


. the caprzces “of small samples S
have to bé taken into account ;.

F Mosteller, 4.W Tukey <
1 Introduction .-

The most popula.r type of regression model used for ha.ndlmg problems that cannot be‘
descrlbed by straight lines is the polynomzal model, in which the dependent va.rlable is
related to functions of the powers of the 1ndependent varlable

A one—varlable polynomla.l model is defined as follows S TR E LR AR s SRR I TN

(),
where y represents the dependent va.r1a.ble, z the xndependent varla.ble, e~ ./V (0 o-’)
is a random error term and ap,ay,...,qa, are the unknown regression parameters The
hrghest exponent, or power, of z used in the model is known' as;the degree of the model,
and it is customary for a model of degree r to include all terms with.lower powers ‘of the

independent variable. In sélecting a polynomial model, the goal is usually to select the{ ’
polynomla.l model of lowest order that: a.dequa.tely represents ‘the trend in: the plot

s

ao+alz+azz + +arz +5,

Polynomial models are prlma.rlly used as means to ﬁt a relatlvely smooth curve to a set
of da.ta but the degree of polynomlal requ1red to ﬁt a'set of data is not usua.lly known a
pr]orl e . R Wie + [N i 7/ ‘-

There’ a,re'several a.pproa.ches to determmlng the nght degree of the polynomla.l S

L

The partial sums of squares, that’ do not depend on: the order in whrch the 1ndependent .
variables-are listed in'regression model, ‘ate used in linear regression: procedures For
fitting polynomla.l models by l1nea.r regress1on procedures ‘:equentzal sums of squams ma.y- '
be used [6]." : g

It is customary to build an appropriate polyrniomial model by sequentlally ﬁttmg equatlons
with higher order terms until a satisfactory degree of fit has been accomplished. In other:
words, it is started by fitting a simple linear regression of y on . Then a model is specrﬁed
with linear and quadratic terms, to ascertain if adding the quadratic_term improves the
fit by. significantly reducing the resldua.l mean square. The process can be continued by
adding and testing the contrlbutlon ofa cub1c term then a fourth power term, and $0 on,
until no additional terms are needed : '

Another method for ehecl\ing the a.pproprié.teness of a model is to plo:t’the residual values.
The residual plot can show a systematrc pattern when-the spec1ﬁed degree of polynomralr
is 1nadequate o o

IThe author is grateful for support by the Russran Fundamental Sc1ence Foundatron under grant
95-01-01467. . :
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Modern regressxon technlques solve the problem of cstlmatmg the degree of polynomxal
by introducing a penalization function (1], {21, 3], {7])- ‘H the penalization function is
approprlately chosen a cons:stent estimator for the degree can be found. These technlques
may be not sa,tlsfactory for. small number of observations.

We present anew approach to determming the degree of regression polynoinial: The main’

* tool of this approach is the discrete projective transformation ([4], [5], [9]). One of the
main features of this transformation is the fact, that the DPT decrea.ses the degree of the
polynomxal by ‘two whxle the derlvatxon Only by one.. .’ S B RN e

: The sxmulatron result from sectlon 2 shows ‘the’ dependence of an app]lcatxon of penahza—
tion function on the number of observations. Weé introduce in section three the DPT, give

" the basic definitions and properties.: In‘the next two sections we' investigate the DPT. of:

polynomials and the aspects of numerical calculation of DPT. The section six is devoted

to the use of DPT in estimating the degree of regression polynomlal on a real set of data. T

. The la.st sectlon consxsts of conc]usrons

2 Penallzatlon functlons : ‘-f

AFor given paxrs (z1, yr), (132, y2) .

+

The modern methods solve the problem by mtroducmg a. penahzatlon functxon q,.(k) :
- Akaike was one of the first statisticians, that used penallzatron functions.  His FPE andﬁ
CAIC criteria [1], [2] were proposed to estlmate the degree of a stationary. autoreglesswc:

process in txme series analysxs

Assume that 0 S 7" < .R, where R is a given number. Denote sZ.an estimator of o2 wherej
the model (1)-takes into account .k} 1. parameters.: The random behaviour -of s} does,
not a.llow to determine the beginning of the asymptotxcally constant part of the function -
,R.The penallzatlon function takes: mto account besides sL the number -

$2,k=0,1,2,.
of the parameters too- and it'is the product

yn(k) =50 + qn(k))

whlch is analyzed The functlon q,,(l) penahzes the | growmg numl)ﬁ‘l k of parameters in

3

the model. H the number of parameters in the model is small and ‘insufficient, k < v the’

“estimated residual variance sj is large. If we take too many parameters, & > r, then'the
penahzatlon functxon causes that the consrdered product Jn(k) Increases. . - .

The number of parameters which’ mmlmxzes the product is tal\en as an estlmator of the

dimension of the model. Different authors use different penallzatlon l'unctlons If the

penahzatlon functlon is appropnately ChOS@n e.g. l3l

» qn(k) = ch"’,
the estimator is consistent.

e . ; . P
: - T AR

(:c,,, y,.) the regression parameters ao, o, iy o
“can be easily-éstimated by the least squares method (LSM)..The main ploblem is to esti--
mate the degree r of the polynomral 1’e. the number r+l of parametels ao, a;, .w v a,

In [3] simulated data were used to 1nvest1gate the dependence of the above crrterxon on;:

the ¢, 8, o? and regression “coefficients. Our simiilation” study ‘shows: that there is a-.

"dependence on the number n of observatrons too We present the results from sxmulated 5
data in tab. 1.” We simulited a model )
y = —z + 1527 —lO:c +zt e, | S

with o= —0.5, step h = - 0.1 and pseudo random numbers er N(O 0. 52) Sy

As we see, 1f e.g. n = 24, then the criterion, ba.sed on the mlnlmal value of g,,(k)
s}(1 + kN-025) nges the degree 5 only for every third sxmulated sample

Tab.1 The number of samples:with corresponding te'sted degree by penalization. func. -

Degree 1121 3| 4| 5678+ Number of )
Sample size | - o . +| simulated samples |- ..« &
40 0lo} 07 0olosti4]0] O 100
32 oo of ofjoa|afr| 1 100
24 -10f0| 0f55{33|8|2| 2/ 100
16 0(0|78] 5| 5(5(2 5| 100
12 1010499110178} °17|: 100

ey IR oy LTI,

The dlscrete pro_;ectrve transformation. was mtroduced and:its basic properties studred in
(4], [5] This section is devoted to the descrlptxon of DPT on the base of these works.

If we choose Zg and ﬁx on a curve’ of an arbxtra.ry continuous functlon f(z):two different

points (o + A; f(zo -+ A)) and (zo + L; f(zo + L)), then the discrete projective transfor-

mation maps any point Py = P(z; f(z)) (not equal w1th the previous ones) of the curve

onto the corresponding point P, = P(7; k(7)) on the curve of a new function h(7) of

simpler geometrical structure ‘ S el T
: : "D:Pf— P,

where 7 =z — .co We will assume that throughout the paper To = 0

NOTATION Let us introduce for any T 75 A 74 L ‘r,/\ L € R the foIIowzng notations

TL AT

mEp(nA L= m, pL= Pz(T A {J) m (2

and under the addztzon cond:tzon p3 74 0 the notatzons .

AmAL= "}f’“ﬁ.**‘??f‘*%-f;_ds,,(r: M=ol

P3.



We mentlon that the functrons d,,dz,d3 are deﬁned only for nonzero /\ and L

inverse transformatlon
DEFINITION 1 Let A # L.
a) The DPT. of an arbztrary dzﬁ'erentzable functwn f(:c) is analyircally defned as foI-
Iows L
B " where (-, ) denotes the dot product and -

P [P,\J’LyPr]

b) The mverse DPT is deﬁned by

D“[h(r)] = !f(z) (D H),.

mnﬂmmnlrQ )

uthére; T
i = [(I],dz,dal,

‘ Before 1nvest1gatmg the main features of the DPT we give the basic propertles of the:

Cross- ratro functions'p; and d;,; i = 1,3+

a) pi- a.nd -d; are, mdependent of scahng (a complessmn “and shetchmg) i.e for anyr

ok 7“ 0. i i
. N P‘(k‘r k/\ LL)—P;(T /\ L)) } Z
d(kr 2 kL)_'_d(T A L))"

FACEUEALTY Sl g T

d) the graphs ofp, and d,, 1=1,3 3 for'X'= —1"and L = 1 are in Flg, 1, 2

_ Takmg into account the property b). of functrons p,,z = 1 3, we get from (3) the

as

mmmsﬁ@EMﬂédf;f@jf”+L_x“? 4)+ﬂ> ©)

WEl=r@==@rn - @

é[f(/\i);f('L),f‘(_;T)]-',Y-_.‘j o L4)

DEFINITION 2 The DPT ofanJ dzﬁ'erentzablc funclwn f(:t) foz l11lJ /\ 75 L mﬂJ be deﬁned

Lemma 1 Let A # L. Then - S

;,“v) ¥

Formulae (3), (6) deﬁne the DPT for all T, e\cept of two \alues T= /\ and T = L From ,
the second deﬁnltron we get due to the dll'forentlablhtv f() the' DPT at pomts Xiand: L7

_hu)~k3ﬁuxffufu)ﬁna?+fux, . (M
and N .
h(L) = llm h(‘r)‘— uf‘(L) - vaz + f(L) e (8)
where T ) ’ ) )
: Y L S = 10
‘lt—z‘_—/\“_ ‘anv(’ \‘_v'{_W.

- From definition 2 and the property c) of p; we get 1mmed1atelv one of the basic propertlesl

of DPT: R R A
DyO)=so),
ie. the point [0 f(O)] is an immovable point for DPT ooy
The further two main features of DPT. are the lmeanc1ty

Dlafi(z) + bfa(e)] = aDU ()] + 4DUale)] = ahs() 4 bhg(r)

‘where a,b € R-and f;, f, are arbltrar) (hfferont]able functions, and the decrease of the
‘degree of power function by 2

D[.r"} = _/(T 72 "%2), s on>3

1

The latter property we formulate as (see [1])

a) forn=1,2 BRI
D[;l‘"] = 0,

b) and for any natural n > 3 we hmvr .

"_|_ g

D[l‘"]—-/\LTZ/\"' Z Pl )

We mention that from the property ¢) of p; 1t follo“s 1mmedralel\ that f()r any:constant -
ceER .

‘ o Pd=e
Hence and from the lmearraty of DPT an(l Lemma 1 we get in palllcnlar

'D[a+b.r]_a, f. -
D[(l+b.r+c_r.]%_a’ﬂ; AR .

Corollary 1 Let Af= (f(/\) f(O) f(L) f(O) f(r) f(U)) ullur f(r)is an mlnh(ur/
poIJnommI of degree less than'3.” Tlien the veclors P and Af are ml/m_/ann/

\

(P,Af) =0.



4 DPT of polynomials Tab.3 Formulae for G, (.1: X, L) and G, (z,—L ), =58

Let us: mtroduce for the right hand 51de of (9) the notatlon s I{; e - Ga(z; A, L) : S » G (:c,l—-L ,L)
0 = ; S, P
n-i-1 : 4 $+y1—1:+/\+L T
: G(z,\L)_,\LTZ,\'-‘ZL“"-'-“ 5 :t+:cg1+g2_:c +z(,\+L)+,\2+,\L+L’ LL? 22
= #=t 6z +191+$92+y3 ‘ o { :cL2+z
’ ext lomma. G- = G- (- . . (AF +zyl+zyz+zya+y4 S e i L‘+1:2L2+:c
As we can see from the next lemma, G,l = G,,(fr, A L) may be computed by recurslf’ff-‘ 8 | z° + z%g; + 3¢, + z2g5 + 194 +95 A :cL‘ +23L% + 75 }

2 Forn>3 = . - \ o ‘ : _
Lemma orn= S e ‘ "?I From Lemmas 1 and 3 we get the expansion of DPT z" by power, functions AR

Gn = 2(Gnmt = AGpoz)'t L™ + MGy,

) ‘Lemma 4 Let ) # L. Then for any inleger n 2 3 we have

'whereGo=G1=0 : L » év oo , R ’

For the derivation of matrix equation for the DPT of polynom\als it is very important the « D[z P L] 'D[l' 1= ZII dm('\ L), o R (13?‘ .

representation of-G, by power functlons . L ) o i D e, =l e e T

. o where ‘ : ;

Lemma 3 Forn>3 ... . Con IR . RS . . : : din(A L) = ALgnz2-;(M\ L), i=T,n=2, , (14)
k 7 - Gn (:r ML) = Z:ryn-a i(A L), S (10) end g- is defined by (11),(12) (see also Tab.2). i
: . Y : Formulae for d;,, ¢ = 1,6, n = 3,8 and for.'D[x"] are in Tab.4-7.

where - : : T . S B

g, L)= ZL"J,\J j=0,n—3. (11) . : Tabd diy(\, L), i =T,5,n =3.7:
§=0 ST R o in|3- (4 5 16 7 E
] , : . _ o o 1 [ AL | ALg, /\ng‘ ALgs'| ALgy |
Remarks: ;i 2 AL | ALg, | ALg2 | ALgs
L . T . 3 ‘ AL “|'ALg, | ALg,
1. There is a smgle recursion relatlv‘(‘t)n ~fcﬁ)‘r 9% 4 17 AL | ALg,
g = g.-lA+L i=12,... o (12). THn=37

Tab.5 d;, —L L), 1,5,n=3,7.
lin]| 3 5 .6 7 .
=LA~ 0 =L e

2, Although the ¢;, i =.0,1,:.. are mdependent of n, the coefﬁments gn-3-; by z' in

gt

(10) depend on n. i 9 0 [ =L o | =Lt 0| o
Formulae for ‘gi(, L) and’ G (z by L), n'=3738 8 are in Tab.2 and'3 1espect1vely Z g . g ‘ _.OLZ (22 _[fl.l S TP S

Tab2Formula.eforg,(/\ L) andg,( L, L) i=05 : 150000 ] 0.0 —L?, o
T el To=L: L) | |

Tol1 ' 1 4 ~ TabGThe DPT of power functlon D[z /\ L] 3 6.
1a+L SRS 0 : ol Dz /\L] , rp
2INFAL+LE b AN 3| Lax
UM HMNLEAL2+ I3 : 0 4 2,\L+(L+,\)L,\ac ‘ N
alxeerenpear+rt | LY s ,\Lz3+(L+,\)L,\z2+(L2+,\L+,\’)L/\z o ;

15 XS ML ML N F AL £ L5 | 00 6| ALzt +(L+,\)L,\z +(,\L+L2+,\2)L,\z +(L3+,\L2+,\3+,\2L)LAx



..Tab'.7 The DPT of power function, A =~ L S

—L%2% — [42® — z[8
L2268 _ A A_Lexz

n Dfz™; ~L, 1]
3| ~Lz E
4| =L%?
15| =L%®—Liz-~
|6 | =L%z* — L1z?
T
8

From Lemma 4’ one can easily g'etthe

o

Corollary 2 For A # L and n >3 D[z"] can be presented by the recursion formila "

. Dle"] = 2(Dl"] 4 ALg,.o)..

NS

* From lemma (4) we can derlve the DPT of polynomlal of degree T

. fr(z) = O_Iro + onz + apr’ + et
2 In matrlx form. T
Theorem 1 Let A# L. Then for any integer v >0
DU )= ) = XA,

where the vectors X, and A are deﬁned by

Xr ;_— (l z, .7:2 l ,.7‘:')1;‘,'

; :,,A_r = (arO,arlyarZ’“-aq”)T’ v
S_[1oor
a-[a 5]

(15)

(16)

an

the vector :0, consists of zeros and the nonzero elemenfs (/,J oj matrix D are deﬁned by

formula (14) (see also Tab. 3 4).

The result of theorem follows from: the next facts

° the element d;; is equal the coeﬂic:ent by ¥ in the DPT of o - D[z*], see (13);

® since for any constant c, Dle].= cand D7} = c, every element of the first row and

ﬁrst column of matux A equals zero except An( doo) =1;

° 1f k=12, then dit = 0 for every 1, since D|z] = D[IQ] =0;

Olfz—r—l r, 0r1fz>2 L>3andL—z<l thendk—O qmceDP idecreases

the degree of power. functlons by 2.7

The scheme of the mzttrix A i‘s :

H,io',o
000
. 000
A= 00 0
1oo.0
000
[ 070 0
[100 0 0o - o v . _ 0 7
000 )L A’L+AL’ WL+ XL 4ALS ML 4 ¥4 AL 4 ALt
000 0 AL NLEXLE | NL4+MLEpA[R
={000 o0 0 AL A2[ 4 A L2
o000 0o 0 AL
000 o 0 0 , :
(0000 0 S Y
For A = —L and r = § we gel (see also Tab.5) e '
froo o0 0.0 0 07
000 —~I* 0 —L' 0. -5 0.
000 0 .~I? 0 —I* 0 —ff
000 0 -0 ~L¥ 0 <=[* 0
A={000 0 0 0 -L? 0 -]
0000 0 00—
0,00 0 0. 0 0 0 =L
1000 0" 0 0o ‘0 o o
(000 00" 0 0 0 0 |

Let us see two examples on the DP'I of polynomials el
Dife(a)] = fi(2) = a0+ 4 ' '
+z (ALas + (AL + ML) o + (AL + gz "\ L) s+ (A‘L XL + A’L’ 2 L‘) as) +
+2? (ALad + (AL + A L) ag + (AL + ,\’L2+,\L’)a6) + :
+23 (1\ Lag + (1\2[4 + A Lz) as) + ziA Las

This DPT incase A = —L'is 1educcd’ l.o "

. Dlfe(z)] = fe(z) = a0 + = (—L2"3 - Llﬂs) + a2 (;L20'4_— L401;) - .ral,z();; —a*Llag
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‘ The ‘evaluation of DPT of hlgher orders is done recursrve]y We show how is computed

the k-th DPT. Y% on the base of the k = 1-th DPT."

Frrst of all the’ functron f(""l)‘(:z:) must be computed analytrcally from the definition 1
or 2 (formulae (3), (6) respectively). The function f(*~ De(z) is needed to evaluate f’“(z\)
and f"‘(L), more precisely the derivation ————12—(51 in A and L. S

We have

where Pis deﬁned by (4)-and : ' -

Fk— ___[y}k—?)?, ’(‘Ig—z)q (k— ?)d(r)]

The k-th DPT of Y i is equal ” e o

Yh= Ot ,y,:*_‘;,f“(L))T

“where
) = ——"f(k;:(”wk_,ruyﬂ b,
.F;‘fk;(L);:::: df("d‘:( )'—-vk 1L2+y(k—-1)q '
| Uk—; = ————y'('kfl)q;'yik 1)"’
(L=A)2 .

Y*kd = P y(" 1)4+P y(k—1)4+P }I*(k-;l)&"

and : i "' v
Y*(k—])q — (y;kfl)d, ygk—l)c . y(k—l)d)T.

11 In—-1

Let us now consider the situation, when

-

F@) = f(2) = arot anz + oz + ... Fapa”. . (20)

. Let o
Lo . f= maa:(r —2k, 0).

If for’ a.ny k> 1 # =0, then f’“(:z:) = const = ayg and Y5 = (nro, ‘e ,a,o)T.'

Let us have a look at the case when u > 0. There are two ways to compute Yk,

1. We can follow the algorlthm descrlbed above, however now the functxon FEDY(zY in

(19) does not need to be computed analytically.
Let (we remrnd that by the assumptron p=>1)

FE2) = fo(2) = avo + anz oo+ @t

12

e = oy ”*’(x)]—(P L

Then from (15) and (18) we get that

where v=r-= 2(k~1) (of course the coefﬁc1ents .0, a,,,, Sty héve to'be rememberedj.

Then (k1) o - .
o ) f"(x)r =an + "auzx + + Ve, ’.“
dr ,
The rest of computation is carrred out by analogy with the general case.. Mentlon must
be made that a convenient way to compute the coeﬂiaents of poly nomral fr 1)"(:z:) is due '
to Lemma 5 (see the next way) : .

2. The second way, which is simpler than the ﬁrst one ho“ever |t needs more machme
operations, is to use purely the result of Lemma 5. - : :

Let . . ,
: 1z 22 o\ Ce
Vomg adezy | 0
27 T . , P
e - : ,
1z, z LTy,

II.

ye XAA( xg) :
Y’N. = XABL l It'—"?, ' , (21)

where A is given by (17) AT by (16) and B*1 2 A‘ 1A’ Flre ploceSs may be’ optlmlzed

' by decreasing the corresponding dimensions: of ‘matfices in’ every “iteration step by 2.

Consequcnt]y the drmensmns of matrlces in (71) may be reduced to

) 1
an(r—2k+3)v . A(r—2k+3)x(r‘—2k+3)s B(r-‘lk+3)x 1

6 The DPT m regressmn analy51s

The discrete prolectlve transformatlon was def'ned inthe plevmus section. f0| continuous
functions. From (3) it fol]ows that'the DPT of dlscrete pmnts may be computed too.
Let us consider the set of data in tab. 8 (see [6]) ‘Our goa] is to determine from the discrete
points [.T,,y,],z = 1 21 the apploprrate deglee of the regrewon pol\uomlal

-

: Tab8 : :
X[-14 T 21~ 28 ['35 [42 49 5 [63[ 70 ] 77 [ b4
‘LY ] 590 | 910 |'1305 | 1730 | 2140°| 27257 2890 | 3685 | 3920°| 4325 | 4110
X191 [ 98 | 105 | 112 | 119. [ 126 | 133 | 140 | 147 | 154
Y | 4485 | 4515 4480 4520 4545 4525 1 4560 | 4565 | 4626 | 1566

The discrete pomts may be transformated by (3) after the choice ol' t\\o basic poinis

A F(N)] and [L, f(L)]. The basic points may be chosen from the discrete points [x;, yi]

and their DPT’s. Unfortunately this choice has an essential dra\\bml\ by computanon
of every DPT we lose two observations.

Here we show another approach: the basic points will be from the uhmat(d po]) nomial
and its discrete projective transformations.

13
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From the theorem we‘i‘mmediately get the matrix equation of the k-th DPT ef ‘polynomial.

Lemma 5 Let A # L and 7 > 0. Then for every k >'1 v o B

' - D[D[...D| fr(z)] = D"[fr(z)] = f""(l) =X, TA‘ (18)
k L k

Examples we show only for: D, because for'ev‘ery positive natural k
A= ( o, Dt )

For A = —L and r=8we have . »
O LY 0 2L% 0 ]

‘ 0 L* o 2I% |, ’ B
D*= 0o 0 I* o |- .
00 o0 L
L O |
0 L8 0 ; ,
DP=|: ¢ ¢ and D'=[0]. "
1, o

The DPT’s of order 2 and 3 of polynomial fs(z) are: - o
DZ[ fo(@)] = f2(z) = a0+ & (W L2as +2A L (N L+ A L?) a6) + 2°A* L0s,

 Dfe(e) = Be) = o

5 The nurnericéi_l reélizeiltioh’ ofiDPT' |

In this section we describe the numerical rmplefnentatron of DPT., of any differentiable
function and of polynomials in particular. ‘As we will see the evaluatxon of DPT of poly-
nomials may be reahzed purely numerlcally without any analytrcal computatlon

In numerical algorrthms functlons f (a:) are presented over an 1nterval [a, b] in most cases
with _pairs® [z,, f(=zd))], where f(zi), i = T,n are the function values at the meshpomts
i, i:= 1,n. The distance between two successive meshpoxnts :c._.l, z;, #'="2,n may be
constant or changeable It is supposed that z;.= a, Tn
z-—ln—l,]—.;z+1n : ' .
So let us consider two vectors -

¥ . B 1 ~‘4 - B
X = »(zla?huwzn)T‘)- 'a'nd, i

Y= (ylaLyZ}-:-rvyn_)T’

10

band :c, < :c_,, i < ],-

where y; = f(z;). Our goal is to show an eﬂ'ectxve way : 66 compute the numerlcal values
of the first, second, . -DPT’s of f(a:), i€ the vectors i ; : ‘

Y —“\E‘D[D[ D[Y] ]]“‘(yl vyz e vyn) y
' Lk ;k ‘

Ak‘j;'l,27..-.‘;,

vvhere yFo = f"“(z.), t=1,n dnd Bh N :
| f*(z:) = DD D] f(2)]... ]

By f*(z) is denoted the k-th DPT or the DPT of order k of the function flz) -

The DPT of f(z) is determined’ by two basxc points )\ L and their values of functlon ’
f(A), f(L). Without loss of generality we take A = z, and L= T '
Let us introduce three vectors o

pa(z2) PL(Iz)’ o pi(aa) \

P vfu(za) ’ PL= rm(za) P rfr(za) ’
pA(In— ) pL(In—l) \ p"(tﬂ—l)

where py, pr, and p, are defined by (2) These vectors are used w1thout any change
in computations of DPT of any. order. - It should be noted that they'do not contain the
corresponding values in the basic points z; = A and z, = L. The DPT at these points is.:
calculated by (7), (8) and at z2,z3,...,Zn-1 by (3) or (6).

The first DPT of Y is given by . e 0

= (PO ¥ ,y,._z,f“(L))T
where (see (7), (8)) ‘ g ; ;
| FO) = 5 = ul )+ 50k 11

fd(L) = y: = uf’(L) -—'- voL2_+ yn T ‘ g ‘A 1 X
u= 2L _M O
—'L'—A’ < (L A)z"r\: VLT T ‘

“ and yl 4y ,y"_2 are the elements of vector

Y P,\ y1+PL y,.+P*Y

where ~ ~ e
: : Yr= (y21y37 ayn—l) 7 fr;X o -: : i S
by the dot - is denoted the multrphcatxon of vector by scaIar and by a.sterxsk * the multr—‘ ,
phcatron of two vectors by the correspondmg elements o : ¥

. R ] - (’ : e p,.(:tz)yz ‘ e
. S PxYr= : |-
‘ Pr(zn—l)yn;l)i SR
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The process of the estlmatlon the degree of polynonual by DPT consrsts of two parts.

L Computatlon of DPT’
The algorlthm of computation of DPT.is the following:

1. we determme the initial polynomlal functlon fr = Gro + Gl + ... + G of
“ degree k on, the base of _points [:c,,y,] by the least square method;

2 'wnh the two basxc points [A, fk(A)] and [L, fk(L)] we compute by’ (3) the ﬁrst DPT
of pomts [I.,y.] whxch we denote as [dk:c,,dky,]

3. we determlne the polynomlal function fk 2= Gpog0 + Qoo ¥ + ... F Gplgppxt?
of degree k — 2 by (21);

4. th.h the basic points [), fk g(A)] and [L, fi_ 2(L)] we compute I)y 3) the second
- DPT of points [dk:c.,dky,], which we denote [d2%2;, d°y);

5 ifk—4 > 1, then the steps 3, 4 may be continued;
6. the whole process 1-5 may be repeated by hxghel degrce k.
The sample '
O = ) A e ), [ 4yl

s got from {[z;,4:]};15 by p consecutive DPT ‘where k is the deglee of the initial tested
polynomlal R ; .

“The tab.9 shows the scheme of the computation of (Izd - the DPT’s of initial sample.

Tab.9 The cembutatloh scheme of DPT’s.

" [ Degree of polynomlal ” 3 ] 4 l 5 [ 6 |78 -]

ST

S T dg 1. dg dz" dg"
Last non zero DPT || d | d? d2“ d2" d?f‘ d3 ]

-Zero DPT. = [ d%* | 43 d3" .d3" d3* | die

Ak

#

Remark' If A'and L are too near :c,.,.,. and Zmez then the DPT of observatlons from the
left and right hand side of the interval [Fmin, Tmaz] might be.very far away from the
axe z. The experiment shows that the distance 34-8% from i, and Tmaz S€ems to be
appropnate We carrled out the computa.tlon with A = =21 and L = 169
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Fig.13 Residuum by polynomial of degree 5 o

" IL Hypotheses testing and graphical analysis. o

Fig.1-13 show the graphical results of DPT analysis. The plots of zero DPT and residuum
are sxmxlar, see Fig.3-4, 7-8, 12-13. The Fig.2, 6, 11 are the.most interesting. We see from

Fig.2 that the polynomlal of degree 3 is insufficient. The plots of the lastnon zero DPT, .

73, f2,in Fig.6, 11 reveal no patterns, so the approprlate degree of the polynomlal model
by the graphical analysis may be 4 or 5.

The DPT analysis enables to use in addition to the visual criterion statistical criteria too. A

We can test single hypotheses, that f7 and f2° form a parabola and a straight line respec-

N
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tively. The results of these statistical tests do not contradict the graphical ones. Mention
must be made that the.standard.regression critéria give degree’5’ and the penalxzatloni
criterion degree 6. LA :

The tab 10 sho“s the hypotheses for the last non zero DPT 5.

‘Tab.10 Hypotheses for the last. non zero DPI‘ s.

[ Degree of polynomial | 3 | 4- [ 5] 6 J7 I 'S ) | I '
- Last-non.zero DPT || dy | dy 0 = |d2? |- d2% R S S
Hypotheses = - || line | parabola | line | parabola [ line |-parabola |-+

7 Conclusions
This work is an.outcome, of study on how the discrete projective imusfoiination'éaii\be’f

used in estimating the degree of polynomial in regression models Tho plopose(l approach
is lllustlated on a real set of data

The spec:al structure of the DPT of polynomials.allowed us to construct a reeursive ma-
11‘1';1' aI_qori[h.m forJ.he DPT,of estimate(l 1'egressionVpolynomial. ;

As we pointed out, the main problem of the new method is llw rlght chmce of the I)aslc
points for DPT. In this:paper.we-chose the haslc points.on’ 111(' estimated.regression Clu\es,“',

and their DPT’s.

‘6f the regréssion

[T S AL SN

The-main: features of DPF analv51s m the cstnnatmg of tl\(’ (legu"
polynomial are: FEIRER Pl A w i

o the use of DPT leads lo both glaplncal a.nd statlstlcal (nlr‘na

o the DPT’s are associated with the stages of passage flom regression’ pol\uomlal to
the residuum; .

o the simplest.statistical criterion is based on tcstmg of prime hypothesis that the last
nonzero DPT represents a line or parabola, il the real d(’gwo rof pol\ nomial is o(ld'
or cven respectively;

e the computation of DPT of polynomial is simp‘lc'an(l has a form of matrix (’(]liat.iollz

o unlike the numerlca] dlﬂ'exenhal ion the DPT is not. a loca\ opé 1almn and due to the
Dbasic points X and I the influence of the distance bet \\v( i (]10 observation on the
* evaluation of DPT of sample may be eliminated. : :

The generallzatlon of tlle new approach to lhe muh1dnn(*ns|oual case i un(lvr investiga-
tion. o

There are three filess DPT.m, ‘DPTexmpl.mws and: DPTexmp2.mws.on the JINR
CV server. MapleV Released (Windows) programs DI” l(‘\mpl mws, DPTexmp2anws
show the usc of DPT.m package of Maple ])lOC( ‘dures, that carry out.the above presented
methods and comnputations. ~“These files can be dowloaded by FTP from JINR server™
cv.jinr.ru as anonymous from directory /pub/PC/maple/dpt

17
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