


1 Introduction

Computational aspects of constructing Grobner bases invented by Buchberger [1] are
now under intensive investigation due to the great theoretical and practical importance
of these bases in computational commutative algebras and algebraic geometry [2, 3, 4].
Grobner bases are also becoming of greater importance in non-commutative (5, 6, 7]
and differential algebra [8, 9].

Since its invention about thirty years ago, feasibility of the Buchberger algorithm
has been notably increased. First of all, it was resulted from discovering criteria
for avoiding unnecessary reductions {10, 11, 12] which allow & partial extension to
non-commutative case [7]. Next, the key role of the reduction and, especially, se-
lection strategies was experimentally observed, and heuristically good strategies were
found [13]. For construction of a lexicographical Grébner basis, which is the most use-
ful for solving polynomial equations, an efficient computation scheme was developed
in {14} based on converting a basis from one ordering into arnother.

Oun the other hand, Zharkov and Blinkov [15] were pioneered in revealing another
computational scheme for Grébner bases consiruction in commutative algebra. They
used the partition of variables into multiplicative and non-multiplicative invented in
Pommaret [16] to bring partial differential equations into so-called involutive form {17]
which has all the integrability conditions satisfied. Zharkov and Blinkov showed that
sequential multiplication of the polynomials in the system by non-multiplicative vari-
ables, and reduction of these prolonged polynomials modulo others, by means of their
multiplicative power products only, ends up, under. certain conditions, with a Grébner
basis. Though the latter is generally not the reduced basis, it reveals some attractive
features [18].

Already first computer experiments carried out in [15] showed rather high efficiency
of the new computational scheme. However, that algorithm terminates, generally, only
for zero-dimensional ideals and for degree compatible term orderings [19]. The algebraic
origin of such an algorithmic behavior was analyzed in [20] where it was also shown
that Pommaret involutive bases are just Grobner ones of ideals in the commutative
rings with respect to non-commutative gradings. Interconnection of Pormmaret bases
and Grébner bases was recently investigated also in {21, 22).

In our previous paper [23] general algorithmic foundations of involutive approach to
commutative algebra were considered, and a number of new concepts was introduced
allowing one to study the involutive algorithmic procedure in its general form. The
central concept of our analysis is invelutive monomial division. Every specific invo-
lutive division generates some particular computation procedure for constructing the
corresponding involutive basis. Every involutive basis, if it is finite, was proved to be
a Grdbuer basis, generally, redundant. We formulated the axiomatic properties of an
involutive division which provide a proper partition of variables into multiplicative and
non-multiplicative, and, hence, to construct different divisions. It was also proved that
those partitions used by Janet [17], Thomas [24] and Pommaret [16] are generated by
particular involutive divisions.



Important properties of noetherity and continuity for an invelutive division were
also characterized. Noetherity provides the existence of & finite involutive monomial
basis for any monomial ideal much like to the conventional monomijal bases. Continuity
allows one to construct an involutive basis by means of single non-multiplicative pro-
longations. We showed that Janet and Thomas divisions are noetherian and continuous
whereas Pommaret division, being continuous, is not noetherian. Just by this reason
a positive-dimensional polynomial ideal, generally, does not have a finite Pommaret
basis. We presented in [23] a general form of the involutive algorithm. Its correctness
was proved for any continuous division while termination holds for arbitrary polynomial
ideal and for arbitrary admissible monomial ordering only for noetherian divisions. The
algorithm involves the Buchberger’s chain criterion to avoid unnecessary reductions.

In the present paper, in addition to Janet, Thomas and Pommaret divisions ana-
lyzed in [23], we give examples of two more involutive divisions which are proved to be
continuous and noetherian. We present also the special form of an involutive algorithm
which provides construction of a miniral involutive basis if it is finite. We show that
the latter is uniquely defined for any fixed admissible monomial ordering.

The rest of the paper is organized es follows. In Section 2 we give a brief review of
involutive concepts and methods which are used in the following sections. In Section 3
we consider some examples of involutive monomial divisions including those introduced
by Thomas, Janet and Pommaret along with two new ones. In Section 4 we study
the minimal involutive monomial bases. The algorithm for construction of minimal
polynomial bases is described in Section 5, and some concluding remarks are given in
Section 6.

2 Background of Involutive Approach

In this section we briefly describe the fundamentals of the general involutive approach
proposed in 23] which are used in Sections 3-5.
Let N be a set of non-negative integers, end M = {z{' .- 2% | d; & N} be a set of
monomials in the polynomial ring R = K[z, ..., z,] over zero characteristic field X
By deg(u) and degi(u) we denote the total degree of « € M and the degree of
variable z; in u, respectively. An admissible monomial ordering is denoted by =, and
throughout this paper we shall assume that
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The leading monomial and the leading coefficient of polynomial f € R with respect
to ordering < are denoted by Im(f) and le(f), respectively. If F C R is a polynomia!
set, then by Im(F) we denote the leading monomial set for F, and Id(F) will denote
the ideal in R generated by F. For the least common multiple and for the greatest
common divisor of two monomials 4,7 € M we shall use the conventional notetions
lem(u,v) and ged{u, v), respectively.

If monomial « divides monomial v we shall write ulv.

Definition 2.1 An involutive division L on M is given, if for any finite mo_norpia.l set
U ¢ M and for any v € U there is given a submonoid L{u,U) of M satisfying the
conditions:

(a) Ifu,v € U and ul{u, U) NvL{v,U) # 0, then u € vL(v,U) or v € uLl(u, U).
(b) If v €U and v € uL(u,U), then L(v,U) G L(u, V).
(c) IV CU,then L{u,U) C L{u,V) forallue V.

Elements of L(u,U) are called multiplicative for u. If w € uL(t:;, U ) we sha_all write
u|pw and call u (L )involutive divisor of w. The monomial w in. its turn is called
(L— Jinvolutive multiple of u. In such an event monomial v = w/u is mtdt?plzcatz'.ve‘ for
u and the equality w = uv will be written as w = u x v, If uis the convent.lona} divisor
of w but not involutive one we shall write, as usual, w = u - v. Then v is said to be
non-multiplicative for .

Definition 2.2 We shall say that involutive division L is globally deﬁffed if for any
» € M its multiplicative monomials are defined irrespective of the monomiel set U 3 u,
that is, if L{w, U) = L(u).

Definition 2.1 for every v € U C M provides partition {31,...,$.n}. = M{u, Uy U
NM{u,U) of the set of variables into two disjoined subsets: multﬂlap:hc.:atwe M (v, 1)
and non-multiplicative NM({u,U). The conventional monomial division, obviously,
satisfies condition {a) only in the univariate case. For example, z{(zy) and y|(zy) but
—z|y and —y|z. ‘ . o
In what follows monomial sets are assumed to be finite, unless involutive division
L is globally defined. In this case, since L is defined irrespective of the monomial set,

it admits extension to infinite sets.

Definition 2.3 A monomial set I/ € M is involutively autoreduced or L—autoreduced
if the condition uL(u, ) NvL{v,U) = 0 holds for alt distinct u,v € U.

Definition 2.4 Given an involutive division L, a monomial set U is involutive! with
respect to L or L--involutive if

User 2 M = Uyey 2 L{w, U). )

Definition 2.5 An L—involutive monomial set I is called involutive closure of a set
UvctUif

Uuey M = UueguL(u, u).
If there exists 4 finite involutive closure I/ of a finite set U, then the latter is finitely
generated with tespect to L. The involutive division L is noetherian if every finite set
U/ is finitely generated.

1 Janet [17) and Thomas [24] call such sets complete.



- Proposition 2.6 28] If involutive division I, is noetherian, then every monomial ideal

has a finite involutive basis J,

Proposition 2.7 If U is a finitely generated monomial sef, then so is set obtained by
autoreduction of U in the sense of the conventional monomsial division.

Proof It follows immediately from observation that any involutive closure of I is also
an involutive closure of the autoreduced set. ]

Definition 2.8 A monomial set I is called locally involutive with respect to the invo-
lutive division L if

{vu € U) (Vz; € NM(u,U)) (3v € U) (vlo(u-z)].

Definition 2.9 A division L is called continuous if for any finite set I/ € M and for
any finite sequence {m}<ichy of elements in U such that

(Vi <k} (312] GNJVI(H,',U)) {u;,-.;!;,ui-xj ] (3)
the inequality u; # u; for i # j holds.

Theorem 2.10 [23/ If involutive division [ is continuous then local involutivity of any
monomial set U implies its involutivity.

Given a finite set of polynomials F ¢ ® and an admissible ordering =, multiplicative
and non-multiplicative variables for f € F are defined in terms of tm(f) and the leading
monomial set Im{F).

The concepts of involutive polynomial reduction and involutive normal form are in-
troduced simiiar to their conventional analogues [11] with the use of involutive division
instead of the conventional one.

Definition 2.11 Let L be an involutive division L on M, and let F be a finite set of
polynomials. Then we shall say:

(1). p is L—reducible modulo f € F if phas e term ¢ = au € T (e # 0) such
that u = Im{f) x 2, v € L{Im{f), tm(F)}. 1t yiclds the L—reduction P—g=
p = (afle(f)) fv.

(il). p is L.—reducible module F if there exists f € F such that p is L-reducible
modulo f.

(iil}. p is ¢n L—normal form modulo F if p is not L—reducible modulo £.

i
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We denote the L—-normal form of p modulo F by NFr{p, F)..In co'ntra.st,.th'e conven-
tional normal form will be denoted by NF{p, F}. If monowmial % is multiplicative to
Im{f) {f € F) arid h = fu we shall write h = f x «.

Definition 2.12 A finite polynomial set F is L—autoreduced if the leading mouo-mial
set im(F) of F is L—autoreduced and every f € F does not contain monomials invo-
lutively multiple of any element in {m(F).

Theorem 2.13 /23 If set F C R is L—autoreduced, then NFi(p,F) = 0 iff p €
R is presented in the form p = Z,Jqﬁ x'u:‘,‘ where fi € F, ¢; € K, and u;; €
L{m{f3,tm{F)) are such that w; # u for i # k.

Corollary 2.14 [25] If pelynomial set F is L~autoreduced, then N Fr(p, F) is uniquely
defined for enype R, and NFr(py + 2. F) = NFL(p1, F) + NFr{ps, F).

Definition 2.15 Ar L—autoreduced set £ is called (L~ )involutive if

(7f e F) (Yug ) | NFL(fu F)=0].

"

Given v € ¥ and an L—autoreduced sec F, if there exist f € F such that Im{(f) < ¢
and o
WfeF)yWeed)(m{(fy-u=v} (NFL{fu.F)=0], (1)
then F is called partially involutive up to the monomiad v with respect to the admissible
ordering <. F is still said to be partiaily involutive up to v if v < Im(f} forall f € F.

Definition 2.16 An involutive set F will be called involutive basis of the ideal Jd{F)
if all the polynomials in F are monic.

Theorem 2.17 [23/ An L—autoreduced set F C R is involutive with respect to a con-
tinuous involutive division L iff the following (local) invelutivity conditions hold

Mfe F)y (Vo e NM{S,FY) [NFL(f -z Fy =03,
Correspondingly, partial involutivity {4} holds iff
(Vfe F)y (Mo, e NM{FF)) (Im{f) ze <2} [NFL(f 5., F)=0,.

Theorem 2.18 /23 If FF C R is an L—involutive basis, then it is also a Grobrer busis,
and the eguality of the conventional and L—normel fors NF(p. F) = NF {p, F) lwolds
Jor any polynemial p € 2. If set F is partially involutive up to the mononial v, then

; ; . . e T
the equelity of the normal forme NFip. Fy = NF(p, F) holds for any p & 2 such that
() < v



Theorem 2.19 (23] Let F be a finite L—autoreduced polynomial set, and let g- = be
a non-multiplicative prolongation of g € F. Then NFp(g -z, F) = 0 if the following

holds
(VheF) (VueM) (Im(h)-u<im{g-2) ) [NF{h-%,F)=0],

Im{ fo)llm(f), Im{go)llm(g}
(3f, for g0 € F) | Im(f}leim(g - 2), lem(fo, 90) < Im(g - x)

NFL(fo- ss F)= NFy{go - 1, F)= 0

3 Examples of Involutive Divisions

First of all, we give three examples of involusive division used in [17, 24, 16} for analysis
of algebraic differential equations. For the proof of validity of properties (a)-(c) in
Definition 2.1 for these divisions we refer to [23].

Example 3.1 Thomas division [24]. Given a finite set U < M, the varizble z; is
considered as multipticative for u € U if deg;(u} = maz{degi(v) | v € U}, and non-
multiplicative, otherwise.

Example 3.2 Janet division [17]. Let set U/ ¢ M be finite. For each 1 <4 < n divide
U into groups labeled by non-negative integers dy, ..., d;:

[di:"'ldi]={u EUldJ=degj(u)s ]-S."Sz}v

A variable z; is multiplicative for v € U if i = 1 and degi{x) = maz{deg, (v} i v € U},
orifi> 1, ueldy,... dicy] and degi(uv) = maz{deg(v} | v € [ds,...,dini]}.

Example 3.3 Pommaret division (16]. For a monomial u = i1 ...z with d; > 0
the variables z;,7 > k£ are considered as multiplicative and the other variables as
non-multiplicative. For # = 1 all the variables are multiplicative.

Now we present two more examples of divisions which, as does Thomas division, do
nct rest on the variable ordering.

Example 3.4 Division . Let I be a finite monomial set. The variable z; is non-
multiplicative for # € U if there is v € U such that
dy

Ty

dm

coziru =lem{u,v), 1<m< /2, di>0 {1<ji<m),

and z; € {@i,,.. ., Tin}-

Example 3.5 Division II. For monomial % = 23" - - - i~ the variable z; is multiplica-
tive if di = dinqz(2) whete dng. (1) = maz{d,, ..., da}.

To distinguish the above divisions, the related subscripts T' J, P, I, IT will be used.
We note that

» Thomas division, Divisions I and 1T do not depend on the ordering on the variables
#;. Two other divisions, as defined, are based on the ordering (1) of the variables.

e Pommaret division and Division I are globally defined in accordance with Defi-
nition 2.1, add, hence, admit extension to infinite monomial sets.

Proposition 3.6 Divisions I and II are involutive.

Proof Division I. First of all, we prove that the condition (a) in Definition 2.1 is
fulfilled. Let u # v be elements in U such that u|;w and v|pw for some w € M. If
ulv or i, then we are done. Otherwise, lem(u,v)/u or lem(u, v} /v contains non-
multiplicative variables for u or v, respectively. Because lem(u, v}, it follows that w
cannot be involutively multiple of both u and v.

Consider now w € U such that u|rw for some v € U/, and v # u. Suppose v|;w
for some w € M, and assume for a contradiction that w is not involutively multiple of

u. Then there are variables z;,,..., %, (1 € m < [n/2l containing in w/v which are
non-multiplicative for u and there is t € U such that uzj)} - -zim = [em(u, t). Because
v/u does not contain ..., i, it follows vfl .. zfm = lem(v,t), that contradicts

our assumption that w € vL(v, U} and proves the fulfillment of condition (o).

The condition (¢) holds too, since an enlargement of the set U may, obviously, only
produce extra non-multiplicative variables for any u € U.

Division II Let u with dy = dmg-(u) be an involutive divisor of some monomial
w € M. Then, by definition, degi(u} = min(deg:(w),d.}. Thus, given monomial w
and number d, such that d. < dy where dy, = Bima={w), the corresponding involutive
divisor u of w is uniquely defined. If there are two involutive divisors u, v of w with
d, < dy, then it follows that

degi{u) = deg:(v) = degi(w) if degi{w) < d,
d, < deg:{v) = min{deg:(w), do) if degi{w)> du.

Hence, u is involutive divisor of v and the condition (a) is fulfilled.

The condition (b) is an easy consequence of the relations degi{u} = min{deg:{v), d,)
and deg:(v) = min(degi{w), dy).

The condition (¢} holds trivially, because the division as well s Pommaret one does
not depend on monomial set ' at all. m]

Proposition 3.7 For any finite monomial set U and for any monomial u € U, the
inclusion Mg(u,U) C Mi(u,U) and, respectively, NM; & N Mr(u, U) holds.

Proof If z; € NM;(u,U), then, obviously, degi(u) < hi = maz{deg:(u) | v € U},
and, hence, x; € NMp(u,U). )



Example 3.8 U = {z?,zy,z} (z > v > 2).

monomial | Thomas Janet Pommaret Divigion I | Division II
Mr | NMr ! M; [NM;| Mp | NMp | My | NM | My | NMy
z z | nz loyz| - |mwz]l - z [ yz ]| = Y,z
Ty Y z, 2 Y,z z Y, % o ¥y | 5z | ny z
z z T,y v,z T z Y 1Y, 2 T Z z,Y

Proposition 3.9 Divisions given by Ezamples 8.1-3.5 are continuous. All these di-
visions except that of Pommaret are also noetherian.

Proof The proof for Thomas, Janet and Pommaret divisions is given in [23]. Consider
Divisions I and II.

CONTINUITY. Let I be a finite set, and {u:}acicany be a sequence of elements in
U satisfying the conditions (3). In accordance with Definition 2.9 we shall show that
there are no coinciding elements in the sequence for each of the two divisions. There
are the following two alternatives:

(?.) Uy = Ui-1 " Ty {u) U ?‘é Ui—1* 5 - (5)
Extract from the sequence {u;} the subsequence {; = u, }gkcr<ar of those elements
which occur in the left-hand side of relation (it} in (3).

Division I Show that ty]dem{te_y,tx) and £ # lom(fs_1, ). We have tg x g =
Uiyl * £, = by * Tx—1 where —li|fi_q. Indeed, suppose ldi-1. Apparently, this
implies the relation ¢, = w; - z where 41 < ! < iz, and the variable z; € NM{u,U),
which figures in Definition 2.9 of the sequence {u:}, satisfies z; |y and —z; ]z, It
follows that lem(te, wie1) = tx2; what, in accordance with definition of the division in
Example 3.4, contradicts multiplicativity of x;, for fx.

Therefore, we obtain the relation

B Uk = eyl X Wha, 6
-qu{vk:wk+l) = QCd(Ukswk) =1 s

whereg wy4, contains more then [n/2] variables with positive exponents, and, hence, v
contains only non-multiplicative variables for £.

We claim now that any v; occurring in (8) with § > k as well as vy contain only
non-multiplicative variables for tx. For j = k -+ 1 we multiply tive by e

BevkUiar = {tien * Vo1 )Wihet1 = (frsa X Weaa)Wept ,
9cd{Vg, Wear) = ged(Ver1, Wir1) = ged{very, Wagn) = 1.
It yields

Eelkvias = (teva X k) Wi, 7
QCd(Ukka,'ﬁfkwwkH} =1.

L.

Because wx41 contains more than [n/2] variables, the number of variables occurring in
the product Dyvk-1 is less or equal [/2], and, thus, variables which are multiplicative
for £, are not contained in vg41.

If we proceed, sequentially multiplying the upper equality in (7) by vks; (= 2,.. D,
rewriting the right-hand side of every product in terms of ¢x,;41 and cancelling the
common factors, then we obtain the equality

Leter o Ukpj—1Vk4j = (tk+;‘+1 X wk+j+1)wk+1 W1 Whaj s
gcd(Dr - - Bhgpj 1V Whjr1Weas - Bhaj-1Whej) = 1.

It proves the claim and implies &; # ¢; for i # 4.

It remains to prove that elements of the sequence {w:}(1<ican which occur in the left-
hand side of relation (¢) in (5) are also distinct. Assume for 2 contradiction that there
are two elements u; = u; with § < k. In between these elements there is, obviously,
an element from the left-hand side of relation (ii) in (5). Let w;, (j < im < k) be
the nearest such element to u;. Considering the same non-multiplicative prolongations
of uy as those of u; in the initial sequence, one can construct a sequence such that
the subsequence of the left-hand sides of relation {ii) in (5) has two identical elements
Ui, = Uiy, with & > i,

Dinision II. The above defined elements t, which occur in the lefi-hand side of the
relation (47) in {5) are distinct because dimaz(ter1) < dmas{ty). The other elements
occurring in relation (i) in (3) are also distinct since deg(us ;) = deg(ui+j-1) + 1
(j = 1,... 0641 = 5 — 1) and

dmaz(tk) = dma.z(uik-hl) == dma.z{ui;..,,l—l) .

NOETHERITY. Diviston I Its noetherity follows from Proposition 3.7 and noctherity
of Thomas division, since every Thomas involutive closure of a sct U, obviously, is also
its closure with respect to the Division 1.

Division [I. Given a finite set U/ € M and v € U with d, = dmaz{u), complete
the set by the monomial 2% -- -z and all its divisors multiple of u. If we do such &
completion for every u € U we ¢btain, apparently, an involutive closure of U. o

4 Minimal Involutive Monomial Bases

Let U be = nitely generated monomial set with respect to invelutive division L. In: this
case a finite involutive closure & 2 U form the involutive basis of the meonomial ideal
generated by U. A monomial ideal may not have the unique involutively autoreduced
basis. For instance, from the definition of Janct division given in Exampic 3.2 it is
easy to see that any finite monowmial set is Janet autoreduced. Therefore, completion
of a Janet basis by a multiple of any its element gives another Janct basis. Shmilarly,
Thomas division and Division I do not provide uniquencss of involutively autoreduced
bases whereas Pommaret division and Division II do, as the next proposition shows.



Proposition 4.1 Let L be e globally defined involutive division. Then any monomial
ideal has the unique L— autoreduced involutive basis.

Proof Assume that there are two distinet L—autoreduced bases U, and 0y of the
monomial ideal Id(U) where U is a finite monomial set generating the ideal and au-
toreduced in the sense of the conventional monomial division. Both U, and U, are
apparently involutive closures of U. It follows U \T2 # 0 2nd T3\ U # 0. Other-
wise one of sets U, ¥/, would contain another, and, hence, could not be involutively
autoreduced. Indeed, let U> € I. Then any element of u € U1\ U, is multiple of some
element in U, and, in accordance with Definition 2.5, u is involutively multiple of some
element v € .

We obtain that for any u € U \ [ there is v € Up \ U1 such that v|;u and for any
v € Up\ U, there is w € U, \ U such that wiyv. Thus, by property (b} in Definition 2.1,
given u € U, \ U, there exist w € I \ Uz such that wiyu. Since [, is L—autoreduced,
it is possible only if » = w. But this implies u = v. The obtained contradiction proves
the proposition. u]

Definition 4.2 Let L be an involutive division, and Id(U/} be a monomial ideal. Then
its L—involutive basis U wiil be cglled minimal if for any other involutive basis V of
the same ideal the inclusion If € V holds.

Proposition 4.3 If U ¢ M is a finitely generated set with respect to a continuous
involutive division, then monomial ideal Id(U) has the minimal involutive basis.

Proof The proof follows immediately from Proposition 2.7 and existence of the min-
imal involutive closure for 2 finitely generated set [23]. O

To construct the minimal involutive basis for the ideal generated by a given finite
monomial set one can use the following algorithm which is a slightly modified algorithm
InvolutiveClosure of paper 23],

Algorithm MinimalInvolutiveMonomialBasts:

Input: U, a finite monomial set
Output: U, 2 minimal involutive basis of I&(U)

begin 1
{/ := Autoreduce(U) 2
choose any admissible monomial ordering < 3
while exist u € {7 and ¢ € NM (2, T} s.t. 4

u - z has no involutive divisors in U do 5
choose such u,z with the lowest v .z w.r.t. < 6
U:=00U{u 1z} 7
end 8
9

end

10
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The proof of correctness and termination, for a finitely generated set, of this algorithm
is the same as that of algorithm InvolutiveClosure [23] if Proposition 2.7 is taken
into account. In effect the below algorithm constructs the minimal involutive closure of
the autoreduced, in the sense of the conventional monornial division, initial monomial
set. This autoreduction is just done in line 2 of the algorithm.

Example 4.4 (Continuation of Example 3.8). The minimal involutive bases of the
ideal generated by the set U = (2%, zy, 2) {z > y > z) are given by

*z,5%yz},

Ur = {2* zy,2,22,y2,2%y, zyz, =
[7.} = {1.2, Y, 2, 2%, yz} s

Up ={2* zy,2,22,92,9°2,...,¥%2,.. .},
U = {2 zy, 2 %2,5%, zyz, 222, 2%y2},

. I_IH ={$21$y:zlrz:yz:$yz}a

where k € N (k > 2), and subscripts in the left-hand sides stand for different involutive
divisions considered in Section 3. This example explicitly shows that Pommaret divi-
sion is not noetherien. However, for another ordering z > £ > y the set U/ is finitely
generated, and then Up = U.

One should note that selection of a L—irreducible non-multiplicative prolongation
which is lowest with respect to an admissible monomial ordering and which we call
normel is of fundamental importance for the a.bove algorithm. We demonstrate this
fact by the following example.

Example 4.5 Let U = {22, 72,3} and L be Pommaret division with 2 > y > 2. By
the normal selection strategy, the lowest irreducible non-multiplicative prolongation is
y -z with respect to any admissible monomial ordering. Enlargement of U by zy gives
the Pommaret basis I = {2?, zy,22,y} of ideal Id{U/) which is obviously minimal.
This shows that U is a finitely generated set. However, if we would take first the
prolongation zz -y which is involutively irreducible modulo U, but not lowest, then we
might obtain the infinite chain of irreducible prolongations:

zz— xyz — TPz o ayE o -

Definition 4.6 Let L be 2 continuous involutive division, F be a finite monomial set
and V = Autoreduce(U). Then set U will be called (L—)compact if U = V or U is
obtained from V in the course of the above algorithm.

As an immediate consequence of this definition we have the following corollary.

Corollary 4.7 If U € M is ¢ finitely generated set with respect to a continuous tnyo-
Iutive division L, then o compact involutive basis of ideal Id(U) is minimal.
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5 Minimal Involutive Bases of Polynomial Ideals
In paper [23] we proposed the following algorithm for computation of involutive bases
of polynomial ideals.

Algorithm InvolutiveBasis:

Input: F, a finite polynomial set
Qutput: G, an involutive basis of the ideal Id(F)

begin 1
" G = Autoreduce(F); T:=0 2
for each ge G do T:=Tu{{(gim(g}),d} 3
while exist {(g,u,P)eTst. NM{9,G)\P#0 do 4
choose such {g,u, P), z with the lowest Im(g) - w.r.t. < 5
T:=T\{(g,u,P)}U{(g,u,PU{x})} 6

if Criterion{g-z,v,T) is false then h:=NFy (9 z,G) 7

if h#0 then & := Autoreducer(GU{h}) 8

if im{h) =Im(g-z) then T :=TU{{h,u,0)} 9

else T :=TU{(hIm(k),8)} 10

Q:i=T; T:=0 . 11

for each ge G do 12

if exist (f,u, P) € @ s.t. Im(f}) =Im(g) then 13

choose ¢ € G s.t. Im(g)| 14
T:=TU{(gIm(g), P)} 15

else T :=TU/{(g,m(g),0}} 16

end 17
end . 18

Criterion(g, u, T) is true provided that if there is { f,v, D) € T such that im{f){;Im(g)
and lem(u,v) < Im{g). Correctness of this criterion, which is just the involutive
form (23] of the Buchberger's chain criterion, is provided by Theorem 2.19.

In the algorithm the initial polynomial set F is subject, first of all, to the con-
ventional autoreduction in line 2. Next are two main steps which are sequentially
made:

(i). By the normal strategy, & non-multiplicative prolongation g - # of element g in
the intermediate basis G with the lowest Im{g - z) is selected in line 5. If there
are several different non-multiplicative prolongations with the same leading term,
then any of themn may be selected.

(ii). Ifh = NF{g-z,G) # 0, then G is enlarged by A, and the involutive autoreduction
of the enlarged set is done in line 8.

In order to apply the criterion in line 7 for elimination of superfluous involutive reduc-
tions and also to avoid repeated prolongations, the auxiliary set T of triples (g,u, P)
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is used. Here g € G, and v is either the lowest, with respect to the ordering <, leading
monomial in Im(G) such that g was produced by non-multiplicative prolongations of
f € G with u = Im(f}, or u = Im(g) if there is no such f in . Those variables in
NM(g,G) have been chosen in line 5 are collected in set P.

Definition 5.1 A finite involutive basis G of ideal Id(G) is called méinimal if (§(G) is
the minimal involutive basis of the monomial ideal generated by {It(f) | f € Id(G)}.

Theorem 5.2 The minimal involutive busis is unique.

Proof Assume for a contradiction that a polynomial ideal Jd(F) has two distinct
minimal involutive bases G; and G;. Their minimality means that Im(G,) = Im(Gy).
Since Gy and G, are distinct there are g1 € Gy and ga € G, such that (g} = lt(gs)
but g; # g2. Since g1 — g2 € Id(F), by Theorem 2.18, we have NFr(g, — g;,G4) =
NFpL(g1 — 92,G3) = 0. Therefore, at least one of the sets G|, Gy is not involutively
autoreduced, and, hence, in accordance with Definition 2.16, it cannot be involutive
basis. o

For 2 globally defined involutive division, by Proposition 4.1, this proof, obviousiy,
is also valid for polynomial ideals with infinite involutive bases. therefore, we have the
following corollary.

Coroliary 5.3 Given a globally defined involutive division, every polynomial ideal has
the unique involutive basis.

Thus, given a globally defined involutive division L, the output of algorithmn Inve-
lutiveBasis, in the case of its termination, is unigque for a given polynoxma[ ideal
irrespective of an ideal generating set F in the input.

However, even though the algorithm may not terminate it is still able to compute
a Grobner basis as the following proposition shows.

FProposition 5.4 Let L be a continuous involutive division and G be an intermediate
polynomial basis generated by algorithm InvolutiveBasis. If the ordering < is degree
compatible, then in a finite number of steps G becomes e Gribner basis.

Proof Let the current prolongation g-x is such that h = NFy(g-z,G) # 0. Then at
the second main step of the algorithm (step (ii) as described above), the intermediate
polynomial set is enlarged by h. In so doing there are two alternatives:

() Im(h) =Im(g-z), (&) Im{h) <lm(g-x).

In the latter case Im(g - z) is involutively reducible by some 1t{f) € [t(G). that is,
Im(g) -z = Im(f) x . Then, by Theorem 2.13 and Corollary 2.14 we have the equality
NFi{g - z,G) = NF(S({, g) G) where 5(f,4) =g -z — f x u is an S—polynowial,
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In this case, unlike the case {a), the monomial ideal Jd{!m{G)) is changed. Indeed,
let there is a polynomial Ay € G such that Im(h) is multiple of Im(k;} but not invo-
lutively multiple, that is, Im(k) = dm{h) - {Im(h)/Im{h;)). By the normal selection
strategy, set G satisfies the condition (4) of partial involutivity up to the monomial
Im(k) with respect to the ordering < what implies NFy(h, F) = 0.

Furthermore, by Theorem 2.18, NFL(8(g1,92), G} = NF(5(g1,92), G} = 0 for any
S—polynomial S(g1,9:), (91,92 € G) with lem(im(q1), Im(g)) < k(g - z).

It remains to prove that every S(g1,g2) such that NF{S(g1, ), G) # 0 is com-
puted at some step of the algorithm. Since set G is L—autoreduced, monomial u =
lem(Im{g1), Im(gz)) cannot be involutively multiple of both Im{g1), im(gz). Hence, by
degree compatibility of the ordering <, in a finite number of steps at least one of g1, g2
will be non-multiplicatively prolonged to a polynomial g with lrn{g) == u. Let g is ob-
tained by non-mulsiplicative prolongations of g;, and the current prolongation is g with
u = tm(g) - (/lm(g:)). If u is involutively multiple of Im(gz} or Im(gs) where g3 is a
polynomial obtained in the course of the algorithm by non-multiplicative prolongations
of go, then we are done.

Otherwise, there is to be § € G such that v = Im{g) = lm(g2) - (u/Im{ga)), and one
of the two polynomials g, § will be constructed, and then another. Since their leading
monomials cotncide, the leading monomial of the latter will be involutively reducible
by the leading monomial of the former. o

Though, by Corollary 5.3, algorithm InvolutiveBasis, if it terminates, computes
the minimal involutive basis for & globally defined involutive division it may not be
the case for arbitrary involutive division. If we use, for instance, any of divisions in
Examples 3.1-3.2 and 3.4, then, given a polynomial ideal Id{F’), the algorithm output
depends on the structure of input generating set F.

Example 5.5 Let F = {z%y—1,7y% — 1,3 ~ 1}. The lexicographical Janet basis for
z >y > z computed by algorithm InvolutiveBasis is

{ey-1,2— Loy’ - Loy-Le-1y'~ 10" - Ly" - Ly—-1}.
The reduced Grébner basis {z — 1,y ~ 1} of Id(F) is also the minimal Janet basis.

Proposition 5.6 If algorithm InvolutiveBasis tekes the reduced Grébner basis as
input it produces the minimal involutive basis.

Proof Let g-z be a non-multiplicative prolongation of element g in intermediate poly-
nomial set G, and h = NF.(g-z,G). We note that either £ =0 or Im(h) = Im(g - ).
Otherwise, as shown in the proof of Proposition 5.4, Im(k) would not belong to mono-
mial ideal Td{Im(G)) = Id{Im(F)). Thus, the output monomisal set Im(G) is con-
structed just as it would be done by applying elgorithm MinimallnvolutiveMone-
mialBasis to im(F). It follows that Im{G) is the minimal basis of Id{Im(F7)). o

The following algorithm constructs a minimal involutive basis, and generally deals
with less number of intermediate polynomials than algorithm InvolutiveBasis causing
the computational efficiency to increase.
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Theorem 5.7 Let F be a finite subset of R and L be a continuous involutive division.

Suppose ordering > is degree compatible. Then algorithm MinimallnvolutiveBasis
computes the minimal involutive basis of Id(F) if this basis is finite. If L is noetherian,

i then the minimal involutive basis is computed for any ordering.

Algorithm MinimalInvolutiveBasis:

Input: F, a finite polynomial set
Qutput: G, the minimal involutive basis of the ideal Id{F)
begin
F = Autoreduce(F)
choose g € F with the lowest Im(g) wr.t. <
T:={(g,im(g),0)}; Q:=0; G:={g}
for each fe F\{g} do
Q 1= QU {(/,Im(£), 0)}
repeat
h:=0
while Q#0 and h=0 do
choose gin (g,u, P) € @ with the lowest Im(g} w.r.t. <
Q:=Q\{(9,w. P)}
if Criterion(g,u,T) is false then h:= NFy(g,G)
end ’
if h#0 then G:=GU{h}
if {m(h) =Im(g) then T :=Tu{(hu,P)}
else T :=TU {(h, tm{h),0)}
for each fin{f,v,D) e T st Im{f} > Im(h) do
T=T\{{(f,v,D)}; Q=QU{(f,v,D)}; G:=CG\{f}
while exist {g,u,P)€ T andz € NM(g,G)\ P and, if @ # 0,
st tm(g-z) <Im{f) forall f in (f,v,D} €@ do
choose such (g, u, P),z with the lowest Im(g) - & wr.t. <
7= T\ {(g, P)} U {(9,% P U {a})}
if Criterion{g-z,u,T)is false then h:= NF.{g-z,G)
if h#0 then G:=GU{k}
if lm{h) =Im{g-z) then T :=TU{{h,u,0)}
else T :=T U {(h,Im(R}, )}
for each fin (f,0,D}eT with Im(f) > im{h) do
. T:=T\{{f,v,D)}; Q:=QU{{f,v,D}) G:=GC\{f}
en

until Q@ #0

end

WO =-1C O Wb

Proof Correctness. First of all, we recall that correctness of the involutive criterion
which is verified in lines 14,23 follows from Theorem 2.19. As distinct from the algo-
rithm InvolutiveBasis here are two disjoint subsets T and @ of the triples. They are
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built in such a way that im{g) < Im(f) for any gin {g,%, P) € T and f in (f, v, Dieq.
Let & be & polynomial set {g | {g,u, P} € Q}. First of all, we claim that ideal Id(GUG)
is an invariant of the repeat-loop. Indeed, it is trivially true upon initialization. Inside
the loop, if a polynomial is removed from @ in lines 18 and 28, then it is added to G.
On the other hand, removal of a triple from Q, that is, the corresponding polynomial
from G in line 11, does not change G iff NF;(g,G) = 0.

Furthermore, set T is handied by the lower while-toop in lines 19-28 just as it done
in algorithm InvolutiveBasis except for restriction in line 20 and the set contraction
in lines 27-28. In the latter case all the elements in G with Im(g) = Im{h}, where A
is the normal form of the current prolongation, are moved to G. Thus, this while-
loap preserves the property of partial involutivity up to monomial v < Im(h) for the
intermediate set G, in accordance with Theorems 2.17 and 2.18, if there is a partially
involutive set in the input of the loop. Besides, two elements with coinciding leading
terms obviously never oceur in set C:} }

In what foilows polynomials in G, if G # 9, are successively selected i accordance
with the normal strategy; taken out of the set and L-reduced modulo . The upper
while-loop in lines 9-13 proceeds until the normal form k of the selected polynomial
does not vanish. Then set & is enlarged by k in line 14.

The repeat-loop terminates when set G becomes empty in line 11 and the lower
while-loop does not lead to appearance of new elements in this set. I+ means that the
output set G is an involutive basis of ideal Jd(G) = Id{F). In so doing it is assumcd
that all the intermediate polynomials are monic. Their normalization can be performed
in line 2 and in lines 12, 23 when the involutive normal forin is computed.

Now, by Corollary 4.7, to prove minimality of the output basis it is sufficient to show
that the lower while-loop always ends up with L—autoreduced polynomial set G such
that {t{G) is compact. As we have already seen, this loop preserves partial involutivity.
Initially there is a single poiynomial which kas the miniral leading monomial, and,
therefore, its handling in the loop produces 2 compact lcading monomial sct.

Suppose a partially involutive polynomial set G with compact Im{G) wus produced
by the lower while-loop, and then it is enlarged by h = NFi{g,GYin line 14 when &G
is partially involutive up to some monomial v < im(g).

I tm{h} = Im(g), then, by restriction in ¥ne 29, Imih) > Im(f) for all f € G. By
property (c) in Definition 2.1, we obtain that NM(f.G, = G U {R}) S NM(f,C) for
any f € .

Let im(h) kas no conventional divisors in Im(G). Then, starting with the set Gy =
Autoreduce((G:), and completing Gy with irreducible non-multiplicative prolongations
of its elements by the normal strategy, we construct set Gy D G partially involutive up
to monomial v and with compact im{G5). If we start now with set Im(G,) and complete
it, if necessary, with irreducible non-multipiicative prolongations of its elements in order
te obtain a partially involutive set up to v, then we arrive at the seme set G2. Indeed,
even in the presence of extra intermediate elements, if Gy \ G # 0, there cannot oecur
reduction of an element p € G either by other element in & or by en extra element.
The former reduction is impossible by property (¢} of involutive division. The latter
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reduction, if it would hold, by properties (b)-(c) and by Theorem 2.18, would lead to
reducibility of p in the earlier set G when h has not been added yet.

If Im{h) is multiple of some element in im(G), then continuation of processing with
G in the lower while-loop yields a partially involutive polynomial set up to tmfh).
In doing so A is involutively reduced either to zero, or to a polynomial which changes
the monomial ideal I'd(/m(G)), as we have shown in the proof of Proposition 5.4.
Correspondingly, G, after contraction in lines 27-28, is re-set to the partially involutive
form with compact leading monomial set.

In the case when Im{h) < Im(g), the elimination which is done in line 18 converts,
apparently, the situation into one of two alternatives we have just considered.

Thus, the repeat-loop, if it terminates, ends up with an involutive set G with
compact Im(G), that is, with the minimal involutive basis.

Termination. As it shown in the proof of Proposition 5.4, there may be a finite
number of cases when polynomial g chosen in lines 10 or prolongation gz chosen in line
21 have reducibie leading monomizals. 1t implies finitely many redistribution of triples
between T and @ dore in lines 18 and 28. 1f 7d(F) has the finite minimal involutive
basis, and ordering < is degree compatible, then the lower while-loop terminates
irrespective of @ is empty set or not. This follows immediately from Propositions 5.4.
5.6 and compactness of Im{(G). Since the upper while-loop is obviously terminates.
and sct @ is refreshed finitely many times, in 2 finite number of steps the algorithm
arrives at @ = @ in line 30.

If involutive division L is noetherizn then the algorithm terminates for any ordering
~ because the lower while-loop terminates for the same rcason as the while-loop does
in algorithm InvolutiveBasis [23!. - a

_6 Conclusion

As we noted above algorithm MinimallnvolutiveBasis deals, generally, with less
number of intermediate polynomials then algorithn InvolutiveBasis. Besides, if invo-
lutive division L is not globally defined, then we may not obtain the minimal involutive
basis in the output of the latter aigorithm. But even for globally defined divisions the
former algorithm avoids the involutive autoreduction done in the lattor algorithm at ¢v-
ery step of the intermediate set enlargement. That is why we expect higher efficiency
of algorithm MinimallnvolutiveBasis with respect to algorithm InvolutiveBasis
for arbitrary involutive division. :

One couid also construct the minimal involutive basis by computing the reduced
Grobner basis and then enlarging it by non-multiplicative prolongations of its cle-
ments until the leading monomial set becomes involutive. To construct the reduced
Grobner basis one can use the Buchberger algorithm or perform the conventional au-
toreduction of an involutive basis computed by algorithin InvolutiveBasis. However,
urlixe Buchberger algorithm, algorithin MinimalInvolutiveBasis henefits from the
involutive technique, and as we have argued is favored over the use of algorithin Invo-
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lutiveBasis for intermediate computation.

In paper [25] for constructing of Janet bases for linear partial differential equations
one more algorithm is described. Its analog in commutative algebra contains two basic
subalgorithms which are successively performed: completion of a polynomial set by
non-ratltiplicative prolongations of its elements until the set of leading monomials be-
comes involutive or complete (see footnote at page 4); the conventional autoreduction
of the obtained set. In this case due to the second subalgotithm the output Janet bases
are minimal. However, such an algorithmic procedure is far short of optimum from the
computational point of view. In so doing one has to perform the repeated prolongations
and deal with all the possible S—polynomials. In our algorithm MinimalInvolutive-
Basis the repeated prolongations are eliminated by storing in the triple sets T and @
those non-multiplicative variables which have been used for a given polynomial. Fur-
thermore, the use of the involutive analogue of the Buchberger’s chain criterion allows
ong to cut considerably the number of computed S—polynomials.

The algorithms described in this paper just as Zharkov and Blinkov algorithm [26]
can be extended to systems of linear systems of partial differential equations, and also
to some classes of nonlinear systems. Being uniquely defined, minimal involutive bases
much like reduced Grébner bases can be considered as canonical ones for polynomial
and differential ideals. The corresponding form of partial differential equation systemns
is just the standard [28) one. By transforming a given system into this form one can
determine the dimension of the solution space and a set of initial conditions providing
the existence of a uniquely defined and locally holomorphic solution {17, 27, 28, 29].
Involutive algorithmic ideas may be also rather fruitful in constructing the canonical
bascs for finitely generated ideals in free Lie algebras and superalgebras (30].
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