
' E5-97-3 

V.P.Gerdt, Yu.A.Blinkov 1 

INVOLUTIVE BASES OF POLYNOMIAL .IDEALS 

Submitted to «Journal of Symbolic Computation» 

1Saratov State University, Russia 



~ 

1 Introduction 

In modern times the GrObner bases method invented in (Buchberger, 1965) has be
come one of the most universal algorithmic tools for analyzing and solving polynomial 

equations {Buchberger, 1985; Becker, Weispfenning and Kredel, 1993). Even in the 

general case, when the roots cannot be exactly computed, the method is still able to 
obtain valuable information about the solutions. In particular, it allows one to verify 
compatibility of the initial equations and compute the dimension of the solution space. 
For the last few years notable progress has been achieved in extension of the GrObner 

bases method to non-commutative {Mora, 1988; Kandri-Rody and Weispfenning, 1990) 

and differential algebras (Carra'Ferro, 1987 and Ollivier, 1990). 
On the other hand, already by the early 20s the foundation of a constructive ap

proach to algebraic analysis of partial differential equations was laid by Riquier (1910) 
and Janet (1920) giving, among other things, answers to the same general questions 
of compatibility and dimension. Later on, this approach, in the context of partial dif
ferential equations, was developed by Thomas (1937) and more recently by Pommaret 
(1978). The main idea of the approach, as with the computation of a GrObner basis, is 
reWTiting the initial differential system into another, so-called, involutive form (Gerdt, 
1995). 

In the involutive approach, unlike the Gr6bner basis method, independent vari
ables for each equation are separated into two distinct groups called multiplicative 
and non-multiplicative. Such a separation is determined by the structure of th~ lead
ing derivative terms. A differential system is called involutive if its non-multiplicative 
derivatives are algebraic consequences of multiplicative ones. In doing so, Janet (1920), 
Thomas {1937) and Pommaret (1978) used different separations of variables. 

In Zharkov and Blinkov {1993, 1994) it was argued that the involutive technique 

along with the Gr6bner basis one can be used in commutative algebra. Based on 
the definition of multiplicative and non-multiplicative variables as given in Pommaret 
{1978), Zharkov and Blinkov {1993, 1994) proved, among other things, that an invo

lutive basis is a Gr6bner one. Moreover, their computational experience demonstrated 
a reasonably high efficiency of the new algorithm when it terminates. The termi
nation, however, does not hold, generally, for positive dimensional ideals, while for 
zero-dimensional ones it does for any degree-compatible monomial orderings (Zharkov 
and Blinkov, 1994). Apart from that, the Pommaret involutive form of Grabner bases 

for zero-dimensional polynomial ideals reveals a number of rather attractive features 
(Zharkov, 1994a). 

In the present paper we consider an algorithmic technique more general than that 
proposed by Zharkov and Blinkov {1993, 1994) for the involutive analysis of polyno
mial ideals. First of all, we introduce a new concept of involutive monomial division 

(Sect.3) which leeds to the self-consistent separation of the whole set of variables into 

multiplicative and non-multiplicative subsets. Given an admissible ordering, the sep
aration is applied to polynomials in terms of their leading monomials. That concept 
generalizes also the particular choice used in Janet {1920), Thomas {1937) and Porn-
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maret (1978) for involutive analysis of partial differential equations. V\re characterize 
also important properties of noetherity and continuity for involutive division (Scct.4). 
Noetherity provides for the existence of a finite involutive basis for any polynomial 
ideal. Continuity allows one to construct that basis algorithmically. lt is shown that 
Thomas and Janet divisions are both noetherian and continuous whereas Pommarct 
division being continuous is not noetherian. 

Given an involutive division, we define an involutive reduction and an involutive 
normal form (Sect.5). As this takes place, we show that much like the Pommaret normal 
form, investigated in Zharkov and Blinkov (1993}, the general involutive normal form is 
also unique and linear. Then we define involutive systems by analogy with differential 
equations (Sect.6). To be involutive, systems are required to satisfy the involutivity 
conditions, which form the basis for their algorithmic construction. 

We prove (Sect.7) that any involutive basis, if it exists, is a special, generally ex
tended, form of the reduced GrObner basis. Though it is unique for Pommaret division 
(Zharkov and Blinkov, 1994), generally, it may not be the case, as is shown by an 
explicit example. We propose an algorithm for construction of involutive polynomial 
bases (Sect.8). Its correctness is proved for any continuous involutive division and 
for arbitrary admissible monomial ordering, while its termination holds, generally, for 
noetherian divisions. The algorithm is an improved and generalized version of one 
proposed in Zharkov and Blinkov (1994) and Zharkov (1994a), and has been imple
mented in Reduce for Pommaret division. The main improvement is the incorporation 
of Buchberger's chain criterion. 

By the example of cyclic 6-th roots we illustrate the efficiency of the current imple
mentation and its rather smooth behavior with respect to variation of ordering between 
variables. 

2 Preliminaries 

Let lR = K[x11 .•• , Xn] be a polynomial ring over the field K of characteristic zero. In 
this paper we use the notations: 

f, g, h, p, q are polynomials in JR. 
a, b, c are elements in K. 
F, G, H are finite subsets of JR. 
N is the set of non-negative integers. 
M = { xt1 

• .. x~" \ t4 EN, i = 1, ... , n } is the set of monomials in R. 
11' ~ {au I u E 1111, a E K} is the set of terms in JR. 
u, v, w, s, tare monomials or terms with nonzero coefficients. 
U, V, W are finite subsets of M. 
deg,(u) is the degree of x; in u. 
deg(u) is the total degree of u. 
cf(f, u) E K is the coefficient of the term u of the polynomial f. 
Id(F) is the ideal in IR generated by the polynomial set F. 
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>- is an admissible monomial ordering with x 1 >- X2 >- · · · >- Xn· 

It(!) is the leading term off w.r.t. the ordering >-. 
lc(J) ~ cf(J, lt(f)) is the leading coefficient of f. 
lm(f) ~ lt(f)flc(f) is the leading monomial of f. 
lm(F) ~ { lm(f) I f E F } is the set of the leading monomials of F. 
lcm(F) is the least common multiple of the set { lm(f) If E F). 

If the monomial u divides the monomial v we shall write u\v. 

3 Involutive Monomial Division 

Definition 3.1 ¥/e shall say that an involutive division L or £-division is given on 
M if for any finite set U C M a relation \Lis defined on U x M such that for any u E U, 
w E 1111 the following holds: 

(i). uiLw implies ulw. 

(ii). ui£u for any u E U. 

(iii). uiL(uv) and uiL(uw) if and only if ui£(uvw). 

(iv). If uiLw and vi£w for u, v E U and wE 1111, then uiLv or viLu. 

(v). If ui£v and viLw for u, v E U and wE 1111, then ui£w. 

(vi). If V <;; U and u E V, then ui£w w.r.t. U implies uiLw w.r.t. V. 

If u\L(w = uv), we say u is an involutive divisor of w, w is an involutive multiple of u, 
and v is multiplicative for u. In such an event we shall WTite w = u x v. If u is the 
conventional divisor of w but not the involutive one we shall write, as usual, w = u · v. 
Then v is said to be non-multiplicative for u. 

The conventional monomial division, obviously, satisfies condition (iv) only in the uni
variate case. The simplest bivariate example: xl(xy) and vl(xy) but ~xly and ~vlx. 

Definition 3.1 for each u E U provides separation of the set of variables 

{x, ... ,x.) ~ M(u,U) UNM(u,U) 

into two disjoined subsets (MnNM ~ 0) of multiplicative M(u, U) and non-multiplica
tive N M( u, U) variables. It is convenient to define an involutive division for a monomial 
set just by specifying the subsets of multiplicative and non-multiplicative variables to 
satisfy the conditions (iv)-(vi). The other conditions will be fulfilled by the construc

tion. 
Given involutive division Land finite set U, for each u E U let L(u,U) ~ M be a 

set of multiplicative monomials for u, that is, 

uiLv -<==<> v E uL(u, U). (1) 

Then it is easy to see that Definition 3.1 admits another form: 
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Definition 3.2 An involutive division L on Ml is given, if for any finite U c M! and 

for any u E U there is given a submonoid L(u, U) of M satisfying the conditions: 

(a). If u, v E U and uL(u, U) n vL(v, U) ;i 0, then u E vL(v, U) or v E uL(u, U). 

(b). Ifv E U and v E uL(u,U), then L(v,U) <:; L(u,U). 

(c). If V <:; U, then L(u, U) <:; L(u, V) for all u E V. 

Indeed, by the conditions (i)-(iii) in Definition 3.1, the set L(u, U) <:; M!, as defined 

in (1), is a submonoid under the natural multiplication. The conditions (a),(b) and (c) 

in Definition 3.2 are nothing else than those (iv),(v) and {vi) in Definition 3.1. 

We consider three different examples of involutive division introduced in Janet 

(1920), Thomas (1937) and Pomrnaret (1978) for analysis of algebraic differential equa

tions. In doing so, we give, firstly, the definition of multiplicative and non-multiplicative 

variables for each of the divisions, and, secondly, prove the fulfillment of the three extra 

conditions. 

Definition 3.3 Thomas division (Thomas, 1937}. Given finite set U, let 

h; =max{ deg;(u) I u E U } . 

A variable xi is considered as multiplicative for u E U if degi(u) 

multiplicative, otherwise. 
14. and non-

Definition 3.4 Janet division {Janet, 1920). Let U be a finite set. For each 1 :::; i:::; n 

divide U into groups labeled by non~ negative integers d1 , . .. , d.t.: 

[d,, ... ,d;] = { u E U I deg;(u) = d;, 1 :0: j::; i ). 

A variable X; is multiplicative for u E U if i = 1 and deg1(u) =max{ deg1(v) I v E U ), 

or if i > 1, u E [d1 , •.• , £4_1] and 

deg;(u) =max{ deg,(v) I v E [d,, ... , cJ;_,J ). 

Definition 3.5 Pommaret division {Pommaret, 1978}. For a monomial xf• · · · xtk with 

dk > 0 the variables xi with j ?:' k are considered as multiplicative and xi with j < k 

as non-multiplicative. For u = 1 all the variables ai'e multiplicative. 

We note that 

• Thomas division does not depend on the ordering on the variables xi. Janet 

and Pommaret divisions, as defined, are based on the ordering of the variables 

assumed in Sect.2. 
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• The separation of variables into multiplicative and non~ multiplicative ones for 

Thomas and Janet divisions are defined in terms of the whole set U. Contrast~ 

ingly, Pommaret division is determined in terms of the monomial itself, regardless 

of the otbers, and, by this reason, admits extension to infinite monomial sets, un

like Thomas and Janet divisions. 

To distinguish the above divisions. the related subscripts T, J, P will be used. 

Proposition 3.6 Thomas, Janet and Pommaret monomial divisions are involutive. 

Proof According to the above remark we must prove that the conditions (iv)-(vi) in 

Definition 3.1 are satisfied. 
Let u be a Thoma.<:; divisor of wE M, that is, w = u xv. Then degi(v) = degi(w) -~ 

if deg;(w) 2: h; and deg;(v) = 0 if deg;(w) < h;. Thus, if w has an involutive divisor u, 

then wju is uniquely defined, and, hence, u is unique in U. It implies also the property 

(v) for Thomas division, since ujyv for u, v E U if and only if u = v. The property (vi) 

also follows since any hi for V is less than or equal to the corresponding h, for U. 

Let now u, v E U be two different Janet divisors of w, such that deg,(u) = deg;(v) = 
d.; for 1 :::; i < k :::; n and a..<>sume, for definiteness, that degk(u) > dcgk(v). Then, 

since both u, v are members of the same group [d1, ... , dk_ 1J, t.he Yariable Xk is non

multiplicative for v. Hence, if u is a Janet divisor of w such that dcgk(w) ~ dcgk(u) > 

dcgk(v), then vis not Janet divisor. In other words, similar to Thoma..<> division, any 

monomial wE M cannot have different Janet divisors in any set U. A monomial group 

may only be decreased by diminishing the set U \vhat implies the relation (vi). 

Lastly, consider a Pommaret divisor u of the monomial1v = xf1 
• • · :r~,;n with m :::; n. 

By definition, u constitutes a left subset of the string representation for w as it is shown. 

u ,...__...____, 
W=Xl···XJ'·····Xm··•Xm. 

'---v-" ~ 
(2) 

,, d, 

It makes evident the fulfillment of the conditions (iv) and (v) for Pommarct division 

while the condition (vi) trivially holds since the division does not depend on the set U 

~~ 0 

Proposition 3. 7 For any finite monomial set U and for any monnmialtl E U, t.he 

inclusion Mr( u, U) <:; MJ( u, U) and, respectively, N MJ ( u, U) <:; N Mr( u, U) holds. 

Proof If x; E M;(u, U), u E [d1, •.• , J;_1], then, by definition, 

deg;(u) =max{ deg;(v) I v E [d,, ... A-d } :0: max{ deg,(v) I v E U } . 

Hence, Xi E MT(u, U) implies X; E .AfJ(u, U). 0 

Definition 3.8 A set U is called involut.ively autnreduced with respect t.o division L 

or £- autoreduced if it does not contain clements £-divisible by ot.hcr clements in U. 
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Proposition 3.9 If U is L- autoreduced, then any monomial w E M has at most one 
L-involutive divisor in U. 

Proof This follows immediately from the property (iv) of involutive diviSion. In terms 
of Definition 3.2 it means that uL(u, U) n vL(v, u) = 0 for ali distinct u, v E U, if U is 
involutively autoreduced. D 

Proposition 3.10 (Zharkov, 1994b). If set U is autoreduced with respect to Pommaret 
division, then for any u E U Mp(u, U) ,:;; MJ(u, U) and NMJ(u, U) ,:;; N Mp(u, U), 
respectively. 

Proof Let u = xf1 
• • • x~k E Ml be a monomial with d~; > 0 and v E U be its 

Pommaret divisor. Then, as follows from the representation (2), v = xt1 • • ·x;:_J.1 x;
11 

with 1 ::; m $ k and 1 ::; r ::;· elm. It means that v E [d1, ..• , dm_1]. Since U is 
autoreduced by Pommaret division, there are no other members of the same group 
with degree in Xm higher than r. Therefore, v is also a Janet divisor of u, and u/v 
being Pommaret multiplicative for u is also Janet multiplicative. D 

Example 3.11 U = {xy,y2,z) (x >- y >- z). 

Thomas Janet Pommaret 
monomial Mr NMr MJ NMJ Mp NMp 

xy X y,z x,y,z y,z X 

y' y x,z y,z X y,z X 

z z x,y z x,y z x,y 

4 Involutive Monomial Sets 

Definition 4.1 Given an involutive division L, a set U is called involutive with respect 
to Lor L-involutive, if any multiple of some element u E U, is also (L- )involutively 
multiple of element v E U, generally, different from u. It means that 

(VuE U) (Vw E J\11) (3v E U) [ v]L(uw)] (3) 

or, in accordance with (I) and Definition 3.2, 

UueuUMI= UueuuL(u,U). 

Definition 4.2 We shall call the set UueU u M the cone generated by U and denote it 
by C(U). The set u.eu u L( u, U) will be called the involutive cone of U with respect 
to L and denoted by CL(U). 
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Thus, the set U is L-involutive if and only if its cone C(U) coincides with its involutive 
cone CL(U). 

Definition 4.3 A finite set [J c M will be cailed involutive closure of a set U ~ (; 
with respect to the involutive division L if CL (U) = C(U). If there exists an involutive 
closure (; of the set U, then the latter is said to be finitely generated with respect to L. 
The involutive division L is called noetherian if every finite set U is finitely generated. 

Proposition 4.4 Given a noetherian involutive division L, every monomial ideal U 
has a finite involutive basis. 

Proof It is an immediately consequence of Definition 4.3 and Dickson's lemma (Becker, 
Weispfenning and Kredel, 1993). D 

Proposition 4.5 Thomas and Janet divisions are noetherian. 

Proof Given finite set U, consider the monomial h = x~1 
• • • x~ where, as given in 

the definition of Thomas division, hi =max{ degi(u) I u E U Land form the finite 
set V c Ml of all the different monomials v such that vjh and u]v for some u E U. The 
set V, which contains, in particular, the monomial h and the initial set U, is involutive 
for Thomas division. Indeed, let w = xf1 

• • • x~ be multiple of some u E V. If w E V, 
then, obviously, w E Cr(V). Otherwise, let { d;, . .. , d;,} (k :S n) be the nonempty set 
which contains all the exponents c4 (1 $is; n) in w such that c41 > h; 1 , ••• , d;.k > h;k. 
Then there exists v E V satisfying 

d;l -k,l d.;k. -h,k 
W = VX;1 '' •Xik 

Since deg;1 (v) = ~1 , ••• , deg,k. (v) = h;k, v is a Thomas involutive divisor of w, and, 
hence, wE Cr(V). 

Furthermore, from Proposition 3.7 it follows that there is a subset of V which is an 
involutive set for U with respect to Janet division. D 

Definition 4.6 Multiplication of a monomial u E U by a variable x is called the 
prolongation of u. Given involutive division specified by the set U, the prolongation is 
called multiplicative if x is multiplicative for u and non-multiplicative, otherwise. 

In construction of involutive sets the following concept of local involutivity plays the 
crucial role and admits the direct extension to polynomial sets (see Sect.6). 

Definition 4. 7 A set U is called locally involutive with respect to the involutive di
vision L if any non-multiplicative prolongation of any element in U has an involutive 
divisor in U, that is, 

(VuEU) (Vx,ENM(u,U)) (3vEU) [v]L(u·x;)] (4) 
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In accordance with Definition 4.1, the conditions (4), apparently, are necessary for 
involutivity of U. Generally, however, they not sufficient, as the next simple example 
shows. 

Example 4.8 Let L be an involutive division on M c K[x, y, z] defined by the table 

monomial M NM 
I x,y,z 
X x,z y 
y x,y z 
z y,z X 

uEM I deg(u)>2 - x,y,z 

It is easy to see that all properties listed in Definition 3.1 {3.2) are satisfied, and the 
set U = {x, y, z} is locally involutive. For instance, x · y = y x x. However, U is not 
involutive since none u EM with degx(u) > O,degy(u) > O,degxu > 0, e.g. xyz, has 
involutive divisors in U. 

The following definition and theorem enable one to reveal involutive divisions providing 
involutivity of every locally involutive set, and thereby allowing to use the involutive 
algorithms described below. 

Definition 4.9 An involutive division L will be called continuous if for any finite set 
U and for any finite sequence {u;}(l:Si:5k) of elements in U such that 

(Vi< k) (:lx; E NM(u,,U)) [ u,+J!Lu; ·x; I 

the inequality U; # u; for i # j holds. 

(5) 

Theorem 4.10 If an involutive division L is continuous then local ~nvolutivity of any 
set U implies its involutivity. 

Proof Let set U be locally involutive, and such that any sequence in U satisfying (5) 
has no coinciding elements. We must prove that U satisfies (3). Take any u E U 
and any wE M and show that there is v E U such that viL(uw). If uiL(uw) we are 
done. Otherwise, there is xk, E NM(u,U) such that w contains xk,· Then u · xk, 

has an involutive divisor v1 E U. If vtJL(uw) we are done. Otherwise, there are 
Xk2 E NM(v1, U) and v2 E U such that uwjv1 contains Xk2 and v2JL(v1 · xk2 ). Going 
on, we obtain the sequence u, v1, 112, ... of elements in U satisfying {5). By construction, 
each element of the sequence divides uw. Since all the elements are distinct and uw 
has a finite number of distinct divisors, it follows that the above sequence in U is finite, 
and, hence, it ends up with an involutive divisor of uw. 0 

Corollary 4.11 Thomas, Janet and Pommaret divisions are continuous. 
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Proof Let U be a finite set, and {u;}{l:5i:5k) be a sequence of elements in U satisfying 
the conditions (5). We shall show that there cannot be coinciding elements in the 

sequence for three divisions. 
It is ease to see that ui+dr(u1 · xk.) implies ui+l = u; · Xk,· Indeed, suppose that 

ui · xk, = ui+1 x vi+l· Since Xk, E NA1r(u1, U), vi+t docs not contain xk,· If v1+1 would 
contain any other variable Xj,, then it would mean that degxj, (u;) > degxJ, (u;+t), 
and, hence, Xj, could not be multiplicative for ui+l· Therefore, any Thomas sequence 

satisfying (5) consists of distinct elements. 
If ui+liJ ( ui · Xk,), then from definition of Janet division it follows that ui+ 1 >-Lex Uj, 

where >-Lex is the lexicographical ordering corresponding to the choice of variable order 
x 1 >- x2 >- · · · >- Xn as assumt.'Cl in Sect.2. It is now obvious that ui =/: ui for i =/: j for 

Janet division. 
Let now ui+dP(ucxk.). Then the representation (2) shows clearly that ui+ 1 >-ncvLex 

Ui where >- RcvLex is the reverse lexicographical ordering on M induced by the assumed 

variable order. 0 

Theorem 4.12 Let U be a non·involutive finitely generated set with respect to a con
tinuous division L. Then there is a pmcedure of constructing an involutive closure of 
U based on completion of U by n~n·multiplicative prolongations of its elements. 

Proof Given U, by Definition 4.3, there exists a finite involutive closure (J of U. Show 
that {; contains some non-multiplicative prolongations of elements in U. Assume for 
a contradiction that there are no such elements in (;. Since set U is not involutive 
there exists a non-multiplicative prolongation of elements in U which ha..o; no involutivc 

divisors in U. 
Take any degree compatible monomial ordering -< and select u 1 E U with a non· 

multiplicative prolongation u1 ·xi, ~ U which is not involutivc multiple of any element 
in U, and which is the lowest v.;th respect to-<. Since(; is involutive there is ~1 1 E 0\U 
and 1 -< w1 E Ml such that u 1 • Xi 1 = v1 x w1. From the condition C(U) = CL(U) it 
follows that v1 is multiple of some u2 E U with deg(u2) < dcg(vi). This implies 
u1 · x1 = u2 · v2 where iJ2 = v1wt/u2. Since u 1 · x1 has no involut.ive divisors in 
U, the monomial v2 contains a variable x2 E NML{u2 ,U). Then we find 112 • v2 = 
(u2 • x2 )(v2 jx2 ) = (u3 x w3 )(v2 fx2 ). Now monomial (v,jx 2 ) contains x3 E MNL(u,, U), 
and we can continue this rewriting procedure. As a result we construct the sequence 
of elements in U satisfying condition (5). BUt then, by continuity of division L, this 
sequence ends up with an element u E U such that u1 • xi, = u x (1 11wt/u) what 

contradicts our assumption. 
Now instead of U take U1 = U U {u1 ·xi,} where u1 E U and u1 · X; 1 E 0 is the 

above considered lowest non·multiplicative prolongation. If set U1 is not involutivc, 
then it can be further completed by the lowest non· multiplicative prolongation. Since 
the set (; is finite, by repeating this completion procedure, in a finite numhcr of steps 
we construct the set [J ~ (; which is an involutive closure of U. 0 
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As an immediate consequence of the above described constructive procedure of com

pleting a set U by non-multiplicative prolongations of its elements we have the following 

corollary. 

Corollary 4.13 If U is a finitely generated set with respect to a continuous involutive 

division, then there is the unique minimal involutive closure (J of U such that for any 

other involutive closure 0 the inclusion 0 ~ U holds. 

The following algorithm, given a continuous division L, computes the minimal involu

tive closure tJ for any finitely generated set U at any fixed admissible ordering -<. 

Correctness. By Definitions 4.3, 4.7 and 4.9, if the algorithm terminates it computes 

an involutive closure of U. Its minimality follows from the below proved fact that, by 

the selection strategy, the involutive divisor of any non-multiplicative prolongation is 

always treated before the prolongation. 

Algorithm InvolutiveClosure: 

Input: U, a finite monomial set 

Output: (J, an involutive closure of U 

begin 
(J := u 
while exist u E (J and x E N M(u, U) such that 

u · x has no involutive divisors in U do 

choose such u and x with the lowest u · x w.r.t. -< 
(/ := U U { U • X} 

end 
end 

Tennination holds if U is finitely generated and -< is degree compatible, as shown iJ?. 

the proof of Theorem 4.12. To prove termination for any finitely generated set and for 

any admissible ordering we note that termination does not hold only if there exists a 

monomial u E U with infinite chain of its irreducible non-multiplicative prolongations 

( a, a,) 
u --+ u · Xi1 --+ ••• --+ u · Xi1 • • • xi• --+ ••• , (6) 

generated by the while-loop. All these prolongations are sequentially included in the 

set U. Suppose that we have such a case. Note, first of all, that, by property (vi) 

in Definition 3.1, an enlargement of the set U never leads to transition of a non

multiplicative variable of u into multiplicative. 

On the other hand, by Theorem 4.12, since set U is finitely generated, there is 

a procedure of completion of U by non-multiplicative prolongations of its elements 

resulting in construction of a finite involutive closure (J of U. Let us fix such a finite 

set (J corresponding to the input set U. Any element u-t of chain (6) has an involutive 

divisor in tJ of the form v · w where v E U, and w contains non-multiplicative variables 

for v. Moving further along the chain, we eventually reach a prolongation u · t which 
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does not belong to the set (J. Let u · t be the first such prolongation among all those 

generating infinite chains of the form (6). The resulting equality u·t = (v·w) x (utfvw) 

shows that v · w -< u · t. But then, by the selection strategy used in the algorithm, the 

prolongation v · w had to be treated before u · t was considered. Furthermore, since 

the current set V constructed by means of prolongations considered before u · t is a 

subset of 0, the monomial vw, being an involutive divisor of ut with respect to the 

division L specified by U, is also a divisor for L specified by V. Any non-multiplicative 

prolongation chain (6) is thereby cut off what contradicts our assumption. 

Example 4.14 (Continuation of Example 3.11). The minimal involutive bases of the 

set U :: (xy, y2
, z) (x ~ y >- z) for Thomas, Janet and Pommaret divisions are 

[JT = {xy, y2
, z, xz, yz, xy2

, xyz, y2 z, xy2z}, 

[r1 = {xy,y2,z,xz,yz}, 

(Jp = {xy, y2
, z, xz, yz, x2 y, x2 z, ... ,xky, .. . , xmz, .. . } , 

where k, m E N. These bases can be easily derived from U using algorithm Involu~ 

tiveClosure. Note that UJ C OT and [JJ C [Jp in agreement with Propositions 3.7 

and 3.10. This example explicitly shows that Pommaret division is not noetherian. 

However, for another ordering z >-- y >- x the set U is finitely generated, and then 

(Jp = u. 

5 Polynomial Reduction 

In this section we generalize the results obtained by Zharkov and Blinkov (1993, 1994) 

for Pommaret division to arbitrary involutive division as it introduced in Definition 3.1 

or 3.2. 

Definition 5.1 Given a finite polynomial set F C Rand an admissible ordering >-, 

the concept of multiplicative and non~ multiplicative variables for f E F is to be defined 

in terms of lm(f) and the leading monomial set lm(F). 

Therefore, as soon as we have polynomials rather than monomials, any involutive 

division is to be determined on the basis of some admissible ordering, even when it 

does not depend on the latter for the pure monomial case, as with Thomas division. 

The concepts of involutive polynomial reduction and involutive normal form are 

introduced similar to their conventional analogues (Buchberger, 1985) with the use of 

involutive division instead of the conventional one. 

Definition 5.2 Let L be an involutive division L on M, and let F be a finite set of 

polynomials. Then we shall say: 

11 



(i). p is £-reducible modulo f E F if p ha.s a term t = au E 11" (a ,P 0) such 

that u = lm(f) x v, v E L(lm(f),lm(F)). It yields the £-reduction p ~ g = 

p- (ajlc(f)) f x v. 

(ii). p is £-reducible modulo F if there exists f E F such that p is £-reducible 

modulo f. 

(iii). pis in £-normal form modulo F if pis not £-reducible modulo F. 

We denote an L- normal form of p modulo F by NFL(P, F). In contrast, a conventional 

normal form will be denoted by N F(p, F). As an involutive normal form algorithm 

one can use, for example, the following: 

Algorithm InvolutiveNormalForm: 

Input: p, F 
Output: h = N FL(p, F) 
begin 

h:=p 
while exist f E F and a term u of h such that 

lm(f)IL(ufcf(h,u)) do 
choose the first such f 
h := h- (ujlt(f))f 

end 

if h ,P 0 and lc(h) ,PI then h := hjlc(h) 
end 

Correctness and termination of this algorithm can be proved, apparently, as they do 

for the conventional normal form algorithm {Buchberger, 1985; Becker, \Veispfenning 

and Kredel, 1993). Since involutive reductions form a fixed subset of the conventional 

ones, generally, N FL(p, F) ,P N F(p, F). 

Definition 5.3 A set F is called involutively autoreduced with respect to the given 

involutive division L, or L- autoreduced, if the set lm(F) is L-autoreduced and every 

f E F has no terms t = cf(f, t) u ,PIt(!) with cf(f, t) ,P 0 and u E CL(lm(F)). 

Given an involutive division L and a finite set F, the following algorithm returns an 

L-autoreduced set H, denoted by H = AutoreduceL(F), and such that Id(F) = 

Id(H). 

Correctness of the algorithm is obvious from the while-loop structure. Since the 

underlying set of involutive interreductions is a subset of the conventional interreduc

tions~ its termination follows from that for the conventional autoreduction {Buchberger 
1 

1985; Becker, \Veispfenning and Kredel, 1993). 
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Algorithm InvolutiveA utoreduction: 

Input: F 
Output: H = AutoreduceL(F) 
begin 

H:=F 
while exist hE Hand g E H \{h) 

such that h is reducible modulo g do 

choose the first such h 
H':=H\{h) 
h' := N FL(h, H) 
if h' ::::: 0 then H := H' 
else H := H' U {h'} 

end 
end 

Theorem 5.4 If set F is L-autoreduced, then N h(p, F) = 0 if and only if p is 

presented in terms of a finite sum of the form 

p E §p c R, §p = { L f, X U;; I f, E F, U;; E 11" } 
ij 

with lm(u;;) ,P lm(u,.) for j ,P k. 

(7) 

Proof =?: If N FL(p, F) = 0, then, by Definition 5.2 of involutive reductions, at 

each intermediate reduction step the current value p' of p is rewritten as p' --+ p" = 

p'- /i x uij· Since the reduction chain is finite by admissibility of an ordering ;-, the 

representation (7) holds. 
¢::::::: Let pis given by expression {7). Firstly, we show that lm(p) has an involutive 

divisor in the set lm(F). For this purpose select the leading term in the right hand side 

of (7). It ha.s the forms= lt(J; xu;;)= It(!,) xu,; with some i,j and cannot appear 

in any other term lt(Jk) x ukl· Otherwise, the underlying monomial sjlc(s) would have 

two involutive divisors lm(fi) and lm(Jk) what by Proposition 3.9 would contradict 

the involutive autoreduction of F. Secondly, since pis involutivcly reducible, after 

each reduction step the representation (7), obviously, still holds providing the further 

reductions until the chain stops when we obtain zero at a certain step. It just means 

that N h(p, F)= 0. o 

Corollary 5.5 If set F is L-autoreduced, then the L-normal form, for an arbit.?ury 

algorithm of its computation and for any polynomiaL<> p1,P:2 and p, has the properf.ie8: 

(i). Uniqueness: if h, = NFL (p, F) and h, = N h (p, F) then h, = h,. 

(ii). Linearity: N h(p, + p,, F) = N h(p,, F)+ N h(p,, F). 
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Proof (i) By an involutive normal form algorithm, h 1 = p- L;j ft x u.:j and h 2 = 
p- L 1j f;, x vi.j· Therefore, h1 - h2 has the representation (7), and N FL(h1 - h2, F) = 0 
by Theorem 5.4. On the other hand, since h1 and h2 are normal forms, they have no 
involutive divisors and so does h1 - h2. Hence, we have h1 = h2. 

(ii) Denote p1 + P2 by p3 and let 

h1 = N h(p, F), h, = N FL(P2, F), h3 = N FL(p3,F). 

Then N FL(h3- ht - h2, F) = h3- ht - h2, since none of h1, ~~ h3 has involutive 
divisors in lm(F). In addition, because hk = Pk- L.:j fi x Vk;ij (k = 1, 2, 3), we ha\·e 
h3 - h1 - h2 E §p. Thus, by Theorem 5.4, N FL(h3 - h 1 - h2, F) = 0, and, hence, 
h, = h, + lv,. 0 

6 lnvolutivity Conditions 

Definition 6.1 Multiplication of a polynomial f E F by a variable x is called the 
prolongation of J. Given involutive division specified by the set lm(F), the prolongation 
is called multiplicative if x is multiplicative for lm(J) and non-multiplicative, otherwise. 

Definition 6.2 An L-autoreduced set F is called (L- )involutive if 

('if E F) (Vu 011) [ NFL(fu, F)= 0 ]. (8) 

Definition 6.3 An L-involutive set F will be called (L- )involutive basis of the ideal 
Id(F) if it is normalized, that is, lc(f) = 1 holds for all f E F. 

Proposition 6.4 Let F be an involutive polynomial basis. Then the monomial set 
lm(F) is also involutive. 

Proof It follows immediately from Definitions 4.1, 6.2 and 6.3 0 

It is clear from Definition 6.3 and the linearity of the involutive normal form by Corol
lary 5.5 that an involutive basis provides decision of the ideal membership problem. 
Hence, we have the following corollary. 

Corollary 6.5 If set F is L-involutive, then p E Id(F) if and only if N FL(:p, F) = 0. 
In this case, obviously, the equality §F = Id(F) holds. 

The definition of involutive polynomial sets is the direct extension of that for involutive 
monomial sets in Sect.4. The theorem below imparts the constructive characterization 
of involutivity, which is the heart of the involutive algorithms. 
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Theorem 6.6 An L-autoreduced set F is involutive with respect to a continuous in
volutive division L if and only if the following conditions of local involutivity hold 

(VfEF) (Vx,ENM(f,F)) [NFL(f·x;,F)=Oj. (9) 

Proof ==?: Since x.: EM we are done. 
-<==: An immediate consequence of (9) is local involutivity of the set lm(F) in 

accordance with Definition 4.7. Then, by continuity of division L, this set is involutive. 
Thus, for any f E F and any u E lV!! the monomiallm{!) · u has the involutive divisor 
lm(9), 9 E F. . 

We claim that the polynomial j · u can be presented as follows 

f·U=9 x v+ 'LJv;;, 
ij 

(10) 

where v, v;; E 1i', f, E F and relation lm(f · u) = lm(9 X v) >- lm(f;v;;) holds for any 
term of the sum. Indeed, if u is multiplicative for f we are trivially done. Otherwise 
u contains x~: E N M(f,lm(F)). Then, the local involutivity ofF, by Theorem 5.4, 
yields the representation 

f · xk = gl x u1 + L f.: x u.:j 
ij 

(11) 

with 91 E F and lm(f · xk) = lm(J. u,) >- f,u,; for any term under the summation sign. 
If monomial ufx• is multiplicative for 91, then (10) immediately follows from (11) with 
9 = 9I and v = u1ujx •. Otherwise, multiply both sides of (11) by ufxk, take a variable 
Xm E NM(9,lm(F)), which is contained in u/xk, and apply the local involutivity 
conditions for g1 • Xm. It gives the relation 

f · u = (92 X u,)ulu/(xkxm) + L f;ii;; 
ij 

(12) 

where inequality lm(9,)uu1u,j(xkxm) >- lm(f,ii;;) holds for all i,j. If uuJ/(xkxm) is 
still non-multiplicative for 92 the relation (12) can be further rewritten by using the local 
involutivity conditions until we obtain relation (10). This is guaranteed by continuity 
of involutive division L, because all the polynomials g1,g2 , ... E Fare distinct, since 
their leading monomials, by construction, form the sequence satisfying (5). 

Next, similar rewriting the every term fiVij in (10) gives f.:v.:; = fk x w,. + L 1m fzwzm 
with lm(f,v;;) = lm(fk x wk) >- lm(f,w,m)· Proceeding with this way, by admissibility 
of ordering-<, we find, in a finite number of steps, that f · u.E §p. 0 

The next definition of partial involutivity is useful for the algorithmic construction of 
involutive bases as we show below. 
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Definition 6. 7 Given v E M and an L-autoreduced set F 1 if there exist f E F such 
that lm(J) -< v and 

('If E F) (VuE J\11) (lm(f) · u-< v) I NFL(fu,F) = 0 I, {13) 

then F is called partially involutive up to the monomial v with respect to the admissible 
ordering -<. F is still said to be partially involutive up to v if v -< lm(f) for all f E F. 

Looking at the proofs of Theorems 4.10 and 6.6 it is easy to see that they prove also 
the following conditions of partial involutivity. 

Corollary 6.8 Given a continuous involutive division L, an L-autoreduced set F is 
partially involutive up to the monomial v if and only if 

(VfEF) (Vx;ENM(J,F)) (lm(f)·x;-<v) INFL(f·x,,F)=OI. (14) 

7 Grabner Bases and Involutive Bases 

In Zharkov and Blinkov (1993) it was shown that a Pommaret basis, that is, involutive 
basis for Pommaret division, is also a GrObner basis, though, generally, not the reduced 
one. A similar property of a Janet basis was noticed in Zharkov (1994b). The following 
theorem shows that such a relation holds for any involutive division. 

Theorem 7.1 If set F is L-involutive, then the equality of the conventional and 
L-normal forms 

(Vp E IR) I N F(p, F) = N FL(p, F) I (15) 

holds for any normal form algorithm. 

Proof To prove the theorem it is sufficient to show that any polynomial pis reducible 
modulo F if and only if it is involutively reducible. But the latter statement is an easy 
consequence of Definitions 3.1 or 3.2 and 6.2. Indeed, if p is involutively reducible, 
then it is conventionally reducible. Conversely, let the term u have a divisor among 
the leading monomials ofF, that is, u = lc(u) lm(f) · v for some f E F and v E MI. 
By the condition (8) and Theorem 5.4, it implies f · v = "L.ij fi x 'Uij· Hence, u has 
also the involutive divisor in lm(F). It is just that fi which satisfies the condition 
lm(/;) x u;; = lm(f) · v and is unique. 0 

Corollary 7.2 An involutive basis is a GrObner basis. 

Proof According to the algorithmic characterization of GrObner bases (Buchberger, 
1965 and 1985; Becker, Weispfenning and Kredel, 1993) consider the SMpolynomial of 
f,,f; E F 

S(f· !·) = lcm(J;,f;)f· _ lcm(/;,f;)f· 
" ' lt(J,) ' lt(f;) ' . 

(16) 

Since S(f;, f;) E I d(F), by Corollary 6.5 and Theorem 7.1, we have NF(S(J,, f;), F) = 
~ 0 
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Corollary 7.3 If set F is partially involutive up to the monomial v, then 

(Vp E IR) (lm(p) -< v) I N F(p, F) = N h(p, F) I. (17) 

Proof It follows by perfect analogy to the proof of Theorem 7.1. 0 

Note that while a Pommaret basis, if it exists for the given ideal, is unique (Zharkov 
and Blinkov, 1994), this may not hold for other involutive divisions. We demonstrate 
it by the following explicit example. 

Example 7.4 Two lexicographical (x >- y) Janet bases F1 and F2 

y z 

F, 
_________ _....._, ____.,..__, 

{xy3-y,xy2 -1,xy-y2,x- y,y3 -1}, 
11 >:: >::,y >:: 

F, = 
,.--- ---- ____.,..__, 

{x2y3- y2,x2y2- y,x2y- l,x2- y2,xy3- y,xy2- l,xy- y2,x- y,y3 -1}' 

with indicated non-multiplicative variables, are involutive. It can easily be verified. 
Both of them generate, obviously, the same ideal with the GrObner basis (x- y, y3 -1), 
which is also a Janet basis and, in this particular case, coincides with the Pornmaret 
basis. 

As was shown in Sect.4, given a polynomial set F and an arbitrary involutive division, 
the ideal Id(F) may not have a finite involutive basis. For example, while a finite 
Pommaret basis exists for any zero-dimensional ideal (Pommaret, 1978; Zharkov and 
Blinkov, 1994 and A pel, 1995), it may not exist for a positive dimensional one. Gen
erally, for positive dimensional ideals, the existence of finite Pommaret basis can be 
achieved by means of an appropriate linear transformation of variables (Pommaret., 
1978 and Ape!, 1995). 

On the other hand, a noetherian involutive division, for example a Thomas or 
Janet one, implies the existence of finite involutive bases for any polynomial ideals as 
the following proposition shows. 

Proposition 7.5 If involutive division L is noetherian, then any polynomial ideal 
Id(F) has a finite L-involutive basis. 

Proof Let G be the reduced monic GrObner basis of Id(F) which is finite for any 
polynomial ideal (Buchberger, 1985; Becker, Weispfenning and Kredel, 1993). If set G 
is not involutive, then complete it by non-multiplicative prolongations of its ekmcnt.s 
just as it done in algorithm InvolutiveClosure. This means that at every step of the 
completion we select a non· multiplicative prolongation with the lowest leading term 
which is £-irreducible modulo the current leading monomial set. By nocthcrity of L, 
in a finite number of steps, a polynomial set G will be produced such that lm(G) he 
an L-autoreduced involutive closure of lm(G). Finally, L-autoreduction of the tales 
in G will give an L-involutive basis of Id(F). D 
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8 Basic Algorithm 

In this section we describe an algorithm for the construction of an involutive basis. 
The algorithm is an improved version of one presented in Zharkov and Blinkov {1994) 
for Pommaret division and generalized to any continuous involutive division L and any 
admissible ordering >-. The main optimization is based on the use of Buchberger's 
chain criterion for avoiding unnecessary reductions introduced in Buchberger (1979) 
(see also Buchberger, 1985; Becker, Weispfenning and Kredel, 1993) which excludes 

also the repeated prolongations (Zharkov, 1994a) as we show below. 
Corollary 7.3 shows that for any S-polynomial S(J;, f;), given by formula (16), both 

its conventional and £-normal forms are vanishing as soon as the conditions (14) are 
satisfied up to the monomiallcm{fi, fi). According to Theorem 5.4 and Corollary 5.5 

the conditions (14) can be presented as NFL(SL(J;,f,),F) = 0, where SL(f,,f,) are 

just (L-involutive) S-polynomials of the special form 

SL(J;,f,) = f,. X-!; Xu,,. (18) 

The following theorem gives the involutive form of Buchberger's chain criterion. 

Theorem 8.1 Let F be a finite L-autoreduced polynomial set, and let g · x be a non
multiplicative prolongation of g E F. Then Nh(g · x, F)= 0 if the following holds 

(Vh E F) (VuE Ml) (1m( h)· u--< lm(g · x) ) [ N h(h · u, F)= 0], (19) 

[ 

1m(fo)[1m(f), 1m(go)[1m(g) l 
(3f, f

0
, g0 E F) lm(f) !Llm(g · x) , lcm(fo, go) --< lm(g · x) . 

N FL(fo ·!!fRJ, F)= N FL(ga · ~'F)= 0 

(20) 

Proof Condition {20) yields that at least one of polynomials J, g can be considered as 
derived from j 0 ,g0 by prolongations with at least one non-multiplicative among them. 

If, for example, 1m(f0 ) # 1m(!), it leads to the equality f = 1m(fo) · (1m(f)/1m(fo)) 
modulo F. 

Thus, if the condition (20) holds, there is a chain of polynomials in F of the form 

f = fk,fk-b · · · ,Jo,go,. · · ,gm-1,9m = g, (21) 

where k+m > 0. Here for g or both of them are produced by prolongations, including 

non~ multiplicative ones, of the polynomials !1. or gi in the chain whose indices are leSs 

than k or m, respectively. 
The chain (21) has the property 

NF(SL(f,f,_,),F) = ··· = NF(S(fo,go),F) = ··· = NF(SL(gm_,,g),F) = 0. 
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This property is resulted from the observations as follow. Consider relation 

lm(g) · x =1m(!) x w, (22) 

which means that w does not contain x. Otherwise, g would be reducible by f, and, 

hence, F could not be L-autoreduced. Thus, lcm(f, g) = lm(g) · x. By admissibility 
of the monomial ordering -<, the least common multiple of the leading monomials 
for pair of the neighboring polynomials in the chain (21) is less than or equal tog. x. 
Then the above property of the chain follows immediately from partial involutivity (19) 
of F and Corollary 7.3. Furthermore, conditions (19-20) imply N h(S(fo, go), F) = 
N F(S(f0 , go), F) = 0, and N h(SL(J,J,_1), F) = N F(S(J;, J;_1), F) = 0 as well as 
NFL(SL(g,_ 1 ,g,),F) = NF(S(g,_1,g,),F) = 0. 

By construction, lcm(J, ... , ft, fo,go,gl! ... , g) = lcm(J, g) what leads (Becker, 

Weispfenning and Kredel, 1993) to the representation S(f, g) = L;; f,u;; where f, E 

F and lm(f,u,;) -( lcm(f,g) = lm(g) · x. Then, condition 19, taking into account 
Corollaries 5.5 and 7.3, yields NFL(SL(f,g),F) = NF(S(f,g),F) = 0 in accordance 
with Buchberger (1979,1985). D 

Algorithm InvolutiveBasis: 

Input: F, a finite polynomial set 
Output: G, an involutive basis of the ideal I d(F) 
begin 

G := Autoreduce(F) 
T:=0 
for each gEG do T:=TU{(g,1m(g),0)} 
while exist (g, u, P) E T such that N M(g, G)\ P # 0 do 

choose (g, u, P) E T and x E NM(g, G)\ P with the lowest 1m(g) · x 
T := T\ {(g,u,P)) U{(g,u,PU {x})} 
if exist f E (!, v, D) E T such that 1m(!) [L lm(g · x) then 

if lcm(u,v) = lm(g) ·x then h := Nh(g ·x,G) 
if h#O then T:=TU{(h,1m(h),0)} 

else· h := NFL(9 · x,G) 
T := TU {(h,u,0)) 
G := AutoreduceL(GU {h}) 
Q:=T 
T:=0 
for each g E G do 

if exist (!, u, P) E Q such that 1m (f) = lm(g) then 
choose g1 E G such that 1m(g,) [Lu 

end 
end 

T := T U {(g, 1m(g1), P)} 
else T:=TU((g,1m(g),0)} 
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Before analysis of correctness and termination of this algorithm, we give some necessary 
clarifications. 

First of all, the conventional autoreduction of the initial polynomial set is done. It 
removes, in particular, all the predecessors of every polynomial from the initial set. 

Set T collects all the triples (9, u, P); 9 is an element in the current basis G; u = lm(J) 
where f E G is the predecessor of g, by a non-multiplicative prolongation of which g 

was derived, or u = lm(g) if 9 has no such predecessor in G; Pis a set containing the 
non-multiplicative variables of g have been used for its prolongations. 

The current non-multiplicative prolongation g·x is selected to be the lowest with respect 
to the ordering >-. If there are several different non-multiplicative prolongations with 
the same leading term, then any of them may be selected. This selection strategy will 
be called normal. 

If the leading monomial of the current prolongation g · x is involutively reducible by 
the basis element f E G, then the other conditions in {20} are verified. The verification 
is done in the form of comparison of !em( u, v) with lcm(f, 9 ), where u and v are the 
second elements of the triples containing 9 and j, respectively. By Theorem 8.1, the 
criterion (20) is false if and only if lcm(u, v) = lcm(J, 9) = 9 · x. One should be also 
noted that Buchberger's second criterion (Buchberger, 1985) can be applied in the 
involutive approach only in exceptional cases. Relation {22) shows that lcm(J,g) = 
lm(J)lm(9) if and only if lm(J) = x and lm(9) = w. 

If the current prolongation is not reducible to zero, that is, h = N FL(9 · x, G) =j:. 0, 
then h is added to G. 

After involutive autoreduction of the enlarged set G an adjustment of the set Tis done. 
For an element 9 E G whose leading monomials was not mutually reduced, the second 
element u in the triple is kept, if the leading term of the corresponding predecessor of 
g was also not reduced. Otherwise, u is replaced by its involutive divisor in lm(G). 
Essentially new leading monomials, that is, those not multiple of any others occurring 
in T before the autoreduction, are included in the refreshed T with their actual leading 
monomials as the second elements of the triples. 

To provide the output polynomials being monic, in accordance with Definition 6.3, 
their normalization is assumed to be done at the step of computing involutive normal 
form. 

Correctness. As we have shown, criterion {20) is used in algorithm InvolutiveBasis 
in accordance with Theorem 8.1. It is easy to show that there is the unique polynomial 
g1 E G which is chosen in the inner for each-loop such that lm(g1 ) involutively divides 
u. Indeed, if the leading term of the predecessor h of g with u = lm(h) has not been 
reduced, then g1 =h. Otherwise, there is 91 E G such that 91 'f hand lm(g1)1£u. Its 
uniqueness of g1 for the autoreduced set G is an immediate consequence of the property 
(v) in Definition 3.1. Besides, the replacement of u by g1 does not violate, obviously, the 
conditions for applicability of the criterion. Furthermore, from Corollary 7.3 it follows 
that a leading monomial, being involutively reducible at some step of the algorithm, 
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v.·:ill never appear again among the leading monomials. This enables one to assign the 
set P of the used non-multiplicative variables for polynomial f to the corresponding 
polynomial 9 with lm(9) = lm(J) as it is done in the inner for each-loop. Such an 
optimization allows one to avoid the repeated prolongations. 

Therefore, if the algorithm terminates it produces, by Theorem 6.6, the involutive 
basis. The termination holds if and only if the set P in each triple (g, u, P) E T 
contains all non-multiplicative variables for basis element g. It just means that any 
non-multiplicative prolongation of every element in G is reduced to zero, and, hence, 
G is involutive. 

Termination. Note that the initial value of the leading monomial set 

U0 = lm(Autoreduce(F)) 

is determined by the input set F subjected to the conventional autoreduction. Since 
only those monomials occur in the leading monomial set which have not been reducible 
at some step of the algorithm, the change in set U = lm( G) after running the while
loop may take place only in two cases: 

(i). lm(g) · x has no involutive divisors in U. In this case U is enlarged to include 
lm(9) · x. 

(ii). 9 ·xis reducible by elements of U. Then U is enlarged to include 1m( h), where 
h = N FL(g · x, G) f:. 0 and lm(h) is not multiple, in the conventional sense, of 
any elements in U0 • 

The number of different lm(h) occurring in case (ii) is finite by Dickson's lemma 
(Becker, Weispfenning and Kredel, 1993). Recall also that algorithms InvolutiveAu
toreduction and InvolutiveNormalForm always terminate (Sect.5). Thus, the al
gorithm termination is determined by that of algorithm lnvolutiveClosure considen,>d 
in Sect.4. It follows that algorithm InvolutiveBasis terminates for any noetherian 
division and arbitrary input polynomial set F. If division L is not noetherian, then 
termination may not hold if an intermediate set U = lm( G) is not finitely generated 
with respect to L as the below Example 8.2 shows. In the case of Pommarct divi
sion the algorithm terminates, however, for any degree compatible ordering and any 
zero-dimensional ideal (Zharkov and Blinkov, 1994). 

Thus, because the involutive division L is continuous, once algorithm Involutive
Closure terminates, an involutivcly closed set iJ will be constructed such that autore
duction of the corresponding set G does not produce new leading monomials. G is, 
obviously, the output involutive basis. 

By Proposition 4.5, it implies, in particular, the algorithm termination for Thoma.'> 
and Janet divisions. However, for Pomrnaret division, which is not noetherian, the 
algorithm may not terminate even in the case when there is a finite Pommarct. ba..-;is 
but the ordering is not degree compatible as the following simple example shows. 
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Example 8.2 The set F = {x2 - 1, xy- 1, z} generates a zero-dimensional ideal with 

the lexicographical Pommaret basis (x >- y >- z) given by G = {x- y,y2 -1,yz,z}. 

However, following the above algorithm we ha\·e to choose z · y as the first prolongation 

which is lexicographically lowest. Since polynomial h = yz has no Pommaret divisors 

among lm(F), we find FU{yz} as an intermediate basis. The next lowest prolongation 

is yz. y again has no Pommaret divisors among the leading monomials of the enlarged 

set. Exploring this procedure further produces the infinite involutively irreducible set 

{x2 -1,xy-1,z,yz,y2z, ... ,ykz, ... } kEN. 

It is well-known (Pommaret, 1978; Zharkov and Blinkov, 1993 and 1994; Ape!, 1995) 

that positive dimensional ideals may not have finite Pommaret bases. Example 4.14 

illustrates this fact at the monomial level. The following moie non-trivial example 

shows the output of algorithm InvolutiveBasis for Pomroaret and Janet divisions in 

the case of polynomial ideal. 

Example 8.3 Cyclic 4-th roots. 

NM; NMp Initial Polynomial Set 

x, - Xt + X2 + X3 + X4 

x, x, XtX2 + X2X3 + X3X4 + X4X1 

x, Xt,X2 X1X2X3 + X2X3X4 + X3X4X1 + X4X1X2 

- X11 X2, X3 X1X2X3X4- 1 

Here we choose the degree-reverse-lexicographical-ordering with the order of variables 

as in Sect.2 and show non-multiplicative variables for each polynomial. Note that, since 

the initial set is not autoreduced, the inclusion N M; ~ N Mp (see Proposition 3.10) 

does not hold. 
Application of algorithm InvolutiveBasis gives the following form of Janet and 

Pommaret bases 

NMJ NMp Janet and Pommaret Bases 

- - X1 + X2 + X3 + X4 

x, x, x~ + 2x2x4 + x~ 
x1,x2 Xt,X2 X2X~ + X~X4 - X2X~ - X~ 

X1,X2,X3 x 11 X2 1 X3 X2XJX~ + X~X~ - X2X~ + X3X~ - x! - 1 

Xt,X2,X3 X1J X2 1 X3 X2X: +X~ - X2 - X4 

X1,X2,X3 x11x2,x3 X~X! + X2X3 - X2X4 + X3X4 - 2X~ 
X11X2 X1 1 X2 1 X3 x~x~ + x~x~ - X3 - X4 

x1,x2,X3 X~X~ + X2XJ - X~ - X2X4 + X3X4 - X~ 
........................................................... 
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The Janet basis consists of the upper seven polynomials and coincides with the GrObner 

basis, while the Pommaret basis is infinite and contains also prolongations of the sev

enth polynomial with respect to its non-multiplicative variable x3• Note that the ideal 

is one-dimensional, which is why it does not have a finite Pommaret basis. 

The algorithm InvolutiveBasis has been implemented in Reduce 3.5 for the degree

reverse-lexicographical-ordering and Pommaret division refined in a certain way to pro

vide the algorithm termination for any polynomial ideal. This refinement is equivalent 

to the dynamical incorporation of some noetherian involutive division in the computa

tional process. Its detailed description will be given elsewhere. In addition, the current 

package called INVBASE is considerably faster than previous version (Zharkov and 

Blinkov, 1994), in particular, since it uses the criterion (20). 

Experimentally, we observed much smoother behavior of the algorithm Involutive 

Basis with respect to Buchberger algorithm1 as the ordering changes. Consider, for 

instance, the following example. 

Example 8.4 Cyclic 6-th roots. 

X1 + X2 + X3 + X4 + Xs + X5 1 

X1X2 + X2X3 + X3X4 + X4X5 + X5X5 + X5X1 1 

X1X2X3 + X2X3X4 + X3X4X5 + X4X5X5 + XsX5X1 + X5X1X2 1 

X1X2X3X4 + X2X3X4X5 + X3X4X5X5 + X4X5X5X1 + X5X5X1X2 + X5X1X2X3, 

X1X2X3X4X5 + X2X3X4X5Xfi + X3X4XsX5X1 + X4X5X6X1X2 + XsX6X1X2XJ + XsX1X2X3X4 1 

X1X2X3X4X5X6- 1. 

The next table gives the timings of INVBASE on an 66 Mhz MS-DOS based AT/ 486 

computer for different degree-reverse-lexicographical-orderings. 

Ordering Timing (sec.) 

X1 >- X2 >- X3 >- X4 >- Xs >- X5 1040 

X1 >- X2 >- X4 >- Xfi >- X3 >- Xs 514 

X1 >- X2 >- X4 >- X5 >- Xs >- X3 437 

X1 >- X2 >- X5 >- X3 >- X4 >- Xs 1066 

X1 >- X3 >- X4 >- Xs >- X2 >- X5 604 

X1 >- X3 >- X4 >- X5 >- Xs >- X2 136 

X1 >- X4 >- X2 >- X3 >- X5 >- X6 993 

x1 >- X4 >- xs >- x6 >- x2 >- X3 1001 

X1 >- Xs >- X3 >- X4 >- X5 >- X2 364 

X1 >- X5 >- Xfi >- X2 >- X3 >- X4 1045 

X1 >- X5 >- X3 >- X2 >- X4 >- X5 1012 

X1 >- X6 >- Xs >- X2 >- X4 >- x 3 590 

Comparison with the pacl<age GROEBNER implementing Buchberger algorithm on 

the same Reduce 3.5 platform shows that its corresponding timings are not only much 

1 More precisely, with respect to its implementation in Reduce 3.5. 
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larger than those presented in the table, but also vary dramatically with the order of 
the variables. This fact was already observed by Zharkov and Blinkov (1994} where 
some comparative data for GROEBNER and the previous version of the INVBASE 
package are presented. 

9 Conclusion 

Buchberger algorithm and the involutive one are based on different rewriting tech~ 
niques, namely, on the use of S-polynomials and prolongations: respectively, as well as 
on distinct reduction processes. Nevertheless, as we demonstrate in this paper, they 
are in fact very interconnected. If, as we propose in the algorithm InvolutiveBasis, 
we choose the current prolongation in increasing order with respect to given monomial 
ordering, then the conventional and involutive normal form \Vill coincide. \\lhat is 
more, the involutive reduction of the prolongation is equivalent to the consideration of 
a certain S-polynomial. Just this fact makes it possible to use Buchberger's criteria. 

Very recently another interesting facet of interrelation of both methods was discov
ered by Ape! (1995), namely, that Pommaret bases can be a..ssociated with GrObner 
ones in appropriate graded structures. Earlier such Gr6bner bases were intensively 
investigated in more general context in !\-fora (1988). That observation gives us an 
opportunity to algorithmically construct Pommaret bases whenever they exist (A pel, 
1995). Though such an analogy also enables one to take advantage of Buchberger's 
criteria, it is restricted to Pommaret division. 

Thus, all the above, as well as computer experiments with both techniques, offers 
a clearer view of the most optimal computational procedures. 

There is no question that any algorithmic improvement of the Gr6bncr basis and 
involutive techniques at the algebraic level has an analogous optimization at the dif
ferentiallevel1 at least for linear partial differential equations (Gerdt, 1995). 
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