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I. INTRODUCTION

The quantum mechanics of a point-like particle is constructed starting with two
vectors:--the position vector, 7, and the linear momentum, p = -—iha%., having the
well known commutation relations. These two vectors are used to build all the other

_ quantities, like the angular momentum, the mteractmg potential, etc. In general; these
new qua.ntltles are noncommutative, their commutation relations bemg determmed by
. the commutation relations satisfied by # and p. _ »

In a g-deformed quantum mechamcs the commutation relations between the gen-
erators of the SU,(2) algebra, L, and the position vector, 7, are well defined and it is
tatural to take these vectors as the ba.sxc quantities from Wthh all the other must be
built.

Wishing to build a g-deformed Schrodmger Hamiltonian we searched for a reallza-
tion of p entering the kinetic energy term.. First it was necessary to find a realization

_for 7 and for L as self-adjoint quantities obeying the known commutation relations.
Theén one has to look for a realization of 7'in terms of 7 and of L. We found that 3 can
be written as a sum of two terms which are respectively parallel and perpendlcula.r to
7. The first one is assumed to have the simplest form and is written as —i% (rZ + 1)
while the second one is expressed as a vector product of ¥ and of L.

The paper is organized as follows: Section II contains the general commutation
relations mvolvmg the g‘angular momentum and some quantities having definite trans-
formation propertles with respect to the SUy(2) algebra, like the invariants C,cand
the vector A. In the third section we give a realization of the: p051t10n vector, 7, and
of the g-angular momentum®>3, L, in terms of the polar coordinates r; zy'= cosO ©.

_ The realization of the linear momentum P is given in the fourth section. We first build
the part perpendicular to 7, denoted &, using the cross product 7 x A and find that
it satisfies! some commutation relations similar to those satisfied by 7. The part par-
a.llel to 7, supposed to have the simplest form, is just that coming from the ordinary
a" Section V contains the eigen functions of the g-angular momentum?3, written like

" series in zp = cosd. The result is'a generalization of the hypergeometrxc functions
2Fi(a,b;¢; %; z2) and ;Fi(a,b,¢; 2 5 ; z3) which can be related to the ¢-deformed spherical
functions Yim(q; zo, ). Some properties and relations satisfied by the eigen functions
are also listed. In the last section the g-deformed Schrédinger equation** with scalar

" potential is given. Its solutions for Coulomb and three dimensional oscillator potentials
are briefly discussed.

II. THE ¢-ANGULAR MOMENTUM

The SU,(2) algebra is generated by three operators L., L. and Lo, also na.med
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the g-angular momentum, having the following commutation relations:

[LQ,L:E]=:EL£ , : (1)
| [Ls, L] = 2 L] @
where the quantity in square brackets is defined as
qﬂ _ q—ﬂ BN N .
n] = ————. 3) -
W = =5 | (

In the following we shall introduce quantities having definite transformation properties
with respect to the SU,(2) algebra. They will be further used to build ¢ scalars and
q vectors, like, for instance, the ¢ linear momentum, entering the expressxon of the

hamiltonian operator. ;
First of all we remind that SU,(2) algebra. has an invariant, C, called the Casimir

_-operator

C = Lo L~ [L] [Lo +1] . @
whose eigenvalue in the (2! + 1) dimensional irreducible represgnta.tion is:
Ci=[ i+ . NC)

‘A vector in. this a.lgebra. is a set of three qua.ntmes vk, k = :}:1 0 sa.tlsfymg the
followmg relations:

Clhwl=kw S ®
[Livk—qvkLiqu"— [2]1’&1;‘ (7y

where v+, must be set equal to zero in the right-hand side for k = £1]

By comparing the relations (1), (2) with (6), (7), we observe that, unlike the SU(2)
algebra, the operators L; do not represent the components of a vector in the above
sense. However, one can use Li and Lg to deﬁne a vector, A in the followmg manner:

M=%wu“w'.; ®
0:[17] (qL+L-_;q-1LV_L+). S 9

It is now an easy matter to show that A, satisfy the relations (6) and (7) as required.
Two vectors @ and & can be used to build a scalar, S, according to'the following

definition: - . o
S =47 = f:l-ul v + upg v - qu_-1 V. i (10)

By introducing a generalization of the cross product, the vectors can be used a.lso to
build a new vector, as it will be further shown. ’

In the case @ = # = A, the scalar product A? defines a second invariant®, C’, which
is not independent of C. The eigenvalue of C’ is

In this paper a third inva.rié.nt, ¢, defined as
¢ =g 4+ XA (12)
with 1. .
A= - SENGE)

will be frequently used in order to write the formulae in a more compa.ct form. Its

eigenvalue is:
@ 4 g
(2 ' ;
It is worth notiéing that, in the limit ¢ = 1 the first and second invariants C, C’ both
go into the Casimir invariant C=I? = {(1 + 1), while the third one, c; becomes equal
to unity. The results listed in this section are valid for any realization of the SU,(2)
algebra.

¢ = ( 1‘4)‘,

III. THE POSITION VECTOR 7 AND A REALIZATION OF L, AND
Ly ,

" In Ry(3) space the position vector  has three noncommutative components ry, r_;
and ry, satisfying the following relations:

To Tx1 = ‘1¥2 T+1 To (15)
rrToy = rogr 4 ATk (16)
The quantity 2 defined as
r2=f"2=——r1r_1+r(2,—qr_1rl : o (1n
q ) . .

commute with all ; and with all L; if 7 satisfies the conditions (6) and (7) to be a-

vector. For ¢ =1 the scalar r is nothing else than the length of the position vector 7.
We shall keep this meaning also for ¢ # 1.



Sea.rchmg for the concrete realization of 7, Lt and of Ly, we begin by expressmg

Lo like in R(3) case: ¥
a

Ly =w--1 _— ) ’ ’ V(AIS)F

oo
The next step is to write 7 as a pi‘oduct of r and of a unit vector, ¥, depending on
angles. We put: S .
T4 = T Ta , (19)
ro = 1 Zp." , . +(20)
It remains now to find a realization of z4; in terms of -the azimuthal angle ¢ and of
o, which is in fact equal to cos 8, just as in R(3) case. We found:

= —¢ ‘[[2 1-q? 3 ¢*™ (21)

where the dilatation operator Ny satisfying the relation

[NO,%]—"% o (23)
and havmg the hermiticity property ' _ ' ,
N = -Ny - 1 . (24)

has been introduced in the expressions (21) and (22) in order to fulfil the commutation
relations (15) and (16).
Taking now into account the relations (19-24), and assummg

zg = To . (25)
we get for 1 the normal hermiticity properties: ‘ »
ot = Lo (26)
q
f, = —q . ' (27
All these a.rguments allow us to conclude that eqgs.(19-23) deﬁne the realization of the
position vector 7 in R,(3) space.
The last step is to search for a realization of the SU,(2) genera.tors The expressions
we propose for L, and L_ are:

o 1 1'__q—2No i
Ly = [2) e a:’l‘°+l ; T — %] Lo gle - (28)

i

5,
e

. 1, 1— g2 , B
- —ip z=Lo+1 2. Flo glo
L_ = \/[2_]e Vx_lo ; 1—q2 _lq (29)
where 4, = ¥ z4, depends on z only. Looking at the expressions (28) and (29) it
becomes clear why the phase factor is removed from z41: expressions like 23 have no
meaning, while Z #58 is well defined.
Considering now the action of the operator L on the non-normalized eigen function

of Ly and of the Casimir operator C
HM(q’ Zo, ) = e'mw elm(l'o) (30)

we notice that Z7%° in (28) removes the factor Z7* in Yim(g,Zo, ). In this way one
prevents g~ from acting on #; and producmg a troublesome result. The operator'
g *™ in L, acts then on (-),m(a:o) only and e a:L°+l creates the factor :1:1 in right
place.

In the well known R(3) theory of angular momentum a different mechanism prevehts
39 in Ly from acting on £7*: the term given by -2 55 =T is exactly cancelled by zcth—; z7,
finally remaining only the derivative. 696,,,,(3:0)

It can be verified that the expressions (18), (28) and (29) satisfy the commutation’
relations (1) and (2) and hence one can conclude that they are the realization of the
SU,(2) generators in R,(3) space. It can also be checked that the position vector ¥
defined in (19-22) behaves really like a vector in this SU,(2) algebra, since it satisfies
the relations (6) and (7) with L4 given by (28) and (29).

IV. THE LINEAR ¢-MOMENTUM p’

In order to write down an expression for the linear momentum g, we separate it into
a part perpendicular and another parallel to Z. The first one is defined with the aid of
the cross product Z x I and the second one is assumed to have the form Z % f (r;i,_ +1
where f is a function which will be defined in the following. The components of the
transverse part, denoted d, write

31 = q—l ) Au — q ZIg A1 + ) C (31)
O = 21 A1 — AzglAg — 21 AL + Zo (32)
3_1 = —qTra Ao + q—l Zo A_1 + A (33)

where ¢ is the invariant defined in €q.(12) and the terms z; ¢ have been added to the
cross product ¥ x A in order to ensure the well defined character with respect to the
hermitian conjugation operation

of = — (_%)ok oh (34)
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It can be checked that the quantities 8 satisfy the following relations:

LB = g7 Ao , _(35)
8001 = q* 010, o " (36)
810-, = 010 + A B, ' /(37)

Eq (35) ha.s been obtained by commuting 8 with 8;, and eq.(36) is the hermitian
conjugate of the above one, while eq.(37) can be obtained either from eq.(35) or (36)

by using eq. (7).

Also, by multiplying equations (31-33) with the correspondlng z) and ta.kmg into

account the commutation relations (15,16) one gets::

Fi=c. (38)

8,
Dy

By commuting the mvarlant ¢ with £ one ﬁnds

5 = A [,4]. B (39)

Taking now the matrix elements of the last relation one obtains: |
(1+1m'[]1m) = [2[;]2] (I+1m'|Z|lm) 1 (40)
{I-1m'|d]Im) = ~ [2’](1-1 "] 1m). (41).

(2]

From parity. arguments one can also write:
(Im'| 8| lm) = 0. ' ; (42)

' By replacing the matrix elements of d with those of  with the aid of eqs. (40) and
(41) one can obtain the elgenva.lues of 3%

{2” [21 +2] _ 2
[N

Taking into account all these relations, the realization we found for the linear momen-
tum 7 is:

< I m|&*| lm> = (43)

. =t {_. 9 - a5
p—T(:r(ré-T-_-+l)—a). | (44)
Then, in the (2! + 1) dimensional répresentation P ? writes:
., _ 18 8 c L[] [20+2]
Po= = e \ar 1+ [2] [2] td - (45)

i s Ve

-

which in the limit ¢ = 1 becomes equal to the radial part of the Laplace operator.
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V. THE ¢-ANGULAR MOMENTUM EIGEN FUNCTIONS

The eigen vectors ®pm(q, zo, ) of the (20+1) dimensional 1rreduc1ble representa.tlon

.of the g-angular momentum are eigen functions of Lo and of the Casimir operator C.

We begin by writing them as a polynomla.l in o multiplied by zr:

(Dlm(q,zo,ga = zl Z ak Io ) © (46)
: k>0 B . . L N

where the sum extends over odd and even k- va.Iues for odd (I — m) and respectively
even (I —m). . ‘
The equation:

Ly Lo @A%%,)=[Hﬂﬂﬂ~m+ﬂ¢m@@m@ (47)
gives the recurswn relation:

—2m [l—m—k] [l+m+k+l]
k+1]k+2]

Az = —¢q . » N 5 (48)

For (I — m) even we obtain:

i {1 -l my 1]‘ (™)

'(Dfm(qaxm 5‘9) = I [’)]l

l—mjl-m=2)l+m+1]l+m+3 4
[ Il ][[4; +1[1+m+ I( o) r} (49)
while for (I — m) odd we get:
‘ 1 m » l—m—i l+m+2 m \3
®im(g,20,0) = {[1], Ch xo)-[ égﬁ +2 (47™z0)
l—-m—=1l-m=3[l+m+2l+m+4 500 ’
B A

[n order to express these results in terms of a ¢-hypergeometric series it is necessary to
write all the g-numbers (] in the form

m=“”“=m”ﬁjﬂf—mﬂf (51)

<
|
<
|
-
<



For (I — m) even we have then:

l+m+1 —=l4+4m 1 __ v
<I>:m(q,zo,<p)=r’{‘zF1(q’; 5 Ty i g4 z%) (52)

while for (I — m) odd we get:

le(quﬂ"/’) = z’ln g™ 7o 21 (q ) 9 s 9 » 5o

, 14m+2 —l+m+1 3 q'"“zf,). (53)

The index 2 in ;F; means that all the g-numbers in the series development of ;F; must
be calculated with ¢® instead of ¢.- =~
We found that ®4,,(g, Zo, @) satisfies the following simple relations:

11— q-2No .
e 1-q? Bim(g,20,0) = —[1=m] ([ +m+1] & mia(9:20,¢),  (54)
for (! — m) even, and
1 1—g .
1 '——_2' le(qum (P) = Ql m+1(q1 Zo, (P)? (5"3)
zo l—ygq ‘
for (I — m) odd.
The normalized eigen functions are:-

’ -m—1[" m—1\?
Filgy ) = (-1 Py LD (Lol L —gB) g g,

(56)

for even (I —m), and A

—m|l mt \'* . ’
Hin(70,¢) = (<17 [214: . ([1 . m _]'1']!! i E:I -]'1’]1!> )% 0 mlg, z0:2)

' (57)

for odd (I — m) and the orthogonality relation is written as:
[ Gh(0,70,9) Yin(a,20,) dy dlza] = G S (58)
where the integral over ¢ is a normal one, while the integrals over d[zo] are taken as:
o d ! 59
/0 zp dlzo] = el (59)

For the negative interval (—1,0) from parity arguments we take:

[ dizol = (-1 [n—i—u | (60)

- The relation (59) is in fact the result of a discrete integration of f(zo) = z3, performed

by dividing the integration interval (0, 1) with an infinite set of points zx = ¢* for ¢ < 1
and writing . ; ‘ )
i i 1 (o] - .
' /0 f(zo) dlze] = Y, f(zas1) (2 — Takea) - (61)
. E 5 < N . " . k___o . ‘ -
Looking now for the properties of Y, we found that, just as in'the R(3) case, the
product = Yim can be expressed in terms of Yig1 mik as follows:

_otem (Uml]l+m+2
31 1/lm(Q)-7;"1‘1&19") =19q \J [2][2I+ 1][21+3] 1/l+l m+l(q)107(r°)

—lmm—1 [1 - m][l -_m - 1] . .
-q \]m Yo m+1(q, %o, ) (62)

f—=m+1jl+m+1]
\ [0+ 1][21+3]

—1n -

Yiz1 m(9, %0, )

roiflm = 4q

o [E=mjli+m]
L\ P71 TRy

1/l---l m(qy To, (P) (63)

) . dem [I—~m+1][l—-m+2]
T-1 1/h"(q::l:oi‘t") - ql \] [2][2l+ 1][2I+3] 1/1+1 m—l(lhIo,‘P)

- temr |+ m][[+m—1] v
o ' \JW Yia "‘"1(% Zo, ‘,0). (64)

In addition, we have three relations which express the noncommutativity of zx with
Yim and represent a generalization of the equations (): i

20 Yim(9,%0,0) = ¢ Vim(q,%0,0) To (65)

z1 Yim(9:70,) = Yim(g,Z0,90) 71

e =i+ m + 1] ¥i mea (4, 50,69) 2o (66)

ik



31 Yim{0,30,9) = Yim(g:Z0,0) Z-1° o
- —‘/% g™ L+ m)[l - m+ 1] Y a-1(q, Z0, ) To- o (67)

The last two equations have been.obtained from the first one with the aid of Ly
and L_ which rise and lower the index m of Y.

VI. ¢-DEFORMED SCHRODINGER EQUATION

Taking into account all the above results, we assume that the Hamiltonian entering
the g- deformed Schrodinger equation is:

H = %52»+ V(r) | (68)

where the operator p has been defined in the fourth section. The eigen functions of
this Hamiltonian are:

\I/(T, o, (P) = rt uL(r) },lm(qv To, ‘P) (69)
where L'is the solution of the following equation:

_ [21)[21 + 2] 2
oo

obtained from the condition that ur(r) is finite in the limit r — 0.

This Schrédinger equation has simple solutions for Coulomb potential V'(r) = —1
and for the oscillator potential V(r) = } r2. The eigen values of the two Hamiltonians
are: )

L(L+1)

- (70)

1
Eny = ————— 71
d An+ L+1) F‘ )
for the Coulomb potential and respectively: ‘
3 .
Eu = (2n+ L+ 5) (72)

for the oscillator potential, n being the radial quantum number and L the solution of
the equation (70), usually not an' integer. We notice that the spectrum is degenerate
with respect to the magnetic quantum number m. The solution of the wave equation
which does not depend on # and ¢ gives for the mean value of z} the value R?/[3]
instead of R?/3 obtained in the case of spherical symmetry. It results then that the

quadrupole momentum as well as all the 22" poles are different from zero, although the

10

wave function does not depend on 8 and . This shows clearly that the Hamiltonian
loosed the éphérical symmetry. One can mention however that it gained another,
namely the symmetry under the SU,(2) algebra. : -
Finally, we remark that there are three sources producing the differences between
the case of g-deformed Schrddinger equation and the case of spherical symmetry: The
first one is that the g-harmonic wave function Yim(q, zo, ) differs from the spherical
one Yin(8,0). The second reason is that the coefficient of the centrifugal potential in

. the radial Schrodinger equation is L(L +1), with L given by eq.(70), not I(I +1),asin

the sperical case. The third source is that in the g-deformed case the integral over zo
is performed according to the relations (59-60). :
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