, eq.(55). Similarly to the periodic case, the 

curve Re>.( h) changes ~ubstantially as L is inereasecl from 12.238 to 15, but on further increases, 

results settle down (see Fig. 14b). For sufficiently large intervals (L = 60 in our case) discrete 

eigenvalues are insensitive to the type of the boundary conditions. 

Conduding, we may claim that stability windows may oceur only for sufficiently small interval 

lengths. This phenomenon is apparently of the same origin as the stabilisation of the upper branch 

of the flat solution when the interval is made sufficiently ~hart [15]. The instability is· caused by 

long wavelength perturbations which cannot arise on short intervals. 

5 Concluding Remarks and Open Problems 

1. The principal result of this study is the ehart of phase-locked at tractors on the (h,l)-p\ane, 

Fig.l3. This chart comprises the existence and stability domains of the spatially homogeneous 

solution and two coexisting solitons, W+ and W~· While W+ is unstable for all hand"(, stability 

properties of if;_ depend on whether 'Y is greater or smaller than leo where lcr ~ 0.3. When 

~, > lcr• the '1/J~ soliton is stable for all h; when 'Y <fer, the increasing of h results in 1/J- loosing 

its stability via a Hopf bifurcation. 
The classification of the phase-locked at tractors on the (h, I)-plane is the first step towards the 

wnstruction of the complete attractor chart. Our next step will be to study nonlinear structures 

in the region where the 1/J- soliton is unstable, i.e. above the Hopf bifurcation curve. Here some 

~uidanct~ can be gained from the analysis of a twin problem, namely the parametrically driven 

NLS equation {16}. Fig.l5 displays the existence and stability chart for the parametrically driven 

damped soliton; it bears a striking similarity to our chart for the externally driven NLS, Fig.l3. It 

is thcrdorc natural to expect that the structure of the attractor chart above the Hopf bifurcatrion 

nlrve will also be similar. Fig.16 is the complete chart of attractors for the parametrically driven 
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case which we reproduce from ref.[17}. Seen are two lines of different types of transition to chaos, 

period-doubling and quasiperiodic, m.eeting at a "tricritical point". It is tempting to expect that 

the topography of attractors of the externally driven NLS equation will be qualitatively similar. 

Numerical simulations of eq.(2) available for several 'Y [6]-[12], do not contradict this hypothesis. 

2. It is pertinent to emphasize two main distinctions of our study from the work of Terrones 

et at [15}. First, those authors analyse solutions on a finite interval ( -L/2, L/2) with periodic 

boundary conditions, whereas the present article deals with infinite intervals. In their numerical 

calculati.ons, Terrones et al focus on rather short intervals, L"' 10-15, for which the effect of the 

boundaries cannot be neglected. Accordingly, some properties of their periodic solutions differ 

substantially from properties of solitons reported in this paper. In particular, as we have observed 

for 1 = 0.1538, it is sufficient to increase the interval length from L "-" 12 to 15 to see the stability 

window of the 1/J~ solution closing. 
Second, the aim of ref.[15] was to give a theoretical explanation for results of the available 

numerical simulations; accordingly, the authors of [15] restricted their attention to several specific 

values of I· On the contr.ary, our objective here is to provide a global view: to chart the whole 

( h, 1 )-plane according to habitats of various fiat and solitonic attractors. 

As we mentioned on several occassions, there are three characteristic regions of the dissipation 

coefficient: 7 < 1/2, 1/2 < 1 < 1/-13, and 1 > 1/YJ. The existence and stability properties of 

flat and solitonic solutions depend on which region we are in. Results of ref.[l5] are confined to the 

region 'Y < 1/2. 
One may argue that in applications, the damping and driving are weak, so does it really make 

sense to consider large values of hand r? The answer is that, apart from their own role in plasma, 

optics and other applications, the damped driven NLS solitons describe small amplitude breathers of 

the damped driven sine-Gordon, eq.(l ). The damping and driving coefficients of the two equations 

are related by eq.(7): 

where the detuning 

a 
f= £2' 

r 
h = 4.s3' 

'= )2(1- w) 

(58) 

(59) 

acts as a small parameter. Consequently, even if the sine-Gordon dissipation coefficient o: and 

driving strength r are small, their NLS counterparts may be quite large. 

3. It is instructive to make a link to results of direct computer simulations of the sine-Gordon 

and NLS equations available in literature. 

Nozaki and Bekki [6] simulated the NLS (2) with 7 = 0.1 on a relatively large interval, 

L =50, and found that the soliton becomes unstable for h > 0.11. This is in a perfect agreement 

with the value hHopf = 0.11 which we have obtained in the numerical solution of the eigenvalue 

problem (subsec.4.2). 
In their computer experiments with the sine-Gordon eq.(l), Bishop, Forest, McLaughlin 

and Overman [8] set a = 0.04, Lsa = 24, and produced an attractor chart on the (r,w)-plane 

for 0 :s; r :s; 0.19 and 0.82::; w :s; 0.94. In terms of the NLS control parameters, these simUlations 

correspond to 0.11 :s; 1 :s; 0.33. 
Eliminating£ between (58)-(59), we have 

Ia 
w = 1---. 

21 
(60) 

Thus for the ftxed SG damping a, the frequency w is completely specifted by the NLS damping "(; 
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fixing w is equivalent to fixing 'Y· The SG forcing f is then proportional to the NLS forcing h: 

( )

3/2 

r = 4 ~ h. (61) 

AsSume that the NLS damping coefficient 'Y is fixed and forcing h varied. Fig.13 shows that the 
larger the"' is, the smaller is the range of h for which the NLS soliton is unstable. Translating to 
the sine-Gordon variables, eqs.(60) and (61) imply that for the fixed a and w there is an interval of 
f's where the breather is unstable; this interval should shrink as w is increased. This was indeed 
observed in [8] for not very small detunings, £ ?: 0.45 (that is, for w s; 0.9), see their Fig. I. For 
smaller detunings £(larger w) results start to deviate. This may be attributed to the fact that tiLe 
NLS interval corresponding to Lsa = 24 becomes very short (LNLS = e.Lsa < 10.8). 

Taki, Spatschek, Fernandez, Grauer and Reinisch [10] studied the sine-Gordon with 
a= 0.004 ,-Lsa = 80, w = 0.98 and 0.0585 :-::; r :-::; 0.116. This corresponds to 1 = 0.1 and 
LNLS = 16. For r = 0.0038, the breather lost its stability via a Hopfbifurcation. The correspondit1g 
his equal to 0.12 which is dose to our hHopf = 0.11; the difference should be attributed to the 

smallness of the interval. 
Spatschek, Pietsch, Laedke and Eickerman [11] simulated the NLS eq.(2) on an interval 

L = 40 for a variety of hand 1 (I< 0.25). Their experimental points fit very well into the 1 < 0.25 
portion of our stability chart Fig.13. 

4. Finally, it has remained unclear what happens to the soliton 1/J- as I1/Jol2 
---> 1/2 in the region 

1 > 1/2. As we mentioned in subsection 3.4, we were unable to find the solution 1/J- close enough 
to the value I1/Jol2 = 1/2; the Newtonian iterations ceased to converge a certain finite distance away 
from 1/2. (This is in a sharp contrast to the case of the·1jJ+ solitons which turned out to exist 
arbitrarily dose to the value 11/Jol2 = 1/2.) It would be interesting to understand whether the upper 
boundary of the existence domain of the 1/J- soliton is indeed different from l1/Jol2 = 1/2, or this is 
simply a numerical effect caused by an anomalously small radius of convergence of the Newton's 

method in the neighbourhood of the boundary. 

6 Appendix 

The aim of this Appendix is to show that if f.L is a discrete eigenvalue of the operator J- 1 H C<l-(21 ), 
( -J.L") is an eigenvalue as well. To this end we deftne an auxiliary operator A 11 : 

A11 = H- f.L], (62) 

where 1l is a complex parameter, and J is given by eq.(18). If 11 is an eigenvalue of A_.., 

A"z(z) ~ qz(z), 

1}* will be an eigenvalue of the Hermitean-conjugate operator At, where 

At~ H- ~· J1 ~If+~· J ~At-"')· 

(Notice that taking the Hermitean conjugate amounts to replacing f.L by -J.L" .) Assume now that 
z0 (x) is an eigenfunction of the operator J-1 H corresponding to the eigenvalue J.4J: 

Hzo(x) = f.LoJzo(x). 
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Table 1. The numerically rakulated nppC'r l;oundary of the existence domain for til(> V- soli­
ton. liNe p 1 denotes the vahw of ~~~0 1 2 for whkh the!/'- soliton still exists; ht is the corresponding 
h: h1 = h((JI ). Next, P2 is the lowest vah1e of l~''ol 2 for which Nf'wtonian iteratioiJS did tlot converge 
and \W werP unable to find thE' lj•_; hz is the mrresponding h: hz = h(pz). 

I 1 II 0.52 I 0.5-1 I 0.56 I 0.60 I 0.6-l I 0.66 

o/2 0.26 0.27 0.28 0.:!0 0.32 0.33 

p, 0.254 0.262 0.269 0.286 0.307 125 0.318 52tl. 

p, 0.255 0.26:J 0.2696 0.287 o.307 :no 0.319 :l-10 

h, 0.360 785 0.368 tJ59 o.:H6 530 o.:J9·t 145 0.41-1 125 0.-1251 

h2 0.360 801 O.:l6R ·HH 0.37(i 552 0.39'1 213 0.-11·1 150 0.-1252 

().25., p 

ow 

().1~ 

0.1() 

·'/< 1/3 

0.00 

o.oo n.i o.'z n.~ ....___.,'0.'8 o.~ , ; b 

l<~ig.l Tlw cubic P(p0 ) for 1·2 < 1/:J aml72 > lf;J. Lt>ft io right.: ·/ = 0.5.0.Mdl.tll. 

Po 

P• 

P-f··t··-----
: h 

Fig.2 Thl' amplitude of the spatially-homo,e/'IH'OilS solution \'l'TSUS ft. l.Pf1.-hcuul rurw: 1 < 
l/J;i; right-hand curve: 1 > If..{J. 
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Fig.3 Flat-locked solutions and their stability. a) 1 < 1/2; b) l/2 < 1 < lj.J3; c) 7 > lj-/3. 
Solid [ill(~: stable. Long-dashed resp. short-dashed: unstable against spatially inhomogeneous resp. 

homogenf'ous perturbations. 
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Fig.4 Regions of stability (blank) and instability (shaded) of the flat-locked solution on the 

( h, 1 )-plane. ~ 
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Fig.5 The asymptotic value ['ifJ0 ]2 versus the damping coefficient, 'Y· Shaded is the region where 

no solitons can exist due to the asymptotic exclusion principle. 
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Fig.6 The asymptotic value of the soliton, I?/Jol2 , versus the driver's strength, h. Dashed lines: 

no solitons are possible with such I1/Jol2 • Solid lines: solitons with these asymptotic values are not 

exclud'ed by the asymptotic reasoning. a) 1 < 1/2; b) 1/2 < 1 < lj.../3; c) 1 > 1/V3. 
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Fig.9 The modulus squared of the 1/J± solitons in the middle of the interval, x = 0 (solid line). 
Lower branch: IW+(OW; upper branch: 1"¢-(0W; the two branches merge at the turning poil1t 
hchr = 0.19103. Also shown is the flat solution, !Wol 2 (dashed line). The branch 1¥>+(0)1 2 merges 
with IWol 2 at h+ = 0.30023. In this plot "f = 0.3. 
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Fig.lO The transformation of the 1/J± solitons ash approaches hthr• the lower boundary of their 
domain of existence. Long-dashed: h = 0.28; solid: h = 0.26; short-dashed: h = hthr = 0.2548. For 
h = 0.2.')18, the 1/J+ and ¥.>- become indistinguishable. Notice a change of scale in c) comparing 
t.o (a). 
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Fig.12 Solitons in the third region (J > 1/-./3). a,b,c): the 1/;+ soliton in the neighbourhood 
of the upper boundary of the existence domain. In this plot 1 = 0.60 and h = 0.39492. (The 
upper boundary is h,. = 0.39497.) d,e,i): the 'lj;_ soliton for 1 = 0.66. Solid line: solution at the 

threshold, h = hthr = 0.42425. Dashed line: soliton at the upper boundary, h = 0.4251. For this 1 
the value of h* is 0.4265; however no 'lj;_ solitons with h > 0.4251 were found. 
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Fig.13 The existence and stability chart for thE> soliton solutions of th(' ('Xt('rnally driven. 
danq)('d N LS. Th(' upper and lower solicl lim•s show tlw upper <l.lld lower boundaries of thE:> solitons" 
existence domain. The middlC' solid linf' is thP linf' of th(' Hopf bifurcation: abow this line tlw 
soliton 'if;_ is unstable. The upper dashed lin(' is giV('II by ('q.(27) and dE>mqrcat('s thC' boundary of 
stability of the flat-locked solution; thf' lower dash('(] line is the straight !inC' h = {2/r.)). Below 

1....., 0.66, these clashed lines arC' graphicaJly indistinguishab](' from soliton's PxistC'nCP boundarit>s. 
'l'llf'y do nol completely coinridf', howevf'f (s('e t.he tE>xt). 
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Fig.15 The existence and stability chart for the pa1·amet.1·ica/ly driven NLS equation (:3) as from 

rcf.[16]. (The driving frequency n has been normalised to unity.) The structure of tlw chart is 
very similar to Fig.l:J. The lowest line is the lower boundary of thP soliton existence domain; in 

the parametric case hthr = "Y· The uppermost curve is given by h = v'J+? and plays the role of 
the upper boundary of the existence domain. Although the soliton does exist above this liue, it is 
unstable there, together with the zero solution, against continuotlS spectrum excit?-tions. Finally, 
the middle line is the curve of the Hopf bifurcation; on crossing this line the stationary soliton 

looses its stability to a temporally periodic solution. The structure of the unstable domain (abow 

the Hopf bifurcation line) is shown in Fig.l6. 
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Fig .. 16 The a.ttractor chart of the parametrically driven, damped NLS equation from ref.l7. 
Below the straight line h = "Y (the lowest line in this plot) the only attractor is the trivial one, 

if' = 0. Above the line h = ·v'J+? (the uppermost line in the picture) the trivial solution is 

unstahl~ w.r .. t .. continuous spectrum waves. Line 1 is the Hopfbifurcation curve; stable stationary 

solitons exist below and to the right of this curve. On crossing the curve 1, Stationary attractors 
are replaced by temporally periodic solitons (marked by empty circles). These can subsequently 

hifnrcate into double·pcriodie, 4· and 8-periodic solitons (shadowed boxes). Small white blobs 
and shadowed diamonds repr~sent more complicated attractors (periods-6, 7, 10 and temporally 

d1aotic:.) Above the curve 2, empty triangles mark the area. where only the trivial attractor exists; 

hlad triangles stand for spatio·temporal chaotic states. An alternative scenario of transition to 

c:ha.os oc:r.nrs on crossing the line 3; here the periodic sOliton is replaced by the spatia-temporal 
rl1aot.ir atlractor without any intermediate period doubling. The two scenarios "meet" at a tricrit­

iral poiut h = O.fll,"f = 0.2.5. Finally, in the region above the line h = Jl + 12 and to the left 
of the Hopf bifurcation curve 1, the instability of the zero solution develops into spatia-temporal 

rhaos. 28 

~-

This zu(x) is, at the same time. an eigenfuncti011 of the operator A1, pertaining to the parameter 

vah1P It = p0 and cigenva.lue 11 = 0: 

A1,0Zo(.t) =(/I -flul)zo(:l:) = 0. 

Th<' ronju~at<' operator A!o (= ;1(-J•,jJ) will also ha\'<' an ei~cnvalue 1(' = 0; this implies that (-Jl{)) 

is au cig<'nvaluc of J-1 11. Q .. E.O. 
ThN<' is one point in the a bow proof that rP<Juin•s a word of caution. If 1} is an <'igenvalue of A. 

<1 nonhNmit<·an operator in the llilb<'rt spar<'. th<' conjugal<' operator At does not. in gcneraL ha\'c 
to have an <'igcnvahw 1(. Consid<'r, for example. a sl1ift operator 1' defined on inlinile scquenres 

X= (.r 1.:C·J, ... ): 

J'(~J,:1:2,~:3, ... ) = (J"2,.1:3.X4, .... ). (63) 

It is Pas.v to sPc that 11 = 0 is an <'i~envalue ofT. with an eigenwctor (1,0.0, ... ). Howcver. 

th<· ronjuga.te operator Tt do('S not haN<' a. ZNO <'igPuvahl<>. This follows from tlw fart that th<• 

kernel spare of Tf (i.c. th<' :>pare of all x surh l.hat Tfx = 0) is giwn by R.(T).l. the orthogonal 

romplcmPnt of the range ofT. Sh1ce tin> rangP ofthc shift. opcralor (!i3) obviously roinrid<•s with 

tlw Pntin· sparc, 'R.(T).l ronsists only of tlw ZNO clenwnt, ami so rf has no ZNO eigcnvahws. 
Fortuna.tcly, this situation docs not arisP for disnetc <'i~f'nvalues of differential opNators { whosP 

<'igl'nfundious arP smooth and ('Xponcntially dC'cayin~ at infinities.) The rcason is that tin•:><' 
<'i~<·nvalues ran be approximated b.v eigt>nva.lues of linite-dimensiona.l matrircs. For in:>! ann•, on<' 
ran approxima.t<' derivatives b.v finite difff'renres (a..<> we do in scrt.ion ·1.2) or use a tntll<"at.<'d 
<'xpausion over some complete sct of fuuctions {which is thc approach of R('f. [15]). In any ras<'. 
sending N ~ oo, onc of thc ('igenvahws of the N X N matrix A,v will approarh the disnctc 

<'igenvalnc of tlw diffcrential operator A: 7JN- 1J .. Ou llw othcr hand. if 1/.V is an eigPnvaln<· of thc 

111a.trix AN, t]l(> llennit<•an <·onju~atc matrix A~ will haw au t'igenvalnl' 1/":v· VVhen :\' - x. thl' 

setjll<'llCl' 11f.t converges to a disnc>tc> ('igl'nvalm· of the l!Nmitea11 roujugatl' opNator At. whid1 is 

!.h<•n•fon• <'qual to 11*. 
Coming bark to th<' shift OJll'rator <'q.(6:J), noticP that its Zl'ro <>igt>nvalul' 1'11111/ol hc approxi­

ma.t<'ll by a sequence of finite-dim('llsional matrix l'i)?;Cll\'alucs. In pa.rtkular. if \\'P a\l.l'mpt tons<' 
a linile-dimPnsional shift op<'l"atol" with JH'riodk boundary <"onditions: 

'LN(;r.l, Xz, ... ,.r:N) = (:t:z, :r3, ... , .c,v, .T.J ), 

Wl' will immcdiatcly fiud that l'ig('nvalucs of the !attN ar<' giwn by cxp (2;rinJN ). 11 = 0. I ..... .\'- I. 
Nonl' of I hPsc tend to ZNO as N --> oo. 
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1 CyiUeC:TBOBaHHe· H.ycToiittHBOCTh conHT~HOB HeJIHHeiiHon;' 

ypasHeHHS Wpe.U.HHrepa c BHeliiHeH HaKalJKOH H .U.HCCHnaUHeH 

ES-97-80 

Hccn.e.uyeTcs HenwHeiiHoe· -ypasHeHHe ~pe.nwurepa c BHelli.HeH HaKalJKoH " 

_riuccunauHeH, ml:pe.ueneHHOe Ha npsMoif. 00CTpoeHa KapTa cymeCTs08aHIUI H 

ycToHY:M.socTH ero coJIHTOHHhiX pellleHHH Ha rmocKOCTH H3MeHeHif.H .usyx. KOHTponL­

HhiX napaMel'pOB: aMOJIHT}'Jlhl BHemHefO B03)leJiCTBIUI, h H Ko3QxtmuHeHT3 .UHC­

CHtlaUHll "(: ,Uns ofitUux 3H31.J.eHlfi-i" h H "( CyiUeCTB}'IOT .U.B3 He33BHCHMhiX COJlHTOHa, 

OJJ:HH H3· KOTOpbiX ('V _J _sCer.u~ -He}'cTOi:fl.J.HB. limlJypK3.UHOHI-iruJ .U.HarpaMMa_ BTOporo 

pellleHH.H (\V _) 3aBHCHT OT K03QJi;fJHUHeHTa .UHGCHnaumi: eCJlH "(<"fer o/ _ ycTOfilJHB 

npH MaiihiX h H CT,aHOBHTC.H HeycTOi-llJHBhiM .B TOttKe 6uQJypKauHH Xompa npH 

ysenH~,J~HHH h;.npH Y> Ycr \v_ YCTOiilJHB ll.JlSI mo6oro h. noK~tiHO, q-fo- B o6nacTH 

HeyCTOiilJHBhiX·peweHHfi He cymeCTByeT «OKOH CTafiHJlhHOCTH», a paHee OfiH_ap}')KeH­

Hble «OKHa CTafiiDibHOCTH» MOryr B03HHKaTb TOJlhKO npH paCCMOTpeHHU ypaBl-iefl·llil 

Ha'KoHe4HOM (H ,UOCT3T9lfHO MaJlOM) HHTepBane H3MeHeHH.H np0CTpaHCTBeHHOJ.I 

nepeMemwii. . . 

.PafioTa BhinOJlHet-ia B lla6o"paTopmt BhllJHCJlHTeJihHOi:f TeXHHKJ.i-H aBT~M3TH3auHH 

OIHIH .. 

Coo6W:eHue Ofu.e.uuHeHHOro HHCTH"Jyra 51Jl.epHMX: ucCJJeJlOBamiH. }].y6Ha, 1997 

Barashenkov LV., Smirnov Yu.S. . 
Existence and Stability of the Exten1ally Driven, Dainped 
Nonlinear SchrOdinger Solitons 

ES-97-80 

The externally driven damped NLS equation on the infinite line is studied. 

Existence and stability chart for its soliton solution is constructed on the plane of 
two control parameters, ihe forcing amplitude h and dissipation coefficient y. For 
generic values of h and y there are two coexisting solitons one of which (ljl_,:) is 

always unstable. The bifurcation-diagram of the second solution (ljl_) depends on 

the dissipation coefficient: if y < Y,,. the ljl_ is: stable for small h and looses its 

stability via a Hbpf bifurcation as h is increased; if y > y , the IJ1 is stable for all cr · -

h, There are no <<stability windows>> iri the unstable region. We show that the 
previously reported ,;stability windows>> occur only when the equation is considered 
on a finite (and small) spatial interval. ' · . 

The investigation has been performed :at the Laboratory of Computing 
Techniques and Automation, JINR. 
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