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q-Deformed Schrodinger Equation 

We found hermitian realization of the position vector r; angular momentum 
A and linear momentum ~behaving like vectors with respect to the SU (2) algebra, 

q 

generated by L0 and L±. They are used to write the q-deformed Schrodinger equation, 

whose solutions for Coulomb and oscillator potentials _are briefly discussed. 

The investigation has been performed at the Bogoliubov Laboratory of 
Theoretical Physics, JINR. 
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I. INTRODUCTION 

The quantum mechanics of a point-like particle is constructed starting with two 
vectors:• the position vector, r, and the linear momentum, p = -ihff;,, having the 
well known commutation relations .. These two· vectors are used to build all the other 

. quantities, li.ke the angular m6IT1entum, the interacting potential, etc. In general, these 
new quantities are noncommutative, their commutation relations being determined by 
the commutation relations satisfied by r and f · 

In a q-deformed quantum mechanics the commutation relations between the gen­
erators of the SUq(2) algebra, L, and the position vector, r, are well defined and it is 
natural to take these vectors as the basic quantities from which all the other must be 
built. ' 

Wishing to build a q-deformed Schrodinger Hamiltonian we searched for a realiza­
tion of p entering the kinetic energy term .. First it was necessary to find a realization 
for rand for L as self-adjoint quantities obeying the known commutation relations. 
Then one has to look for a realization of pin terms of rand of L. We found that p can 
.be written as a sum of two terms which are respectively parallel and per.pendicular to 
r. The first one is assumed to have the simplest form and is written as -if, (r-ff; + 1) 
while the second one is expressed as a vector product of rand of L. 

The paper is organized as follows: Section II contains the general commutation 
relations involving the q-angular momentum' and some quantities having definite tr~ns­
formation prope.rties with respect to the SUq(2) algebra, like the invariants C; c and 
the vector A. In the third section we give a realization o( the position vector, r, and 
of the q-angular momentum1•2•3 , L, in terms of the polar coordinates r, xo = c6s0, r.p. 
The realization of the linear momentum pis given in the fourth section. We first build 

· the part perpendicular to r, denoted tJ, using the cross product r x A and find that 
it satisfies1 some commutation relations similar to those satisfied by r. The part par­
allel to r, supposed to have the simplest form, is just that coming from the ordinary 
f.,. Section V contains the eigen functions of the q-angular momenturri2

•
3

, written like 
series in xo = cos0. The result is ·a generalization of the hypergeometric functions 
2F 1( a; b, c; ½; x5) and 2F 1( a, b, c; ~; x5) which can be related to the q-deformed spherical 
functions Yim(q,x 0 ,r.p). Some properties and relations satisfied by the eigenfunctions 
are also listed. In the last section the q-deformed Schrodinger equation1•

4
•
5 with scalar 

· potential is given. Its solutions for Coulomb and three dimensional oscillator potentials 
are briefly discussed. 

II. THE q-ANGULAR MOMENTUM 

The SUq(2) algebra is generated by three operators L+, L_ and Lo, also named 



the q-angular momentum, having the following .commutation relations: 

[ Lo , L± ] = ± L± 

[ L+ , L_ ] = [2 Lo) 

where the quantity in square brackets is defined as 

[n] = 
qn -q-n 
q- q-1 • 

{1) 

(2) 

(3) 

In the following we shall introduce quantities having definite transformation properties 
with respect to the SUq(2) algebra. They will be further used to build q scalars and 
q vectors, like, for instance, the q linear momentum, entering 'the expression of the 
hamiltonian operator. 

First of all we remind that SUq(2) algebra has an invariant, C, called the Casimir 
operator 

C = L_ L+ - [Lo] [Lo + 1] (4) 

whose eigenvalue in the (21 + 1) dimensional irreducible representation is: 

C1 = [l] [l + 1). (5) 

A vector in this algebra is a· set of three quantities Vk, k = ±1, 0 satisfying the 
following relations: · 

[ Lo , Vk ) = k Vk (6) 

[ L± Vk - · l Vk L± ] l 0 = ./[2J Vk±l . (7)· 

where V±2 must be set equal. to zero .in the right-hand side for k = ±1. 
By comparing the relations (1), (2)-with (6), (7), we observe that, u~like the SU(2) 

algebra, the operators Lk do not represent' the components of a. vector in the above 
sense. However, one can us'e L± and Lo to define~ vector, A, in the following manner: 

=Fl ,;_Lo 
A±1 = v12J q L± (8) 

1 . 
Ao = [

2
] (q L+ L_ - q-

1 L_ L+). (9) 

It is now an easy matter to show that Ak satisfy the relations (6) and (7) as required. 
Two vectors it and u can .be used to build a scalar, S, acc~rding t_o the following 

definition: 

s = -ilv 1 = -- U1 U-1 + Uo Vo - q U-1 V1-
q 

2 

(10) 

,, 
J 
I 

By introducing a generalization of the cross product, the vectors can be used also to 
build a new vector, as it will be further shown. -

In the case it= v = A, the scalar product A2 defines a second invariant6
, C', which 

is not independent of C. The eigenvalue ofC' is 

c; = (211 (21 + 21 
(2) (2]. 

In this paper a third invariant, c, defined as 

with 

. 
c = q-2Lo + A Ao 

1 
A = q-q 

(11) 

(12) 

(13) 

will be frequently used in order to write the formulae in a more compact form. Its 
eigenvalue is: 

c, = 
q21+1 + q-21-1 

(2) 
(14). 

It is worth noticing that, in the limit q = I the first and second invariants C, C' both 
go into the Casimir invariant C=£2 = l(l + 1), while the third one, c, becomes equal 
to unity. The results listed in this section are valid for any realization of the SUq(2) 
algebra. 

III. THE POSITION VECTOR i AND A REALIZATION OF L± AND 
~ . 

In Rq(:3) space the position vector r has three noncommutative components r 1 , r _1 

and r0 , satisfying the following relations: 

The quantity r2 defined as 

ro r±1 = q'f2 r±1 ro 

r1r-1 = r_1r1 + Ar~. 

2 - 2 1 2 r = r = --r1 r_ 1 + r0 - qr_1r1 
q 

(15) 

(16) 

(17) 

commute with all r; and with all L; if r satisfies the conditions (6) and (7) to be a 
vector. For q = I the scalar r is nothing else than the length of the position vector r. 
We shall keep this meaning also for q i= 1. 

3 



Searching for. the concrete realization of r, L± and oLLo, we begin by expressi~g 
Lo like in R(3) case: 

a 
Lo ~ ~i f),p° ' (18) 

The next step is to write r as a p~oduct of r and of a unit vector, x, depending on 
angles. We put: 

r±1 = r X±1 

r 0 = r x0 • · 

(19) 

• (20) 

It remains now to find a realization of X±1 in terms of the azimuthal angle cp and of 
xo, which is in fact equal to cos 0, just as in R(3) case. We found: · 

X1 = -ei"' Hi ✓1 - q2 x5 q2No 

X-1 = e-i,p &. ✓1 - q-2 x5 q-2No 

where the dilatation operator N0 satisfying the relation 

[ No , x~ ] = n x~ 

and having the hermiticity property 

Nt = -No - 1 

(21) 

(22) 

(23) 

{24) 

has been introduced in the expressions (21) and (22) in order to fulfil the commutation 
reiations (15) arid (16). 

Taking now into account the relations (19-24), and assuming 

xt = Xo 

we get for X± the normal hermiticity properties: 

-1 Xi = - X-1 
q 

(25) 

(26) 

X~l = -q X1, (27) 

All these arguments allow us to conclude that eqs.(19-23) define the realization of the 
position vector r in Rg{3) space. 

The last step is to search for a realization of the SUq(2) generators. The expressions 
we propose for L+ and L_ are: 

vf2i 
1 1 -2No 

L+ = ei"' XLo+I - - q x....:L. qL• 
1 Xo 1- q-2 1 

(28) 

4 

l 
I 

l 
I 

vf2i 
. 1 1 _ q2No 

L_ = e-•<P x-Lo+l ~ --- -Lo Lo 
-1 1 2 X_l q Xo -q 

(29) 

where X±l = e'fi,p ~±l depends on x0 only. Looking at the expressions (28) and (29) it 
becomes clear why the phase factor is removed from X±1: expressions like x~ have no 
meaning, while xi1 is well defined. 

Considering now the action of the operator L+ on the non-normalized eigenfunction 
of Lo and of the Casimir operator C 

Yim(q,xo,<P} = eim,pxr01m(xo) (30) 

we notice that x1L0 in (28) removes the.factor x1 in Yim(q,x0,cp). In this way one 
prevents q-2No frorri acting on :i:1 and producing a troublesome result. The operator' 
q-2No in L+ acts then on 01m(x0) ~nly and ei"' xf•+l creates· the factor xf in right 
place. 

In the well known R(3) theory of angular momentum a different mechanism prevebts 
fa in L+ from acting on xf: the term given by fa x1 is exactly cancelled by ictg0 ;,,, x1, 
finally remaining only the derivative fa01m(xo)-

It can be verified that the expressions (1.8), (28) and (29) satisfy the commutation 
relations (1) and (2) and hence one can conclude that they are the realization of the 
SUq(2) generators in Rq(3) space. It can also be checked that the position vector r 
defined in (19-22) behaves really like a vector in this SUq(2) algebra, since it satisfies 
the relations (6) and (7) with L± given by (28) and (29). 

IV. THE LINEAR q-MOMENTUM p 

In order to write down an expression for the linear momentum p, we separate it into 
a part perpendicular and another parallel to x. The first one is defined with the aid of 
the cross product xx Land the second one is assumed to have the form x ~ J (rf + l), 
where f is a function which will be defined in the following. The components of the 
transverse part, denoted Ok, write 

81 = q-1 
x1 Ao - q Xo A1 + X1 c (31) 

Bo = x1 A_1 - A xo Ao - X-1 A1 + Xo c · (32) 

8_1 = -q X-1 Ao + q-1 xo A_1 + X-1 c (33) 

where c is the invariant defined in eq.(12) and the terms Xk c have been added to the 
cross product x x A in order to ensure the well defined character with respect to the 
hermitian conjugation operation 

at = - (-Dk a-k• {34) 
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I. 

I 

i ~ 

It can be _checked that the quantities fh satisfy the following relations: 

8081 =:= q-2 8180 

808-1 = l 8-180 

818-1 = 8_181 + >. 8i . 

(35) 

(36) 

;'(37) 

Eq.(35) has been obtained by commuting 80 with 8{, and eq.(36) is the hermitian 
conjugate of the above one, while eq.(37) can be obtained either from eq.(35) or (36) 
by using eq. (7). 

Also, by multiplying equations (31-33) with the corresponding Xk and taking into 
account the commutation relatioris (15,16) one gets: · 

X § = -ax= C. (38) 

By commuting the invariant c with x one finds: 

§ = >.-2 [c,i]. (39) 

Taking now the matrix elements of the last relation one obtains: 

\ l + l m' I § I l m) = [2~:i2] ( l + l m' I x I l m) (40) 

(z - l m' I § I l m) = -i~ll ( l - l m'. I i I l m). ( 41 )_ 

From parity arguments one can also write: 

(l m' I 8k I l m) = 0. (42) 

By replacing the matrix elements of § with those of x with the aid of eqs. ( 40) ;nd 
(41) one can obtain the eigenvalues of 82 : 

(zm1a21zm) = _(2/] (21+2] 2 
(2] (2] - Cl' 

(4:l) 

Taking into account all these relations, the realization we found for the linear momen­
tum pis: 

-i ( a -) p = - x (r- + l) - 8 . 
r 8r 

{44) 

Then, in _the (2/ + 1) dimensional representation p 2 writes: 

p 2 = _! ~ (r~ + 1) + 2-((2/] [2l+ 2] + c; - c1) 
r 8r 8r r2 [2] [2] 

{45) 

6 

( 

I 
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if 

' 
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t ~ 

I 

I 

which_in _the limit q = 1 becomes equal to the radial part of the' Laplace operator. 

V. THE q-ANGULAR MOMENTUM EIGENFUNCTIONS 

The eigenvectors <I>1m( q, xo, \0) of the (21 + 1) dimensional irreducible representation 
of the q~angular momentum are eigen functions of Lo and of the Casimir operat?r ,C. 
We begin by writing them as a polynomial in x0 multiplied by xf: 

<I>1m(q,xo,<p) ~ x'{' z:=· ak x~ 
k~O 

{46) 

where the sum extends over odd and even k-values for odd (l - m) and respectively 
even (l - m). 

The equation: 

L+ L_ <I>1m(q,xo,\O) 

gives the recursion relation: 

[l + m] [l- m + l] <I>1m(q, Xo,\O) 

_ 2m [l- m - k] [l + m + k + l] 
ak+2 = -q [k + l] (k + 2] ak, 

For (l - m) even we obtain: 

. m { [l-ml[l+m+ l] ( -m )2 
<I>1m(q,xo,\O) = x 1 1- [

2
]! . q Xo 

[l - ml[l - m - 2](/ + m + l](l + m + 3] ( -m )4 } + [ 
1

. q Xo r ... ' ' . 4 ! 

while for (l - m) odd we get: 

m { l ( -m ) [l - m - I](/+ m + 2] ( -m )3 
<I>1m(q,xo,\O) = X 1 [l]! q Xo - [3]! q Xo 

[l-m-l](l-m-3](l+m+2](l+m+4] (-,;. )s · } 
+ [5]! q Xo - ... , 

(47) 

(48) 

(49) 

(50) 

In order to express these results in terms of a q-hypergeometric series it is necessary to 
write all the q-numbers (n] in the form 

[n] = 
qn _ q-n 

q- q-1 
= [2] (q2)? - (q2J-? 

q2 - q-2. = 

7 

[21 [iL· (51) 



For (l - m) even we have_then: 

m ( 2 l+m+l 
<P1m(q,xo,'P) = Xi 2Fi q i --2 

-l + m 1 -m 2) ---•-·q X·o 
2 ' 2' 

(52) 

while for (l - m) odd we get: 

m-m (2 l+m+2 4>1m(q,xo,<p) = Xi q Xo 2Fi q i --2 
-l + m + 1 . ! . q-mx~ ) . (53) -2--, 2' 

The index q2 in 2F i means that all the q-numbers in the series development of 2F i must 
be calculated with q2 instead of q. 

We found that 4>1m(q, x0 , rp) satisfies the following simple relations: 

1 1- q-2No 
X1 - l 2 4>1m(q,xo,rp) = -[l-m) [l+m+l) 4>1m+1(q,xo,rp), 

Xo -q-
(54) 

for (l - m) even, and 

1 1 _ q-2No 
X1 - l 

2 
4>1m(q,xo,rp) = 4>1 m+1(q,xo,rp), 

Xo - q- . 
(55) 

for (l - m) odd. 
The normalized eigen functions are: 

)")1/2 . !.= /(2l+if([l-m-1)!! [l+m~l.. [2)Y4>1m(q,xo,rp), 
Yim(q,xo,rp)=(-1) • v~ [l-m)!! [l+m)!! (56) 

for even (l - m), and 

,-m-1 [21 + 1) [l- m)!! [l + m ·· 
11 

[2)Y4>1 m(q,xo,rp) Ill ) 1/2 · 

Y,.(q,x,,,) ~ (-1) ' ✓ 4, (11 -m _ 1)1! [I+ m - 1(.. (5') 

for odd (l - m) and the orthogonality relation is written as: 

j 1-';;;,.,(q,xo,'P) Yim(q,xo,rp) drp d[xo) = 6w 0mm' (58) 

where the integral over rp is a normal one, while the integrals over d[xo) are taken as: 

/1 1 
lo x; d[xo) = [n + ir (59) 

For the negative interval (-1, 0) from parity arguments we take: 

0 ' 1 
L1 x; d[xo) = (-1r [n+ 1r (60) 

8 

!
·1 

. ' 

I I 

The relation (59) is in fact the result of a discrete integration of f(x 0 ) = x;, performed 
by dividing the integration interval (0, 1) with an infinite set of points Xk = l for q < 1 
and writing , 

/1 oo 
lo f(xo) d[xo) = L f(x2k+1) (x2k - X2k+2) . 

O k=O . 

(61) 

Looking now for the properties of Yim, we found that, just as in the R(3) case, the 
product Xk Yim can be expressed in terms of Yi±1 m+k as follows: 

X1 Yim(q,xo,rp) = ql-m 
[l +m + l)[l +m + 2) 

[2)[21 + 1)[21 + 3) Yi+i m+1(q, Xo, rp) 

- q-l-m-1 [l - m)[l - m - 1) 
[2)[2/ + 1)[21- 1) Yi-1 m+1(q,xo,rp) (62) 

Xo Yim = 
[l - m + ll[l + m + 1) 

[21+1)[21+3) Yi+1m(q,xo,<p) 

- q-m [l- m)[l + m) 
[2/ + 1)[2/ -1) Yi-1 m(q,xo,<p) (63) 

X-1 Yim(q,xo,'P) = ql-m 
[l - m + l)[l - m + 2) 

[2)[21 + 1)[21 + 3) Yi+i m-1(q,xo,'P) 

- q'-m+I [l + m)[l + m - 1) 
[2)[2/ + 1)[21-1) Yi-1 m-1(q,xo,<p). (64) 

In addition, we have three relations which express the noncommutativity of Xk with 
.Yim and represent a generalization of the equations (): 

Xo Yim(q,xo,rp) = q-2
m Yim(q,xo,<p) Xo 

X1 Yim(q,xo,<p) = Yim(q,xo,<p) X1 

+ ~ q-m-l J[l-m)[l + m + 1) Yi m+I(q,xo,<p) Xo 
y[2) 

9 

(65) 

(66) 



X-1 Yim(q,xo,'P) = Yim(q,xo,'P) X-1 

.X . 
- fr;;j q-m+l ✓[l+ml[l-m+l] Yim-1(q,xo,'P) Xo­

y[2] 
· (67) 

The last two equations have been obtained from the first one with the aid of L+ 
and L_ which rise and lower the index m of Yim-

VI. q-DEFORMED SCHRODINGER EQUATION 

Taking into account all the above results, we assume that the Hamiltonian entering 
the q· deformed Schrodinger equation is: 

1i=ip2+V(r) (68) 

where the operator p has been defined in the fourth section. The eigen functions of 
this Hamiltonian are: 

w(r,xo,rp) = rL uL(r) Yim(q,xo,'P) 

where L is the solution of the following equation: 

L(L l) _ [2/][2/ + 2] 2 _ 
+ - [2] [2] + Cl . C/ 

obtained from the condition that U£(r) is finite in the limit r-+ 0. 

{69) 

{70) 

This Schri:idinger equation has simple solutions for Coulomb potential V(r) = -~ 
and for the oscillator potential V(r) = ½ r 2

• The eigenvalues of the two Hamiltonians 
are: 

1 
En/ = -2(n + L + 1)2 

for the Coulomb potential and respectively: 

3 
En/ = (2n + L + 2) 

(71) 

(72) 

for the oscillator potential, n being the radial quantum number and L the solution of 
the equation {70), usually not an integer. We notice that the spectrum is degenerate 
with respect to the magnetic quantum number m. The solution of the wave equation 
which does not depend on 0 and rp gives for the mean value of x5 the value R2 /[3] 
instead of R2 /3 obtained in the case of spherical symmetry. It results then that the 
quadrupole momentum as well as all the 22

n poles are different from zero, although the 

10 

wave function does not depend on 0 and rp. Tliis shows clearly that the Hamiltonian 
loosed the spherical symmetry. One can mention however that it ga,ined another, 
namely the symmetry under the SUg{2) algebra. · 

Finally, we remark that there are three sources producing the differences between 
the case of q-deformed Schrodinger equation and the case of spherical symmetry: The 
first one is that the q-harmonic wave function Yim(q,x0,rp) differs from the spherical 
one Yim ( 0, rp). The second reason is that the coefficient of the centrifugal potential in 
the radial Schrodinger equation is L(L+ 1), with L given by eq.{70), not l(l + 1), as in 
the sperical case. The third source is that in the q-deformed case the integral over xo 
is performed according to the relations (59-60). 
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