


1 Introduction

In modern times the Grébner bases method invented in (Buchberger, 1965) has be-
come one of the most universal algorithmic tools for analyzing and solving polynomial
equations (Buchberger, 1985; Becker, Weispfenning and Kredel, 1993). Even in the
general case, when the roots cannot be exactly computed, the method is still able to
obtain valuable information about the solutions. In particular, it allows one to verify
compatibility of the initial equations and compute the dimension of the solution space.
For the last few years notable progress has been achieved in exiension of the Grobner
bases method to non-commutative (Mora, 1988; Kandri-Rody and Weispfenning, 1990)
and differential algebras (Carra’Ferro, 1987 and Ollivier, 1990).

On the other hand, already by the early 20s the foundation of a constructive ap-
proach to algebraic analysis of partial differential equations was laid by Riquier {1910)
and Janet (1920) giving, among other things, answers to the same general questions
of compatibility and dimension. Later on, this approach, in the context of partial dif-
ferential equations, was developed by Thomas (1937) and more recently by Pommaret
(1978). The main idea of the approach, as with the computation of & Grbner basis, is
rewriting the initial differential system into another, so-called, involutive form {Gerdst,
1995).

In the involutive approach, unlike the Grobner basis method, independent vari-
ables for each equation are separated into two distinet groups calied multiplicative
and non-multiplicative. Such a separation is determined by the structure of the lead-
ing derivative terms. A differential system is called involutive if its ron-multiplicative
derivatives are algebraic consequences of multiplicative ones. In doing so, Janet (1920),
Thomas {1937} and Pommaret (1978) used different separations of variables.

In Zharkov and Blinkov (1993, 1994) it was argued that the involutive technique
along with the Grobner basis one can be used in commutative algebra. Based on
the definition of muitipticative and non-multiplicative variables as given in Pommaret
{(1978), Zharkov and Blinkov {1993, 1994) proved, among other things, that an invo-
lutive basis is & Grdbner one. Moreover, their computational experience demonstrated
a reasonably high efficiency of the new algorithm when it terminates. The termi-
nation, however, does not hold, generally, for positive dimensional ideals, while for
zero-dimensional ones it does for any degree-compatible monomial orderings (Zharkov
and Blinkov, 1994). Apart from that, the Pommaret involutive form of Grébner bases
for zero-dimensional polynomial idesls reveals a number of rather attractive features
(Zharkov, 1994¢).

In the present paper we consider an algorithmic technique more general than that
proposed by Zharkov and Blinkov (1993, 1994) for the involutive analysis of polyno-
mial ideals. First of all, we introduce & new concept of involutive monomial division
(Sect.3) which leads to the self-consistent separation of the whole set of variables into
multiplicative and non-multiplicative subsets. Given an admissible ordering, the sep-
aration is applied to polynomials in terms of their leading monomials. That concept
generalizes also the particular choice used in Janet (1920), Thomas (1937) and Pom-



maret (1978) for involutive analysis of partial differential equations. We characterize
also important properties of noetherity and continuity for involutive division (Sect.4).
Noetherity provides for the existence of a finite involutive basis for any polynomial
ideal. Continuity allows one to construct that basis algorithmically. It is shown that
Thomas and Janet divisions are both noetherian and continuous whereas Pommaret
division being continuous is not noetherian.

Given an involutive division, we define an involutive reduction and an involutive
normal form (Sect.5). As this takes place, we show that much like the Pommaret normal
form, investigated in Zharkov and Blinkov {1993}, the general involutive normal form is
also unique and linear. Then we define involutive systems by analogy with differential
equations {Sect.6). To be involutive, systems are required to satisfy the involutivity
conditions, which form the basis for their algorithmic construction.

We prove (Sect.7) that any involutive basis, if it exists, is a special, generally ex-
tended, form of the reduced Grébner basis. Though it is unique for Pommaret division
{Zharkov and Blinkov, 1994), generally, it may not be the case, as is shown by an
explicit example. We propose an algorithm for construction of involutive polynomial
bases (Sect.8). Its correctness is proved for any continuous involutive division and
for arbitrary admissible monomial ordering, while its termination hoids, generally, for
noetherian divisions. The algorithm is an improved anrd generalized version of one
proposed in Zharkov and Blinkov (1994) and Zharkov (1994e}, and has been imple-
mented in Reduce for Pommaret division. The main improvement is the incorporation
of Buchberger’s chain criterion.

By the example of cyclic 6-th roots we illustrate the efficiency of the current imple-
mentation and iis rather smooth behavior with respect to variation of ordering between
variables.

2 Preliminaries

Let R = Klzy,...,%,] be a polynomial ring over the field K of characteristic zero. In
this paper we use the notations:

fig,h,p,q¢ are polynomials in R.

a,b,¢ are elements in K,

F,G,H are finite subsets of R.

N is the set of non-negative integers.

M={z8. .zl |deNi=1,..,n} istheset of monomials in R.
T={eu|uecM,ac K} istheset of terms in R.

u, v, w, 8,1 are monomials or terms with nonzero coeficients.

U, V,W gre finite subsets of M.

deg;{x) is the degree of z; in u.

deg(u) is the total degree of w.

cf(f,u) € K is the coefficient of the term u of the polynomial f,
Id(F) is the ideal in R generated by the polynomial set F.

» ig an admissible monomial ordering with z3 = Z2 > -+ > Zn.
It(f) is the leading term of f w.r.t. the ordering ».

le(f) = cf (f,1t{f)) is the leading coefficient of f.

Im(f) = it(f)/lc(f) is the leading monomial of f.

im(F) = {lm(f) | f € F'} is the set of the leading monomials of F.
lem{F) is the lcast common multiple of the set { im{f) | f € F }.

If the monomiat u divides the monomial v we shall write ulv.

3 Involutive Monomial Division

Definition 3.1 We shall say that an énvolutive division L or L—division is given on
M if for any finite set U C M a relation |, is defined on U x M such that foranyu g U,
w € M the following holds:

{i). u|rw implies ujw.
{ii). ulpu for any u € U.
(i) w|p(uv) and ulr{uw) if and only if g (uvw).
(iv). If u|yw and v]yw for u,v € U and w &€ M, then ulzv or vjpu.
(v). If u|rw and v|gw for v,v € U and w € M, then ulrw.

{(vi). fV CU and u € V, then u|pw wrt. U implies ulpw wrt. V.
If u| (w = ww), we say u is an involutive divisor of w, w is an involutive multiple of v,
and v is muliiplicative for u. In such an event we shail write w = u X v. If w is the
conventional divisor of w but not the involutive one we shall write, as usual, w = u-v.
Then v is said to be non-multiplicative for u.
The conventional monomial division, obviously, satisfies condition (iv) only in the uni-
variate case. The simplest bivariate example: z|(2zy) and yi{zy) but —zfy and —ylz.

Definition 3.1 for each u € U provides separation of the set of variables

{1, Zn} = M{u,U)UNM{u,U)

into two disjoined subsets (MNNM = 0) of multiplicative M{u,U) and non-multz‘plz’c_a—
tive N M (u, U) variables. It is convenient to define an involutive division for a monomial
set just by specifying the subsets of multiplicative and non-multiplicative variables to
satisfy the conditions (iv)-(vi). The other conditions will be fulfilled by the construc-

tion,
Given involutive division L and finite set U, for each u € U let L{u,U JCMbea
set of multiplicative monomials for u, that is,

wlpr <= veul{u,l). (1

Then it is easy to see that Definition 3.1 admits another form:



Definition 3.2 An tnvolutive division L on M is given, if for any finite / € M and
for any v € U there is given a submonoid L{u, /) of M satisfying the conditions:

(a). ¥u,v €U and ul(u,U) NvL{v,U} # 0, then u € vL(v,U) or v € uL(u,U).
(b). v e l7and v €ull{u, ), then L{v,U) C L{x,U}.
(e). fV C U, then L, U) C L{n, V) forallu e V.

Indeed, by the conditions (i)-(iii) in Definition 3.1, the set L{u,U) C M, as defined
in (1), is 2 submonoid under the natursl multiplication. The conditions {a),(b) and (c}
in Definition 3.2 are nothing else than those (iv),{v) and (vi) in Definition 3.1.

We consider three different examples of involutive division introduced in Janet
(1920}, Thomas (1937) and Pommaret {1978} for analysis of algebraic differential equa-
tions. In doing so, we give, firstly, the definition of multiplicative and non-multiplicative
variables for each of the divisions, and, secondly, prove the fulfillment of the three extra
conditions.

Definition 3.3 Thomas division {Thomas, 1937). Given finite set U, let
hy = maz{ deg;(u) Juec U }.

A variable z; is considered zs multiplicative for v € U if deg;(v) = h; and non-
multiplicative, otherwise.

Definition 3.4 Janet division {Janet, 1920). Let U/ be a finite set. Foreach 1 €¢ < n
divide U into groups labeled by non-negsative integers d;,..., d

id},...,d"]={u eUldegj(u)=d,-, ISJSE}.

A variable z; is multiplicative for u € U if i =1 and degy (¢) = maz{ deq{v) jv e U },
oriféi>1t,u€ldy,...,di] and

deg;(u) = maz{ deg;(v) | v € [dh,...,dizq] }.

Definition 3.5 Pommaret division (Pommaret, 1978). For a monomial z§' - - - z2* with
dy, > 0 the variables z; with § > & are considered as multiplicative and z; with j < k&
as non-multiplicative. For u = 1 all the variables are multiplicative,

We note that
¢ Thomas division does not depend on the ordering on the variables z;. Janet

and Pommaret divisions, as defined, are based on the ordering of the variables
assumed in Sect.2.

o The separation of variables into multiplicative and non-multiplicative ones for
Thomas and Janet divisions are defined in terms of the whole set U/, Contrast-
ingly, Pommaret division is determined in terms of the monomial itself, regardless
of the others, and, by this reason, admits extension ta infinite monomial sets, un-
like Thomas and Janet divisions.

To distinguish the above divisions the related subscripts T, J, P will be used.

Proposition 3.6 Thomas, Janet and Pommaret monemial divisions are involutive.

Proof According to the above remark we must prove that the conditions {iv)-(vi) in
Definition 3.1 are satisfied.

Let % be 2 Thomas divisor of w € M, that is, w = uxv. Then deg;(v}) = deg;(w)~h;
if degi{w) > hi and degi(v) = 0 if degi(w) < h;. Thus, if w has an involutive divisor u,
then w/u is uniquely defined, and, hence, uis unique in U. Tt implies also the property
(v) for Thomas division, since u|rv for u,v & U if and only if u = v. The property (vi)
also follows since any by for V is less than or equal to the corresponding h; for U,

Let now w, v € U be two different Janet divisors of w, such that deg,{u) = degi(v) =
d:ifor 1 < i < k < n and assume, for definitencss, that degi(u) > degi{v). Then,
since both u,v are members of the same group [dy, .- .dg-1], the variable z; is non-
multiplicative for v. Hence, if u is a Janet divisor of w such that degi{w) > degi(u) >
degy(v), then v is not Japet divisor. In other words, similar to Thomas division, auy
monomial w € M cannot have different Janet divisors in any sct /. A monomial group
may only be decreased by diminishing the set U what implies the relation (vi).

Lastly, consider a Pommaret divisor u of the monomial w = e withm < n.
By definition, u constitutes a left subset of the string representation for w as it is shown.

T (2)
dy dm

It makes evident the fulfiliment of the conditions (iv) and (v) for Pommaret division
while the condition (vi) trivially holds since the division does not depend on the set U
at all. o

Proposition 3.7 For any finite monomial set U and for any monomial u € U, the
inclusion Mp(u,U) € Ms{u,U)} and, respectively, NM;(u,U) € NMzpi(w,U) holds.

Proof If z; € My{u,U), v € ld;,...,di_1], then, by definition,
degi(u) = max{ degi(v) | v € [d;,...,dicy] } S maz{ deg (v} |[veEU 1.
Hence, 5; € My{u, U) implies z; € M;(u,U). =]

Definition 3.8 A set U is called involutively autoreduced with respect to division L
or L—autoreduced if it does not contain clements L--divisible by other elements in U.



Proposition 3.9 [f U is L—eutoreduced, then any monomielw € M has of most one
L—involutive divisor in U.

Proof This follows immediately from the property {iv) of involutive division. In terms
of Definition 3.2 it means that «L(w,U) Nnvl{v,u) = 0 for all distinct v,v € U, if U is
involutively autoreduced. a

Proposition 3.10 (Zharkov, 1994b). If set U is autoreduced with respect to Pommaret
division, then for eny w € U Mp{u,U) C M;(u,U) and NM;(u,U) C NMp(xw,U),
respectively.

Proof Let u = x‘f‘---a:f“ € M be & monomial with d¢ > 0 and v € U be its
Pommaret divisor. Then, as follows from the representation (2}, v = 22 - -z g7,
with 1 <m < kand 1 £ 7 < dp. It means that v € [dy,...,d1]. Since U is
autoreduced by Pommaret division, there are no other members of the same group
with degree in x, higher than ». Therefore, v is also a Janet divisor of u, and u/v

being Pommaret multiplicative for « is also Janet multiplicative, 0

Example 3.11 U = {zy,y%, 2} (s >y = 2).

Thomas Janet Pommaret
monomial MT NMT MJ NMJ Mp NMp
Ty T "z | T,y,2 - Y,z x
3,1'2 Yy T,z Y,z z - z
z z T,y z z,Y z T,y

4 Involutive Monomial Sets

Definition 4.1 Given an involutive division £, a set U is called involutive with respect
to L or L—involutive, if any multiple of some element u € U, is also (L—)involutively
multiple of element v € U, generally, different from u. It means that

(Vu e U) (Vw e M) (v e U) [v]rlew)] (3}
or, in accordance with {1) and Definition 3.2,

Unetr wM = Uyer & L(?J., U}.

Definition 4.2 We shall call the set U,z u M the cone generated by U and denote it
by C{U). The set Uney u L{u, U) will be called the involutive cone of U with respect
to L and denoted by Cp(U).

Thus, the set U is L—involutive if and only if its cone C{I7) coincides with its involutive
cone CL{U).

Definition 4.3 A finite set U C M will be called involutive closure of a set U C U
with respect to the involutive division L if Cr(U) = C(U). If there exists an involutive
closure U of the set U, then the latter is said to be finitely generated with respect to L.
The involutive division L is called noetherian if every finite set U/ is finitely generated.

Proposition 4.4 Given a nostherian involutive division L, every monomial ideal U
has e finite involutive basis.

Proof It is an immediately consequence of Definition 4.3 and Dickson’s lemma (Becker,
Weispfenning and Kredel, 1993). D

Proposition 4.5 Thomas and Janet divisions are noctherion. .

Proof Given finite set U, consider the monomial A = :c}f‘ -«-ghn where, as given in
the definition of Thomas division, h; = max{ deg:(u) | » € U }, and form the finite
set V ¢ M of ail the different monomisls v such that v}k and ujv for some v € U. The
set V, which contains, in particular, the monomial h and the initial set U, is involutive
for Thomas division. Indeed, let w = £+ 2% be multiple of some u € V. Ifw € V,
then, obviously, w € Cr(V). Otherwise, let {d;,,...,ds,} {k < n) be the nonempty set
which contains all the exponents d; {1 <4 < n) in w such that &, > kyy, ..., dy, > has
Then there exists v € V satisfying '

L i —hi
wzv:ci" i ---:cf;" ..
Since deg;, (v) = ki, .. .,deg, () = hy, v is & Thomas involutive divisor of w, and,

hence, w € Cr(V).
Furthermore, from Proposition 3.7 it follows that there is a subset of V- which is an
involutive set for I/ with respect to Janet division. ]

Definition 4.6 Multiplication of a monomial v € U by a variable « is called the
prolongation of w, Given involutive division specified by the set U, the prolongation is
called multiplicative if z is multiplicative for u and non-multiplicative, otherwise.

In coustruction of involutive sets the following concept of local involutivity plays the
crucial role and admits the direct extension to polynomial sets {see Sect.6).

Definition 4.7 A set U is called locally inwvolutive with respect to the involutive di-
vision L if any non-multiplicative prolongation of any element in U has an involutive
divisor in U, that is,

(Vuel) (Vo; € NM{,U)) (Fv e U) {v|ef{u-zi) ] (4)



In accordance with Definition 4.1, the conditions (4), apparently, are necessary for
involutivity of U. Generally, however, they not sufficient, as the next simple example
shows.

Example 4.8 Let L be an involutive division on M C Kz, v, 2] defined by the table

monomial M NM

1 T, % -

z I,z Y

y T,y z

z 1,2 z
ueM|deglu) 22| — |z,u,2

It is easy to see that all properties listed in Definition 3.1 {3.2) are satisfied, and the
set U = {z,y, 2} is locally involutive. For instance, z -y =y x . However, U is not
involutive since none u € M with deg.(u) > 0,deg,{u) > 0,deg,u > 0, e.g. zyz, has
involtutive divisors in U.

The following definition and theorem enable one to reveal involutive divisions providing
involutivity of every locally involutive set, and thereby allowing to use the involutive
algorithms described below.

Definition 4.9 An involutive division L will be called continuous if for any finite set
U and for any finite sequence {u;}y<ick) of elements in U such that

(Vi < k) (3z; € NM(u, U)) [ ipn|pus - 25 | (5)
the inequalify u; # u; for 7 # J holds,

Theorem 4.10 If an involutive division L is continuous then local involutivity of any
set U implies its involutivity. '

Proof Let set IJ be locally involutive, and such that any sequence in U satisfying (5)
has no coirciding elements. We must prove that U satisfies (3). Take any w € U
and any w € M and show that there is v € U such that vig{uw). If u|p(uw) we are
done. Otherwise, there is z;, € NM(u,U) such that w contains z,. Then u - 7,
has an involutive divisor v, € U. If wli(uw) we are done. Otherwise, there are
Ti, € NM(vy,U) and wp € U such that ww/v, contains zp, and vo|p(v; - 7). Going
on, we obtain the sequence u, w, ¥2, . .. of elements in U/ satisfying (5). By construction,
each element of the sequence divides ww. Since all the elements are distinct and uw
has a finite number of distinct divisors, it follows that the above sequence in U is finite,
and, hence, it ends up with an involutive divisor of ww. |

Corollary 4.11 Thomas, Janet and Pommaret divisions are continuous.

Proof Let U be a finite set, and {u;}<ici) be a sequence of elements in U satisfying
the conditions (5). We shall show that there cannot be coinciding elements in the
sequence for three divisions.

It is ease to see that wiy|r(y; - Tx,) implies w4y = wi - 2x,. Indeed, suppose that
U Th, = Uit X Vip1. Since Tp, € NMz(ug, U), vig1 does not contain zy,. If vy would
contain any other variable z;, then it would mean that degzi‘ (w) > deg,h (tis1)s
and, hence, z;, could not be multiplicative for uiyy. Thercfore, any Thomas sequence
satisfying {5) consists of distinct elements.

If 2441 (2 + 24, ), then from definition of Janet division it follows that w41 > Lez Wi,
where > . is the lexicographical ordering corresponding to the choice of variable order
%y > @p = - > T, as assumed in Sect.2. It is now obvious that u; # u; for ¢ # § for
Janet division.

Let now ey p(i; -7, ). Then the representation (2) shows clearly that %41 > RevLer
1; Where > pevLes 15 the reverse lexicographical ordering on M induced by the assumed
variable order. a

Theorem 4.12 Let U be a non-involutive finitely generated set with respect to a con-
tinuous division L. Then there is a procedure of constructing an involutive closure of
U based on completion of U by non-multiplicative prolongations of its elements.

Proof Given U, by Definition 4.3, there exists & finite involutive closure U of I/. Show
that U/ contains some non-multiplicative prolongations of elements in U. Assume for
a contradiction that there are no such elements in U. Since set U is not involutive
there exists 2 non-multiplicative prolongation of elements in U which has no involutive
divisors in U.

Take any degree compatible monomial ordering < and select u; € U with a non-
multiplicative prolongation u; - z:, ¢ U which is not involutive multiple of any element
in U, and which is the lowest with respect to <. Since U is involutive there is v € U\U
and 1 < w; € M such that uy - ;, = v; X wy. From the condition CUY = Cr(U) it
follows that v is multiple of some uy € U with deg{us) < deg({m}. This implies
w, - T = ug - vx Where vp = vpwifup. Since uy - 1 has no involutive divisors in
U, the monomial v, contains a variable oy € NMp{up, U ). Then we find vy - vp =
(ug - T2)(va/2) = (uz X w3)(v2/z2). Now monomial (vz/z3) contains 23 € MNp (s, U,
and we can continue this rewriting procedure. As a result we construct the sequence
of elements in U satisfying condition (5). But then, by continuity of division L, this
sequence ends up with an element v € U such that u; - z;, = 1 X {vun fu) what
contradicts our assumption.

Now instead of U/ take Uy = U U {u; -z, } where 2y € U and w3 - 35, € U is the
above considered lowest non-muttiplicative prolongation. If set Uy is not involutive,
then it can be further completed by the lowest non-multiplicative prolongation. Since
the set U is finite, by repeating this completion procedure, in a finite aumber of steps
we construct the set & C U/ which is an involutive closure of U. m]



As an immediate consequence of the above described constructive procedure of com-
pleting a set I/ by non-multiplicative prolongations of its elements we have the following
corollary.

Corollary 4.13 If U is a finitely generated set with respect lo a continyous involutive
division, then there is the unique minimal involutive closure U of U such that for any
other involutive closure U the inclusion U € U holds.

The following algorithm, given a continuous division L, computes the minimal involu-
tive closure U7 for any finitely generated set U at any fixed admissible ordering <.

Correctness. By Definitions 4.3, 4.7 and 4.9, if the algorithm terminates it computes
an involutive closure of U. Its minimality follows from the below proved fact that, by
the selection strategy, the involutive divisor of any non-multiplicative prolongation is
always treated before the prolongation.

Algorithm InvolutiveClosure:

Input: U, a finite monomial set
Output: U, an involutive closure of U
begin
U:=U
while exist € U and z € NM(u, (Z) such that
%+ x has no involutive divisors in U do
choose such u and r with the lowest -z w.r.t. <
U=UU{u-z}
end
end

Termination holds if U/ is finitely generated and < is degree compatible, as shown in
the proof of Theorem 4.12. To prove termination for any finitely generated set and for
any admissible ordering we note that termination does not hold only if there exists a
monomial » € U with infinite chain of its itreducible non-multiplicative prolongations

)= oo (6)

generated by the while-loop. All these prolongations are sequentially included in the
set U. Suppose that we have such a case. Note, first of ali, that, by property (vi)
in Definition 3.1, an enlargement of the set U never leads to transition of a non-
multiplicative variable of u into multiplicative.

On the other hand, by Theorem 4.12, since set U is finitely generated, there is
a procedure of completion of U by non-multiplicative prolongations of its elements
resulting in construction of a finite involutive closure U7 of U. Let us fix such & finite
set U corresponding to the input set U. Any element -2 of chain (6) has an involutive
divisor in IJ of the form v -t where v € U, and w contains non-multiplicative variables
for v. Moving further along the chain, we eventually reach & prolongation u - ¢ which

u— U Ty —r...—tu-(zf’---zf:

10

does not belong to the set 7. Let u-t be the first such prolongation among all those
generating infinite chains of the form (8). The resulting equality u-t = (v-1w) X (ut/vw)
shows that v -w < u-t. But then, by the selection strategy used in the algorithm, the
prolongation v - w had to be treated before u -t was considered. Furthermore, since
the current set V constructed by means of prolongations considered before u-¢ is a
subset of U/, the monomial vw, being an involutive divisor of ut with respect to the
division L specified by {7, is also a divisor for L specified by V. Any non-multiplicative
prolongation chain (6) is thereby cut off what contradicts our assumption.

Example 4.14 (Continuation of Example 3.11). The minimal involutive bases of the
set U = (2y,4%,2) (¢ > y > 2) for Thomas, Janet and Pommaret divisions are

Ur = {zy,v% 2,22,y2, zy?, zyz, vz, 2y7z},
Uy ={zy, 9% 732,92},
Up = {I’y, yQ, Z,ZT%,Y2, 51“'2% zﬂz’ res :Ikya ves :'T'mza - } )

where k,m € N. These bases can be easily derived from U using algorithm Involu-
tiveClosure. Note that I; C Ur and U; ¢ Up in agreement with Propositions 3.7
and 3.10. This example explicitly shows that Pommaret division is not noetherian.
However, for another ordering z = ¥ » z the set U is finitely generated, and then
Up=1U.

5 Polynomial Reduction

In this section we generalize the results obtained by Zharkov and Blinkov (1993, 1994)
for Pommaret division to arbitrary involutive division as it introduced in Definition 3.1
or 3.2.

Definition 5.1 Given a finite polynomial set ¥ C R and an admissible ordering >,
the concept of multiplicative and non-multiplicative variables for f € Fis to be defined
in terms of Im(f) and the leading monomial set Im(F).

Therefore, as soon as we have polynomials rather than monomials, sny involutive
division is to be determined on the basis of some admissible ordering, even when it
does not depend on the latter for the pure monomial case, as with Thomas division.

The concepts of involutive polynomial reduction and involutive normal form are
introduced similar to their conventional analogues (Buchberger, 1985) with the use of
involutive division instead of the conventional one.

Definition 5.2 Let L be an involutive division L on M, and let F be a finite set of
polynomizais. Then we shall say:

1



(i). p is L—reducible modulo f € Fif phasaterm ¢t = au € T {¢ # 0) such
that v = Im(f) x v, v € L{lm(f),Im{F)}. It yields the L—reduction p — g =
p— (afle(f)) f x .

(ii). p is L—reducible modulo F if there exists f € F such that p is L—reducible
modulo f.

(iii}. p is in L—normal form modulo F if p is not L—reducible modulo F.

We denote an L~ normal form of p modulo F by NFi{(p, F'}. In contrast, a conventional
normal form will be denoted by NF(p, F}. As an involutive normal form algorithm
one can use, for example, the following:

Algorithm InvolutiveNormalForm:

Input: p, F -
Output: h=NF.(p, F)
begin
hi=p
while exist f € F and a term u of k such that
Im(ig{ufef (k) do
choose the first such f
hi= h— (u/1(f))]
end
if h#0 and lc(h)#£1 then h:=hflc(h)
end

Correctness and termination of this algorithm can be proved, apparently, as they do
for the conventional normal form algorithm {Buchberger, 1985; Becker, Weispfenning
and Kredel, 1993). Since involutive reductions form a fixed subset of the conventional
ones, generally, NEFr(p, F) # NF{p, F).

Definition 5.3 A set F is called involutively autoreduced with respect to the given
involutive division L, or L— auforeduced, if the set im(F) is L—autoreduced and every
f € F has no terms ¢ = cf (f, ) u # I f) with ¢f(f,?) # 0 and u € Cp{Im(F)).

Given an involutive division L and a finite set F, the following algorithm returns an
L—autoreduced set H, denoted by H = Autoreducer(F), and such that Jd(F) =
Id(H).

Correctness of the algorithm is obvious from the while-loop structure. Since the
underlying set of involutive interreductions is a subset of the conventional interreduc-
tions, its terménation follows from that for the conventional autoreduction (Buchberger,
1985; Becker, Weispfenning and Kredel, 1993).
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Algorithm Involutive A utoreduction:

Input: F
Qutput: H = Autoreducer{F)
begin
H:=F
while exist h € H and g € A\ {h}
such that h is reducible modulo g do
choose the first such A
H' = H\ {h}
b = NFp(h,H)
if B =0 then H:=H'
else H:=H U{R}
end
end

Theorem 5.4 If set F is L—autoreduced, then NFi(p, F} = 0 if and only if p is
presented in terms of a finite sum of the form

rESFCR, SF={Zf,-xu,-,-|f,—EF,u,-j€'ﬂ'} ™

with Im(u,-j} # lm{u.;k) fO‘l"j 7& k.

Proof =s: If NF {p,F) = 0, then, by Definition 5.2 of involutive reductions, at
each intermediate reduction step the current value p' of p is rewritten as p' — p =
o — fi X u;;. Since the reduction chain is finite by admissibility of an ordering >, the
representation (7) holds. . .
: Let p is given by expression (7). Firstly, we show that lrn{p) has an mvolut..lve
divisor in the set im{F). For this purpose select the leading term in the right hand side
of (7). It has the form s = l(f; x uy) = IE(fi) x uyy with some 4,j and cannot sppear
in any other term [£(fi) 2. Otherwise, the underlying monomial s/lc(s) would ha.ve
two involutive divisors Im(f;) and Im(fi) what by Proposition 3.9 would contradict
the involutive autoreduction of F. Secondly, since p is involutively reducible, after
each reduction step the representation (7), obviously, still holds providing the further
reductions until the chain stops when we obtain zero at a certain step. It just means
that NFp(p, F) = 0. O

Corollary 5.5 If set F is L—autoreduced, then the L—normal form, for an arbz'f.r_ary
algorithm of ifs computation and for any polynomials py,p2 and p, has the properties:

(i). Unigueness: if hy = NFi(p, F) and hy = NFi(p, F) then ky = hy.
(ii). Linearity: NFy(pr+ p2, F) = NFr{p1, F) + NFy(p2, F).
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Proof (i) By an involutive normal form algorithm, ky = p — &, f; x uy; and hy =
p—Ei; fi X ty;. Therefore, hy — ha has the representation (7), and NFp(hy —ha, F) =0
by Theorem 5.4. On the other hand, since hy and hy are normal forms, they have no
involutive divisors and so does ky — hy. Hence, we have Ay = hs.

(i) Denote p; + pp by ps and let

hlzNFL{phF): h2":NFL(p2=F)! h3=ATFL(p3,F)'

Then NFp(hg — hy — ha, F) = hg =~ hy — ha, since none of hy, ke, bz has involutive
divisors in Im(F). In addition, because by = pr — Ty fi ¥ vy (8 = 1,2, 3), we have
hy — hy — hy € Sp. Thus, by Theorem 5.4, NFy(hy ~ by — hg, F) = 0, and, hence,
by =Ry + ha. o

6 Involutivity Conditions

Definition 6.1 Multiplication of a polynomial f € F by a variable z is called the
prolongation of f. Given involutive division specified by the set tm{F}, the prolongation
is called multiplicative if z is multiplicative for Im(f) and non-multiplicative, otherwise.

Definition 6.2 An L—autoreduced set F is called (L~ Jinvolutive if
(Vf € F) (Yue M) [ NFL(fu,F)=0). (8)

Definition 6.3 An L—involutive set F will be called (L—)involutive basis of the ideal
Id(F) if it is normalized, that is, le(f) = 1 holds for all f € F.

Proposition 6.4 Let F be an involutive polynomial basis. Then the monomial set
Im(F) is also involutive.

Proof It follows immediately from Definitions 4.1, 6.2 and 6.3 I

It is clear from Definition 6.3 and the linesrity of the involutive normat form by Corol-
lary 5.5 that an nvolutive basis provides decision of the ideal membership problem.
Hence, we have the following corollary.

Corollary 6.5 If set F' is L—involutive, then p € Td(F) if and only if NF(p, F) = 0.
In this case, obviously, the equality Sp = Id(F) holds.

The definition of involutive polynomial sets is the direct extension of that for involutive
monomial sets in Sect.4. The theorem: below imparts the constructive characterization
of involutivity, which is the heart of the involutive algorithms.
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Theorem 6.6 An L—autoreduced set F' is involutive with respect to o continuous in-
volutive division L if and only if the following conditions of local involutivity hold

(Vf € F) (Yz: € NM(f,F)) [NF(f -2, F)=0]. 9

Proof ==: Since z; € M we are done.

<=: An immediate consequence of (9) is local involutivity of the set Im(F) in
accordance with Definition 4.7. Then, by continuity of division I, this set is involutive.
Thus, for any f € F and any « € M the monomial Im(f) - © has the involutive divisor
im(g), g € F. '

We claim that the polynomial f- u can be presented as follows

f-u:ng+z:f,-v.-j, (10)
if

where v,v;; € T, f; € F and relation Im{f - u) = Im(y x v) > lrn{f;v;;) holds for any
term of the sum. Indeed, if v is multiplicative for f we are trivially done. Otherwise
u contains z, € NM(f,Im(F)). Then, the local involutivity of F, by Theorem 5.4,
yields the representation

froe=gixu+ ) fixuy; (11)
ij
with gy € F and Im{f 2} = Im{fiw,) » fru; for any term under the surnmation sign.
If monomial u/zy is multiplicative for g, then (10} immediately follows from (11) with
9 = g1 and v = yyufz;. Otherwise, multiply both sides of {11) by u/xy, take a variable
Im € NM(g,!m(F)), which is contained in u/z, snd apply the local involutivity
conditions for g; - z.. It gives the relation

f-u= (92 X ug)u1ﬂ/($k$m) + thﬁv (12)

where inequality Im{gs)uurug/{zx2m) > Im(filk;) bolds for all 4,5. If vay /{22y, is
still non-multiplicative for g, the relation (12) can be further rewritten by using the local
involutivity conditions until we obtain relation {10). This is gnaranteed by continuity
of involutive division I, because all the polynomials gy, ga,... € F are distinct, since
their leading monormisals, by construction, form the sequence satisfying (5).

Next, similar rewriting the every term fyuy; in (10) gives fivy; = fi X Wi+ i frttim
with Im(fivy;) = Im(fi ¥ wi) = Im{fiwn). Proceeding with this way, by admissibility
of ordering <, we find, in a finite number of steps, that f - u € Sp. )

The next definition of partial involutivity is useful for the algorithmic construction of
involutive bases as we show below.
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Definition 6.7 Civen v € M and an L—autoreduced set F, if there exist f € F such
that Im(f) < v and

(Vf € F) (Yu € M) (im{f) - u < v) [ NEL(fu,F)=0], (13)

then F is called partially involutive up to the monomial v with respect to the admissible
ordering <. F is still said to be partially invelutive up to v if v < Im(f) for ali f € F.

Looking at the proofs of Theorems 4.10 and 6.6 it is easy to see that they prove also
the following conditions of partial involutivity.

Corollary 6.8 Given a continuous involutive division L, an L—autoreduced set F is
partielly involutive up to the monomial v if and only if

(Vf € F) (Vo € NM(f, F)) (bm(f) -2 <v) [ NF(f -2, F)=0]. (14)

7  Grobner Bases and Involutive Bases

In Zharkov and Blinkov (1993} it was shown that a Pommaret busis, that is, involutive
basis for Pommaret division, is also a Grobner basis, though, generally, not the reduced
one. A similar property of a Janet basis was noticed in Zharkov (1994b}. The following
theorem shows that such a relation holds for any involutive division.

Theorem 7.1 If set F is L—involutive, then the equality of the conventional and
L—normal forms
(VpGR) {NF(}),F):NFL(I),F)} (15)

holds for any normal form algorithm.

Proof To prove the theorem it is sufficient to show that any polynomial p is reducible
medulo F if and only if it is involutively reducible. But the latter statement is an easy
consequence of Definitions 3.1 or 3.2 and 6.2. Indeed, if p is involutively reducible,
then it is conventionally reducible. Conversely, let the term u have a divisor among
the leading monomials of F, that is, w = le{u}lm{f) - v for some f € F and v € M.
By the condition {8) and Theorem 5.4, it implies f - v = Xy fi X wy;. Hence, u has
also the involutive divisor in Im(F). It is just that f; which satisfies the condition
Im(f;) X uy; = Im(f) - v and is unigue. D

Corollary 7.2 An involutive basis is @ Gribner basis.

Proof According to the algorithmic characterization of Grébner bases (Buchberger,
1065 and 1085; Becker, Weispfenning and Kredel, 1993) consider the S-polynomial of

fia fj € F [ ) I (f f

S(fi, i) = cr?t(g;:)fj fi— CT:;(J;;) j)fj . (16}
Since S(f:, f;} € Id(F), by Corollary 6.5 and Theorem 7.1, we have NF(S(fi, f;), F) =
0. a

16

Corollary 7.3 If set F is partially involutive up to the monomial v, then

(¥p € R) (im{p) <v) [ NF(p,F) = NF.(p, F) }. (17)

Proof It follows by perfect analogy to the proof of Theorem 7.1. ]

Note that while a Pommaret basis, if it exists for the given ideal, is unique {Zharkov
and Blinkov, 1394}, this may not hold for other involutive divisions. We demonstrate
it by the following explicit example.

Example 7.4 Two lexicographical (z > y} Janet bases F} and F)

v z
— 3 2 2 3 o
Fo= {ey-yoy - Loy—y,z -9y -1},
v = .Y 2
i PR

F2 = {1293 _y2’$2y2 Hy’zzy'— 11I2 - yzhxya - 'ryz - 1»5‘33/"“ yQ’I_ B y3 - 1} 1+

with indicated non-multiplicative variables, are involutive. It can easily be verified.
Both of them generate, obviously, the same ideal with the Grébner basis {z~y, y* — 1),
which is also a Janet basis and, in this particular case, coincides with the Pommaret
basis.

As was shown in Sect.4, given 2 polynomial set F and an arbitrary involutive division,
the ideal 7d(F) may not have a finite involutive basis. For example, while a finite
Pommaret basis exists for any zero-dimensional ideal (Pommaret, 1978; Zharkov and
Blirkov, 1994 and Apel, 1995), it may not exist for a positive dimensional one. Gen-
erally, for positive dimensional ideals, the existence of finite Pommaret basis can be
achieved by means of an appropriate linear transformation of variables (Pomumnaret,
1978 and Apel, 1955).

On the other hand, a noetherian involutive division, for example a Thomas or
Janet one, implies the existence of finite involutive bases for any polynomial ideals as
the following proposition shows.

Proposition 7.5 If involutive division L is noetherian, then any polynomial ideal
Id(F) has a finite L—involutive basis.

Proof Let G be the reduced monic Grébner basis of Jd(F) which is finite for any
polynomial idesl (Buchberger, 1985; Becker, Weispfenning and Kredel, 1993). 1f set &
is not involutive, then complete it by non-multiplicative prolongations of its elements
Just as it done in algorithm InvolutiveClosure. This means that at every step of the
completion we select a non-multiplicative prolongation with the lowest leading term
which is L—irreducible modulo the current leading monomial sct. By noetherity of L,
in a finite number of steps, a polynomisl set & will be produced such that /1n(G) be
an L—autoreduced involutive closure of Im(G). Finally, L—autoreduction of the tales
in G will give an L-involutive basis of Jd(F). D
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8 Basic Algorithm

In this section we describe an algorithm for the construction of an involutive basis.
The algorithm is an improved version of ene presented in Zharkov and Blinkov (1994}
for Pommaret division and generalized to zny continuous involutive division L and any
admissible ordering >. The main optimization is based on the use of Buchberger’s
chain criterion for avoiding unnecessary reductions introduced in Buchberger (1979)
(see also Buchberger, 1985; Becker, Weispfenning and Kredel, 1993) which excludes
also the repeated prolongations (Zharkov, 1994c) as we show below.

Corollary 7.3 shows that for any S-polynomial S(f;, £i), given by formula (16}, both
its conventional and L—normal forms are vanishing as soon as the conditions {14) are
satisfied up to the monomial lem{f;, f;). According to Theorem 5.4 and Corollary 5.5
the conditions (14) can be presented as NFy(Sc(fi f3), F) = 0, where St{fis f;) are
just {L—involutive) S-polynomials of the special form

Su(fofs) = firz— fi % e (18)
The following theorem gives the involutive form of Buchberger’s chain criterion.

Theorem 8.1 Let F be g finite L—autoreduced polynomial set, and let g~z be a non-
multiplicative prolongation of g € F. Then NFi(g -z, F ) = 0 if the following holds

(Vh € F) (Vu e M) ( tm(h)-uw < Img-z) ) [NFL(h-u,F)=0], {19)

Im(fo)lim{f), tm{go)ilm{g)
(3f, for 90 € F) Im{)|imig - z), lem{fo,g0) < Im{g-z

)
NFy(fo- 841 F)= NFu(go- iy F)=0

(20)

Proof Condition (20} yields that at least one of polynomials f, g can be considered as
derived from fg, go by prolongations with at least one non-multiplicative among them,
If, for example, im(fo) # Im(f), it leads to the equality f = Im(fo) - (im{ f)/tm{fo))
module F.

Thus, if the condition (20) hoids, there is a chain of polynomials in F' of the form

.fEfk?fk—la--"fO!gﬂn--‘:gm—ilgmEg: {21)

where k+m > 0. Here f or g or both of them are produced by prolongations, including
non-multiplicative ones, of the polynomials f; or g; in the chain whose indices are less
than k or m, respectively.

The chain (21) has the property

NF(SL(f, foer)y F) = -+ = NF(S(fo, 90)s F) = - -+ = NF(SL(gm-1,9), F) = 0.
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This property is resulted from the observations as follow. Consider relation
im{g) - = = Im(f) X w, (22)

which means that w does not contain z. Otherwise, g would be reducible by f, and,
hence, F could not be L—autoreduced. Thus, lem(f,g) = Im(g) - z. By admissibility
of the monomial ordering <, the least common multiple of the leading monomials
for pair of the neighboring polynomials in the ehain (21} is less than or equal to g - z.
Then the above property of the chain follows immediately from partial involutivity (19)
of F' and Corollary 7.3. Furthermore, conditions (19-20} imply NFr(5(fs,90), F) =
NF(S5(fo,90), F) = 0, and NEL{Sy(£:;, fir), F) = NF(S(fi, fi1), F) = 0 as well as
NF(5.(gi-1,:), FY = NF(8(g:i-1,3:), F) = 0.

By construction, lem(f, ..., fi, fo, 90, 91,---,9) = lom{f,g) what leads (Becker,
Weispfenning and Kredel, 1993) to the representation S(f,g} = ¥ fiuy; where f; €
F and Im(fiuy) < lem(f,g) = im(g) - z. Then, condition 19, taking into account
Corollaries 5.5 and 7.3, yields NFy(S:(f, g), F)} = NF(5(f,9), F) = 0 in accordance
with Buchberger {1979,1985}. ]

Algorithm InvolutiveBasis:

Input: F, a finite polynomial set
Output: G, an involutive basis of the ideal Id{F)

begin
G := Autoreduce(F)
T:=0

for each g& G do T:=TuU{{g,Im(g),0)}
while exist (g,u, P} € T such that NM(g,G)\P#& do
choose (g,u,P) €T and x € NM(g,G)\ P with the lowest Im(g} - =
7= T\ {(3,%, P)} U{(g,% PU {z})}
if exst f € (f,v,D) € T such that Im(f)|.Im(g -z} then
if lem(u,v) =Im(g)-z then h:=NFi (g -2,G)
if h£0 then T':=TuU{(h im{h),0)}
else -h:= NF {g-z,G)
T = TU {(h,u,0)}
G = Autoreduce,(GU {h})
Q=T
T:=0
for each g€ G do
if exist (f,u, P} € @ such that im(f) = lm(g) then
choose ¢ € G such that Im{g)|ru
T =T U {{g,im{g), P)}
else T:=TU{(g,lm(g),0}}
end
end
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Before analysis of correctness and terminatior: of this algorithm, we give some necessary
clarifications.

First of all, the conventional autoreduction of the initial polynomial set is done. It
removes, in particular, all the predecessors of every polynomial from the initial set.
Set T collects all the triples {g,u, P); ¢ is 2n element in the current basis & u = lm(f)
where f € G is the predecessor of g, by a non-multiplicative prolongation of which g
was derived, or u = Im(g) if g has no such predecessor in &; P is a set containing the
non-multiplicative variables of g have been used for its prolongations.

The current non-multiplicative prolongation ¢-z is selected to be the lowest with respect
to the ordering ». If there are several different non-multiplicative prelongations with
the same leading term, then any of them may be selected. This selection strategy will
be called normel.

If the leading monomial of the current prelongation g -« is involutively reducible by
the basis element f € &, then the other conditions in (20} are verified. The verification
is done in the form of comparison of lem{u, v) with lem(/, g), where u and v are the
second elements of the triples containing g and f, respectively. By Theorem 8.1, the
criterion {20) is false if and only if lem(u, v) = lem(f,g) = ¢ - z. One should be also
noted that Buchberger's second criterion {Buchberger, 1985) can be applied in the
involutive approach only in exceptional cases. Relation (22) shows that lem(f,g) =
Im{f)im(g) if and only i Im(f) = z and Im(g) = w.

If the current prolongation is not reducible to zero, that is, h = NFi{g - #,G) # G,
then & is added to G.

After involutive autoreduction of the enlarged set G an adjustment of the set T is done.
For an element g € G whose leading monomials was not mutuvally reduced, the second
element u in the triple is kept, if the leading term of the corresponding predecessor of
g was also not reduced. Otherwise, u is replaced by its involutive divisor in Im(G).
Essentially new leading monomials, that is, those not multiple of any others occurring
in T before the autoreduction, are included in the refreshed T’ with their actual leading
monomials as the second elements of the triples.

To provide the output polynomials being monic, in accordance with Definition 6.3,
their normalization is assumed to be done at the step of computing involutive normal
form.

Correctness. Aswe have shown, criterion (20} is used in algorithm InvolutiveBasis
in accordance with Theorem 8.1. It is easy to show that there is the unique polynomial
¢1 € G which is chosen in the irner for each-loop such that im(g)) involutively divides
. Indeed, if the leading term of the predecessor h of g with u = Im(h) has not been
reduced, then g = h. Otherwise, there is ¢; € G such that gy # b and Im(g)|cu. Its
uniqueness of g, for the autoreduced set G is an immediate consequence of the property
{v) in Definition 3.1. Besides, the replacement of u by g, does not violate, obviously, the
conditions for applicability of the criterion. Furthermore, from Corollary 7.3 it follows
that & leading monomial, being involutively reducible at some step of the algorithm,
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will never appear again among the leading monomials. This enables one to assign the
set P of the used non-multiplicative variables for polynomial f to the corresponding
polynomial g with Im{g) = Im(f} as it is done in the inner for each-loop. Such an
optimization allows one to avoid the repeated prolongations.

Therefore, if the algorithm terminates it produces, by Theorem 6.6, the involutive
basis. The termination holds if and only if the set P in each triple (g,u, P) € T
contains all non-multiplicative variables for basis element ¢. It just means that any
non-multiplicative prolongation of every element in G is reduced to zero, and, hence,
G is involutive.

Termination. Note that the initial value of the leading monormial set
Uy = Im{ Autoreduce(F))

is determined by the input set F' subjected to the conventional autoreduction. Since
only those monomials occur in the leading monomial set which have not been reducible
at some step of the algorithm, the change in set U = Im(G) after running the while-
loop may take place only in two cases:

(1). Im{g) - = has no involutive divisors in {/. In this case U is enlarged to include
Im{g) - z.

(ii). g -z is reducible by elements of /. Then U is enlarged to include Im({h}, where
h = NFy (g z,G) # 0 and Imm(h) is not multiple, in the conventional sense, of
any elements in Uy,

The number of different Im{h) occurring in case (ii) is finite by Dickson’s lemma
{Becker, Weispfenning and Kredel, 1993). Recall also that algorithms InvolutiveAu-
toreduction and InvolutiveNormalForm always terminate {Sect.5). Thus, the al-
gorithm termination is determined by that of algorithm InvolutiveClosure considered
in Sect.4. It follows that algorithm InvolutiveBasis terminates for any noctherian
division and arbitrary input polynomial set F. If division L is not noetherian, then
termination may not hold if an intermediate set U = Im(G) is not finitely generated
with respect to L as the below Example 8.2 shows. In the case of Pommaret divi-
sion the algorithm terminates, however, for any degree compatible ordering and any
zero-dimensional ideal (Zharkov and Blinkov, 1994).

Thus, because the involutive division L is continuous, once algorithm Involutive-
Closure terminates, an involutively closed set I will be constructed such that autore-
duction of the corresponding set G does not produce new leading monomials. G is,
obviously, the output involutive basis. :

By Proposition 4.5, it implies, in particular, the algorithm termination for Thomas
and Janet divisions. However, for Pommaret division, which is not noctherian, the
algorithm may not terminate even in the case when there is a finite Pommarct basis
but the ordering is not degree compatible as the following simple example shows.
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Example 8.2 The set F' = {2? — 1,2y — 1, 2} generates a zero-dimensional ideal with
the lexicographical Pommaret basis (¢ > y > z) given by G = {x —y,4" — Lyz,2}.
However, following the above algorithm we have to choose z -y as the first prolongation
which is lexicographically lowest. Since polynomial h = yz has no Pommaret divisors
among Im{F), we find FU{yz} as an intermediate basis. The next lowest prolongation
is yz - y again has no Pommaret divisors among the leading monomials of the enlarged
set. Exploring this procedure further produces the infinite involutively irreducible set

{2 — 1, zy - 1,2,y2,4°2,...,¥"%,...} kEN.

1t is well-known (Pommaret, 1978; Zharkov and Blinkov, 1993 and 1994; Apel, 1935}
that positive dimensional ideals may not have finite Pommeret bases. Example 4.14
illustrates this fact at the monomial level. The following more non-trivial example
shows the output of algorithm InvolutiveBasis for Pommaret and Janet divisions in
the case of polynomial ideal.

Example B.3 Cyclic 4-th roots.

NM; NAMp Initisl Polynomial Set
Zy ~ | Ty T+ T34+ T4
T3 Ty | T12g 4+ ToZy + T3T4 + T4T
Ty T, %2 | T1ZaT3 + TeT3Ty -+ LaTaZy + TaT122
— | I3, %9, T3 | T1wpTaT4 — |

Here we choose the degree-reverse-lexicographical-ordering with the order of variables
a5 in Sect.? and show non-multiplicative variables for each polynomial. Note that, since
the initial set is not autoreduced, the inclusion NM; € NMp {see Proposition 3.10)
does not hold.

Application of algorithm InvolutiveBasis gives the following form of Janet and
Pommaret bases

NM; NMp Janet and Pommaret Bases
- — i+ I+ Tty
T T | 2% + 2307y + 22

Z1, T2 Ty, Ty | 2223 + 2iTy — 7222 — 23

&y, T2, Tg | 1, %2, T3 | ToTsz] + 2375 — zpaf + 232) — 2 -1

1,9, T3 | L1,%2, %3 12I2+$2—IQ—.‘TC4

Ly, 29,23 | T1,%2,23 $§$g + ZoT3 — ToTs + T3ty — 253
2,25 | T1, %o, &3 | 2575 + 282§ — 23 — T4

Ty, %2, T3 | THad + 23T5 — 75 — LoTy + TaTy — 2
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The Janet basis consists of the upper seven polynomials and coincides with the Grébner
basis, while the Pommaret basis is infinite and contains also prolongations of the sev-
enth polynomial with respect to its non-multiplicative variable 3. Note that the ideal
is one-dimensional, which is why it does not have a finite Pommaret basis.

The algorithm InvolutiveBasis has been implemented in Reduce 3.5 for the degree-
reverse-lexicographicai-ordering and Pommaret division refined in a certain way to pro-
vide the algorithm termination for any polynomial ideal. This refinement is equivalent
to the dynamical incorporation of some noetherian involutive division in the computa-
tional process. Iis detailed description will be given elsewhere. In addition, the current
package called INVBASE is considerably faster than previous version (Zharkov and
Blirnkov, 1994), in particular, since it uses the criterion {20).

Experimentally, we observed much smoother behavior of the algorithm Involutive
Basis with respect to Buchberger algorithm® as the ordering changes. Consider, for
instance, the following example.

Example 8.4 Cyclic 6-th roots.

zy + o+ Tz + Tg+ Ts + T,

T1Ty + T3 + T3Ts + Xa4Ts + TeTs + TeT1,

T1XoT3 + ToTaTy + T3TaTs + TaBsTe + L3Tel1 + TeZ122,

I1X3T3T4 + TeTaT4Ts + T3T4T5Te + TaT5L671 + Z5TET1T2 + TeL1%2T3,

T1ToL3T4Ts + ToTaLaZsZs + T3T4TeTeT1 + TaTsLeT1T2 + TsLeT170T3 + TeL1T2T3T4 ,
T TaT3T4TsTe — 1.

The next table gives the timings of INVBASE on an 66 Mhz MS-DOS based AT/486
computer for different degree-reverse-lexicographical-orderings.

QOrdering Timing {sec.)
Ty Tg > Ty - T4 > I5 - Tg 1040
Ty Ty >~y - Tg - T3 - Is 514
Ty > Tp - Ty - Lg - T5 > I3 437
Ty = g > Tg - T3 > T4 T5 1066
Ty - ZTg - T4 > Ty - Ty~ g 604
L1 > Xy - Ty - Tg - Ty - Tg 136
Xy Ty > Tg »~ T3~ Ty~ Tg 993
T Ty Ty T - Ty > T3 1001
Ty > Zg > T3 > Tq > T > Iy 364
Ty Ty T Tz - T3z - Ty 1045
Ty - Tg - Ty~ Lo Ty Ty 1012
Ty > Tg > Ts > To > Ty > T3 590

Comparison with the package GROEBNER implementing Buchberger algorithm on
the same Reduce 3.5 platform shows that its corresponding timings are not only much

1More precisely, with respect to its implementation in Reduce 3.5.
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larger than those presented in the table, but also vary dramatically with the order of
the variables. This fact was already observed by Zharkov and Blinkov {1994} where
some comparative data for GROEBNER and the previous version of the INVBASE
package are presented.

9 Conclusion

Buchberger algorithm and the involutive one are based on different rewriting tech-
niques, namely, on the use of S-polynomials and prolongations, respectively, as well as
on distinet reduction processes. Nevertheless, as we demonstrate in this paper, they
are in fact very interconnected. If, as we propose in the algorithm InvolutiveBasis,
we choose the current prolongation in increasing order with respect to given monomial
ordering, then the conventional and involutive normal form will coincide. What is
more, the involutive reduction of the prolongatien is equivalent to the consideration of
a certain S-polynomial. Just this fact makes it possible to use Buchberger's criteria.

Very recently another interesting facet of interrelation of both methods was discov-
ered by Apel {1993), namely, that Pommaret bascs can be associated with Grbner
ones in appropriate graded structures. Earlier such Grébner bases were intensively
investigated in more general context in Mora (1988). That observation gives us an
opportunity to algerithmically construct Pommaret bases whenever they exist (Apel,
1995). Though such an analogy also enables one to take advantage of Buchberger’s
criteria, it is restricted to Pommaret division.

Thus, all the above, as well as computer experiments with both techniques, offers
a clearer view of the most optimal computational procedures.

There is no question that any algorithmic improvement of the Gr8bner basis and
involutive techniques at the algebraic level has an analogous optimization at the dif-
ferential level, at least for linear partial differential equations {Gerdt, 1995).
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