


‘1 Introduction

"The problem of adequate r'rié.t‘heiné.'t’i'ca.l‘dééé:r‘iptiﬂoii of hydrodynamic .
turbulence is one of the oldest but not yet solved problems in physics.
The transition from laminar fluid :flow. to highly [irregular chaotic
regime was first discussed yet by Leonardo da Vinci. Later, when the
Navier-Stokes equation (NSE) - ' T - IR
h 9w +v-Vv=-Vp+ vAv, V-v=0,- R ¢
which describes an incompressible fluid flow was written down, it was
believed that (1) itself may contain -all turbulence. It ‘seems’ quite

" patural in the light of modern developments in dynamical chaos that
even systems with a few degrees of freedom ‘sometimes show unpre-
dictable chaotic behavior. o0

" The turbulence problem is much more complicated. The velocity -
field v(x,t) has 3.x 3D, continuum degrees of freedom — therefor
we ‘have a field theory: problem. The ‘dynamical .object, the ,_vel'cf),cifty ,'
field v(x, t) itself, is a square-integrable functionudef‘ipgd»‘()n' R3xIR!
.+ The crucial:step, in. turbulence- theory was done by A. N:. Kdl} :

‘mogorov in a number of short papersw‘r[K§141b,(Kol41c, Kol41a], known
as the K41 theory. It was argued that the turbulence, as a chaotic phe-

nomenot, should be described in terms of ;xj‘andpm;fuhcﬁions_\ v(x,,:).

(The ideas.of statistical description of turbulence have been already

discussed by Taylor|[Tay35].) It was suggested to. kcon{;i‘denihe{ turbu-
lence as a multi-scale ﬁhenqmenon, formed of velocity fluctuations, of

all possible scales.‘The,typical‘ size L of dominating fluctuations of

a average amplitude U  is related to the Reynolds hnmbﬁerng,‘_;:;.,%, '

which determines the transition from laminar to turbulent flow. Fol-
lowing [Fri95] we present the K41 hypothesis in the form 5. -~ i

H1 In the limit Re =5 oo, all possible symmetries of the NSE, usual-
Yy broken by the mechanisms reducing the turbulent flow, are
~‘restored'in a statistical sense'at small scales*ard ‘away from
~ boundaries: - B T It AL T 1R ST N
H2 Under the same assumptions as in H1, the turbulent flow is self-
similar at small scales, i.e. o AT
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where v(r, M) = v(r + M) — v(r). (The equallty-rn-law means |

the corncrdence of all statrstrcal momenta)

H3 Under the same assumptrons as in H1 and H2, the turbulent
flow has a ﬁnlte non-vanlshmg rate € of dlssrpatron of energy
per umt of mass. - e -

Usrng these three - assumptrons Kolmogorov has der1ved the two-
thirds law . =

((50(1))2) = 062/312/3 e E 3)
“the basrc emprrrcal law of fully developed turbulence.

The scaling behavior (3). of the velocity field v means that we
have to deal with functrons of typical behavior

~—

G T ET ;‘ ,(4)

.w1th h < 1, i.e. with nan—dzﬁerentzable functzans wrth nontrivial .

Holder exponent h=1/3, if the H3 hypothesis is stnctly valid.. The
- Holder condition' [u(r + l) ~ v(7)] '< I* is not very rare in physical
problems: 1t can be found in condensed matter physics, quantum field
theory etc. — it becomes very srgmﬁcant only since the'resolutron ()
itself becomes a phys1cal parameter, ‘and thatis ' why we ought to
consider some objects of the form v(:c L ), which are not yet defined.

This problem is actively drscussed amongst the turbulence communi- -

ty, but up to the author’s knowledge it is beyond functional analysis
- research, except for the problems drrectly related to wavelet analysrs
[H0194] e , 5 : :
n the present paper we mvestrgate the problem of resolutron—
‘ dependent functions.’ The research was ‘highly inspired by the fact
that there are at least two approaches to resolution-dependent - 6b-
jects. The first approach ‘based on the decomposition with respect to
- 'the group of affine transformations, is known as wavelet analysrs The
-second: one was exported from quantum ﬁeld theory to turbulence
theory, and is based on the consrderatlon of the Founer transforms
of functions cut at some large momentum k= Acutoff

~An attempt to consider the problem as a whole and _]om these
two approaches is presented below. ey
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2 Problem

Self-s1m11anty 1s a synonym of scale-lnvarrance To be scale invariant®
means to- have same propertres at drfferent scales. Classical fractals -
are scale-invariant by constructron The Browman motion is self-
similar: if we look ‘at:the trajectory of a Browman particle at dif-
ferent resolutions of a mrcroscope we, w1ll observe ‘more or less the

-sameplcture SR e g L R T Sk T

.As physical systems are consrdered the word self—srmllanty is
more frequently'attributed to thelr dynamrcs than geometry. :

- The self-similarity of hydrodynamic velocity field ﬂuctuatlons
((60(1))?). ~ 1213 is attributed to the behavior of the turbulent velocity .
field. measured rat . drfferent spatral scales‘ For ‘the; hydrodynamical -
velocity: ﬁeld.trt" is: physrcally ‘clear. that the measurement atiscale
lo necessarily. 1mplres averaging' of: molecularcvelocrtles over: certam
space domain of: typical size ly. Thrs procedure can be genera117ed to’

“an: averagmg of a functron up to scale: l” [DG96] Sy v

AT PR

2. The homogenelty of the measure du(y) = dD

Physically, it is qurte clear that two dlfferent ﬁelds ¢,(x) and ¢y (x)
live in different functlona.l spaces if | # I'. It is. meaningless, say, to
subtract therr values Therefore the veloc1ty field of hydrodynamlc
turbulence 1s somethrng more than .a random vector ﬁeld deﬁned on
RDXR ..: : SR :

To charactenze the turbulent velocrty at a certam pomt x we
ought to know: the collection of velocity values {#u(x } at a set of ©
scales labeled by l The set of scales may be countable g T

e =l ko, Ko, Kl

say, =1 /2 for perrod—doublmg decomposrtron or contmuous o -
~To characterize this set it was proposed in. [DG96] to use'a col- ~
lectron of unit ﬁelds at dlfferent scales -a “reference ﬁeld” {Rz(z)}



The principal question arising here is how to describe the interaction

- of the fluctuations of different scales. Practically, th1s problem is of-
ten tackled by decomposition of “real” (out-ofxscale) ﬁeld mto slow
: (large-scale) and fast (small—scale) components S

¢ V+v where Mv—O

(M means the averaglng, or mathematlcal expectatlon here and af-.k

ter.) In this approach the slow component- V- governs the equation
for v and the even- order moments of y,contribute to the equatlon for
Vo oo : ‘

" On the other hand as we know from both the Kolmogorov theo—
-ry-and renormallzatlon group (RG) approach ‘there are no absolute

‘scales:in. hydrodynamlcs except for: dlsSIpatlve scale” and: external -
scale’ (the size of the system). So, at least:at this middle ~the Kol- .
- mogorov range — the equations should bé scale-covariant. The struc-.-

~ ture which reveals itself here looks like a fiber bundle over RP, with
’ leaves labeled by scale. The fluctuations.of different scales may be
- dependent or independent’ of . each other for. varlous physical situ-
-ations; but at least some, s1m11ar1ty should be present.

To construct a basic system on this bundle let us: follow the 1deas«,

of maulti- resolutzon analyszs (MR.A) [Ma186] Let us. construct a sys-
- tem of functional subspaces {V; :{ Vi C )}, where H is a space of
vphysmal observables Let the. system {V} be such that . o

’J c%cwc%

“:iz.la'n V=0, UV 7{

»3.'Subspaces V; and Vj;; are 51m11ar °f (x) EV; e f (kx) € VJ b
if {¢s( x)}zet forms bams in VJ then {¢, k.’L‘)}zeI forms the ba315 :

B 71nV

~If the sequence {V} is bounded from above, the max1mal subspace IS’ :

called the highest resolution space. Let it be Vo. Then any function
from V} can be represented as a linear span of Vo basic vectors. There-

fore; the basis ¢ of the hlghest resolutlon space prov1des a basrs for
the whole bundle. ' |

It seems attractive to generahze MR.A a.xloms to the case of con-
t1nuous set of scales. Since the chain of subspaces described above.

i

\|

implies sequentxal coarse gralmng of the ﬁnest resolutlon ﬁeld some
details are being: lost in course of this- process The lost detalls can
be stored 1nto the set of orthogonal complements _

Ve=VieW:, V= %e%,fQJ d@)

So, U=k Wr, W NW; =0if j # k and the system {W:} can be
cons1dered instead of {V;}. The former has the structure of o-algebra,
and thus it is suitable integration.

The fact that the fields ¢; and ¢y live on dxfferent leaves suggests
that their Fourier 1mages should be taken separately at their leaves: -

$i(z) = / exp( zk(’)x(’)) ¢l( (’))du(')(k(’)) \, (7)» v t

or some other care should be taken about it in order not to m1x
fluctuations with the same wave vectors but contnbutlng to different
scales. The choice of the left-lnvanant measure duL (k(’)) is restricted -
by .the. fact “that velocity components measured at a certam scale ‘
are mamly concentrated close to this scale. So, ‘the’ measure can be
expressed as du(l)(k) =" de([l o akl) where W vanlshes at =
-+00, ais a constant. | '

‘The decomposition’ (7) turns out to be a kmd of Gabor transfor—
mation [Gab46]. The measure  du can be exphc1t1y scale—dependent
since the probability spaces. (€4, Uy, P;) depend on scale.-. s

At thlS point we arrive to the difference from standard wavelet
approach, ‘where the probablhty space is completely determmed at’
finest resolution scale: ‘However, if we accept the hypothesrs that fluc-
‘tuations of different sizes can be statlstlcally mdependent we have
to deﬁne the probablhty spaces separately ’

3 Wavelet reallzatlon

We start our constructlon of mult1 scale descnptron with the srmphs— ,
tic one—dlmensmnal case, whrch is however of practlcal lmportance
since only one ¢omponent’ of veloclty field'is often measured. - -
* Any square—mtegrable function f(t) € L?(R) can be represented'
as a decomposition’ w1th respect to the representatlons ‘of the affine
group | , R
R t’;; at-ﬁb', AT S (8) -
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SRV
t)—C¢ /f ( )W¢(ab)
representatlon of the affine group in a Hilbert space [GJP85]

= c¢ [ @) Wi,
: ,which.kholds if ~there ,exrst_s such ¥ € H ’that‘ ‘

u¢u2/ ""’ 'U 9)¢>12dm(g) <oo

_ holds dur(9) denotes left mvarrant measure on the group G’ The
scalar products )

W¢ (g)f (f, (9)¢)

L are known as wavelet coefﬁc1ents .
| For the case of affine transformatlon group (8) the normalrzatron
' constant C¢ can be easily eva.luated m the Fourier space:

C—/_o;,l k)ldk 2/ k)ldk )

where ¢(t)

= exp(zkt)z,b(k)dk ‘For the afﬁne group (8)
e D(e) __7¢( ); dira,) = d"d”- )
) vThe“correspondmg wavelet coefﬁcients are o R
@)= ﬂ:( Srew ay

;‘f‘or practical analytical calculations it is often more efﬁcrent to per-
torm wavelet decompos1tron and reconstruction i n Fourrer representa—
ion smce mult1plrcatlon should be done then 1nstead of convolutron

Wowd)f = o [ Vaep ) Tan @i ,19),

- aTlllai decomposition (12) and its inverse (9) are known as wavelet
n: ysrs.} (See, e.g., [Dau88] for general review.) The scalar product

6

9

whrch is just another form of the partltron of unity w1th respect to a

‘the wavelet coefﬁclents _'

, resolutlon parameter a

- (12) is readrly seen to be the. prOJectron of the: orlgmal no—sca.le”?
’ functlon f to the subspace W, of the MRA system (6) .° ‘

If f is a random function’ deﬁned ona probablllty space. (Q .A P)

B e

are also random the stochastlc 1ntegratron is 1mplred As is known
from the theory of stochastic’ processes ‘any random functlon E(tw), te
IR1 w E Q can be represented 1n a spectral form R

o fs@, -y

where d)(t )\) is a' square-lntegrable functlon n(d)\) isia stochast1Cf
measure - .

Mn(dX) = 0, Mn(d)* = F(d)).
A partlcular form of- the spectral representatlon (15) is. the Fourlerf
representatlon ' :

(1) = / exp z,\t)n(d,\)

_In the multr-scale case we can 1ntroduce a collectlon ‘of random pro—A

cesses, each of which belongs to 1ts own leaf of \/IR.A labeled by

(0 = / balt A)na dA)

The pecullarlty of the stochastrc case 1s that 1n contrast to the de-
composition of a function with respect to the given basic wavelet 1(t), -

" the function ¢,(t, A), which. depends on both the properties of ran- -

dom process itself and filtering propertres of measurlng equrpment is .

" not known exactly Therefore, we have to construct a decomposmon V

which has a well-defined llmrt to deterrmmstrc case and can be tack-
led w1thout the exact spec1ﬁcat10n of the forrn of the basic wavelet:

¥ » — ‘
A stralghtforward way to do 1t is to factonze the scalmg part of
the left 1nvar1ant ‘measure from “the purely stochastlc part”

€)= [
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-or. in thespectral form:' :

'Muz(Aa)na(dA)— o as

where 7a(d)) can be consrdered as generallzed wavelet coeﬁiclents
the existence of wh1ch does not requlre the existence of “no—scale”

prototype. The left-invariant measure du(a) = da/(2ma) on thé mul-

tiplicative group z’ = az 1nstead of (8) is used, since translations.are
,already 1ncorporated into _the exponent 27r multlpher is 1ntroduced
for the convenience of Fourier transform. -

The representation (16) was ‘constructed only to meet the non-
stochastic limit and is not unique. For mstance we can redefine the
spectral measure to 1ncorporate both the propertles of the sxgnal and
'those of the measuring apparatus:.

€)= / AT
The speclfic energy-per—scale density can be easlly evaluated then '

JE@)da = MJE®EDE
= MJexp(t(M — A2))7a; (d1)70, (d)\z)d#(al)dﬂ(az)dt
= M [ 10, (dA)Ta, (d’\)d/-"(al)d/-‘(a2) ‘
h== fF(al, ag; dA)dp(ay)dp(az) = (17)

The equatlon (17) is a stochastic counterpart of a well-known equa-

~tion for wavelet energy per scale

E(a) c— / 'W(“’b)léqt}

IW(a k)l -

Slmllar spectral charactenstlcs have been alrea.dy used for the anal—f

ys1s of turbulent data [Ast96]

“Ifrandom functions are con51dered the equatlon ( 18) can be rewnt—
*ten in the RG hke form : R ‘
aE B PR * . . i N
» —— M / , 2dk (19
T M W (a, )] - (19
where W (a, k) = 7
signal f perceived by the filter 1, i.e. as generalized wavelet coeffi-

cients, not necessarily having “no-scale” prototypes, cf.Eq. (16).

o(ak)f (k) can be understood as the original noisy

e

The logarithmic denvatlve at the l h.s..of (19) is exactly that of -
renormallzatlon group equatlon However the r. h s of this equatlon e
was obtamed w1thout any cutoff assumptlons it was formally derived’
from the decomposxtlon of the 1n1t1al (“mﬁmte resolutlon”) s1gnal"
filtered by the window function 3. :

. Physically, the existence of the infinite resolutlon 11m1t is often
meamngless For instance; the behavxor of the electromagnetlc cou-
plmg constant at the Planck scale is just a nonsense. The same hap-
pens in hydrodynamics when the scale parameter comes close to the
mean free path. However, there i is a principal difference between the
hydrodynamic turbulence description and-the quantumfield theory.
The scale | (resolutlon) becomes a physical measurable: parameter
in hydrodynamics, and thus W(a, k) can'be considered as Fourier
components of the velocity field fluctuations of different typical sizes.

- The study of the behavior of W (a, k) can provide a more consistent

picture. of what happens at dlﬂ'erent :scales than standard Founer E
decomposmon . e

4 H1gh frequency cutoff

Being utmost scale-mvanant at’ moderate scales ‘the "behavior of
turbulent velocity field changes when approachlng the smallest and -
largest scales, between ‘which the hydrodynarmcal descnptlon is valid.
The former is the Kolmogorov dissipative scale (1), the latter is the
size of the system. The size of the system can often be set to lnﬁm—' :

ty - with no harm to physms -whilst the d1ssrpat1ve scale is of physical.. ..

importance, since the energy’ dlssmatlon rate €is very. constant wh1ch

determines the turbulence behavior in'inertial range. SR
- That is why in RG, as well as in spectral calculatlons, the cutoﬂ'—

dependent veloc1ty ﬁeld is often conSIdered :

vF( ) (271-)'1 /lkl exp(zk:v)v(k)dk (20)

The cumulative energy of all harmonlcs wrth wave vectors less than or

equal to the cutoff value F is one of the main spectral charactenstlcs

of developed turbulence

£(F) - —M / vF(:v)vF(z)dd:v - ; M H<F

( ) ( )(2 )d (21);" o



| Slmlla.rly, e can :QOntsider thecumulatxve enef gy of allve loc1tyﬂuc- :
tuations “with typical size greater ,t.l;‘a? or gqua} to a lef?%,A'f«;For;
sixiipiicity let us canside_t a : oné,-comqux;entz;} vje{gfci’,ty field tgkgg as a,
function of time - IR S adb N :‘,
- E(A) = M facav(®)u(t)dt = é;Mffim;le(as If)vl?ff—,,z_—. (22)
o G Ry MU kPE, T

B a0 /1) | R < M [pR)Pes
e 2 [7 B0 =0y, and =M O
is the total energy. of all velocity ﬂuctuations.~ e

. 'For non-VanishingAf : s

T 2( v
w2y

e E(A) = F(A)E,whereF(A)'“ m ‘ (3) :

F;br"‘.a‘bbettef.defiriite.héssf,” let us ‘célc‘ulaté the ﬁlter”if;gyifunqtion
i F( A) for a particular family of vanishi_ng momenta wavelets

Pn(k) = Var(=1h)" exp(=K*/2),

a(e) = (1" exp(—2/2),

B ¢, The nor_maliz‘ation:constqnt for.this family is -
L G=2 [T Bl Far =0T (n)
.- The :deri‘vativ_e of cumulative energy with respect “tqt‘h_ve lqgarlthmlc
_measure da/a is ,' T T T o
o - BE’ F.(E) - 0A% ", _
OF _ poh(B) " fa(A?)
: 0lnA OlnA dln A7 .
where fa(z) = 2"~1e~/T'(n). So we arrive at the RG-like equation

~

0B _ _2A7ep(A)p g

_ For sufficiently small A the exponential term of the latter equation is

to A2,

"~ close to unity, and thus the béhavi;or’is'apprq);i;hately prqport‘iqnalA~

SRR 10

often used for studying hydrodynamical velocity,field [MBAQ_L MBAQS].

Conclusion . -

In the present paper we give a mathematical framework for the anal-

ysis of functions which depend on scale. Usually, the scale-dependent

- functions express the value of a certain physical quantity measured

at ‘a point.z by averaging over.a-box of size I centered at z. Such
functions are often used in hydr\qdyn@mics," geophysics, signal anal-
ysis. One of the most known' ways of treating resolution-dependent
functions is to identify the size of the box (I) with the inverse wave
number of the Fourier transform. k7' = I The higher wave numbers
are then cut off. Sometimes this procedure leads to confusion (many
problems of field theory approach to hydrodynamic turbulence orig-
inate from this confusion). U

In our approach, using - the ideas of wavelet analysis, we_keep

wave vectors (k) and scales (a) separately. kWe;_de't‘iyé:a, renormal-
ization group like.equations which’ can be used to study the energy
distribution between different scales. The renormalization group like

equa‘tion‘s“of,theﬁformr», S e R s, R
| " 8E —s0E i )
~@Ing VT .

Cf.Eqgs.(23,26), obtained by means of wavelet decomposition of the

- stochastic process, provide a possibility. to study,yythe energetic bud-.

~ get. of experimentally measured stochastic signals with an accuracy, .
higher than. that of Fourier. methods. The reason: is rather obvious.
If something is known: about the smoothing function ¢ of the mea- .
suring equipment, then wavelet decomposition -can:provide a: more :
detailed estimation of energy-per-scale budget, as compared to just

- cutting the high frequencies; and vice versa the experimentally mea-

sured dependence of the form" (27) may give additional information
not only-on the signal in question, but also on the ‘smoothing ,f_un'c'-‘:?
tion of the equipment. The results can be applied in"signal'analysis;,
in the investigation of ‘turbulence velocity experimental data ‘and -
in further theoretical research. '~ ¢+~ oo
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A Self—srmlla ty in a bounded domaln
of scales ‘and’ Scale-relat1v1ty

In appendix, we  would like to mentlon some results of other authors
’ whlch are not used in -present work, but are closely relatedto the
sub Ject 1n questlon and may be used in further 1nvest1gatlons of th1s
subject

; A ‘direct approach to-scale-dependent functlons wh1ch was pro-
posed by Nottale [Not93] is based on the assumption that physics
is scale-dependent ‘but scale covanant The former means to give up
ov(z,l)
not necessarily ex1st1ng, the latter i imposes generalized scale-covaarl-
ant equatlon :
' dv(z, )

0 ﬂ(( D), (28)

" which states that the scale behav1or of a scale—dependent functlon is

the dlﬂerentlablhty and consider functions v(z, l) with hna

completely determlned by the value of this function at a given scale:
~ The benefit of the scale re]at1v1ty[Not93] approach is a possibility

to- account for the processes” which adrmt self—s1m11ar1ty only at a
hrmted domaln of scales C '

(Al) ,\" (l),n<< l <A

For a homogeneous scale dependent functlon (mono—fractal) =
vo(/\ /1)%,.where ¢ is independent of scale [. To get the additive rather
than multlphcatlve form:for two sequential scale transformatlons it

is convenient to express them in the logarithmic form :

lngg:—) =In %—{—V&(l), SR (29)

- where §(!') = 6(1) =6,V =1In(l/!'). In real hydrodynamic turbulence
the multi-fractal behavior is observed::d = §(!). In the inertial range

12-

1 < 1 < A the exponent § is practically a constant but ’c}o"s;ef to the B

hmltmg scales 7 and A the dependence of scale becomes s1gn1ﬁcant »

"The logarlthmlc form (29) suggests a dlrect generahzatlon to the‘f
multi-fractal case § = 6 (1), which is hke the generahzatlon of Galilean
transform to Lorentz transform: '

X = TW)X=VT],) 30
T = T(V)IA )X+B(V>T1 30

where T = In(l/ly), X (T) = Tn M( u,/uo), see [DG96] for details.”
The compos1t10n of two scale transformations of this type behaves
like a composition of two Lorentz boosts: when . approachlng the un-
passable limit A, instead of “Gahlean” scale. transform (29), the scale-
dependent transform w1th ‘

80 = (1 = any 1n2(A/n))‘1’2 o ‘(31)"'
The transformatlon group (30) can be used to construct ‘a wavelet

decomposition at ‘a limited domain of scales. Thls, however is the
subject of the. next paper (m preparatlon)

13
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