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L .Introduction 
.. .. 

The problem of adequate riiathemaiical descrlptioil of hydrodynamic 
turbulence is one of the oldest but not yet solved 'problelflS in physics . 
The transition from l~mina.'r fluid :_flo~. to highly irregular _chaotic 
regime was first discussed yet by Leonardo da Vinci. Later, when the 

Navier-Stokes equation (NSE) 

at~+ v -_vv·- -Vp + vb..v, V · v = o, · (1) 

which describes an incompressible fluid flow was written down, it was 
believed that (1) itselfmay 'contain all turbulence. It ~eenisquite' 
natural in the light of modern developments in dynamicafchaos that 
even systenis with a feW'·'degrees.of freedom sometimes showunpre-
dictable chaotic beha~or. · · . · · ' 

The turbulence problem is much more complicated. The velocity 
field v(x, t) ·has , 3 x 3D. ·contin,uum degrees of freedom - therefor 
we.have.a field-theory_..proble!Il. The dyn~icalobject, the velocity 
field v(x, t) itself, is a.squar~inte~able function.defined on JR

3 :;_IR~ 
space.· .. '·. . . · ;· ... ., . , .. :. , 

The crucial:·step_.in. turbul~n~~ theory was done by A. N; Kol~ 
mogorov in a number of short papers (Kol41b, Kol41c, Kol41a], known 
as the .. K4Uheory. It was argued:that thetu~b~lence, as a chaoticph~ · 
nomenon,·should be described in te~s ofral1d~mful1c~ions ~(x, t,;). 
(The ideas of statistic~ description of .turbulence have been. already 
discussed by Taylm:;[Tay35].) It was suggested to consider the. turbu­
lence as a multi-scale phenomenon, formed ofvelocity fluctuations.of 
all possible scales .. The typical size .L of dominating fluctuations of 
average amplitude U is related to the Rey!lolds Il.umb:er Re.. :i: u;, · 
which determines the transition from laminartoturbulent flow .. Fol­
lowing:[Fri95] we present the K41 hypothesis in the f~rm ~,. . · . . 

Hl In the lhnitRe ~ oo; all possible syrometries ofthe NSE, usual-
ly broken by the:niechanisms reducing the turhul{mt flow, are 
restored' in a statisticat serise · at small ·scales~ and · away from 
boundaries: · · ·. 

H2 Under the same assumptions as in H1, the turbulent flow is self-
shruiar at small scales, i.e. · . . , · 

5v(r, ,\l) 1~ _xhov(r, l) 

ilt\Citi·:.:'ki.k&' & .. ~l'JT ' 
!U~JfiW.l BC.~.,e.ttt:~id .l 
SnSIIt.!OT~KA 1 

·~ .. •. ._...--., 

(2) 



where v(r, .Al) = v(r + .Al) - v(r). (The equality-in-law means 
the coincidence of all statistical monienta:) 

H3 _Under th~ same assumptions as in Hl and H2, the turbulent 
flow has a finite non-vanishing rate e of dissipation of energy 

· per unit of mass. · 

Using th~se three assumptions Kolmogorov has derived the two-: 
thirds law _ 

((av(l))2} = Ce2/3z2/3, (3) 

-the basic empirical law Of fully developed turbulence. 
. The scaling behavior (3) of the velocity field v means that we 

have to deal with functions of typical behavior 

lv(r+ l)- v(r)l fV zh. 
' ' 

(4) 

with h ~- 1, i.e. with non-differentiable functions; with nontrivial. 
HOlder expone:O:t h = 1/3,if the H3 hypothesis is strictly valid. The 
HOlder condition' jv(r + l) - v(r)l ~ Zh is not very rare in physical 
problems: it can be found in condensed matter physics, quantum field 
theory etc:- it becomes very significant only since the-resolution (l) 
itself .becomes a physical parameter, and t4at is why we ought to 
consider some objects of the form v(x, z, ·),which are not yet defined. 
This probleni is actively discussed artiongi;t the turbulence communi­
ty, but up to the author's knowledge it is beyond functional analysis 
research, except for the problems directly. related to wavelet analysis 
[Hol94]. · 

In the present paper we i~vestigate the probl~m of resolution­
dependent functions.' The· research was .highly inspired by the fact 
that there are at least two approaches to resolution.:.dependent ob­
jects. The first approach, 'based on the decomposition with respect to 
the group of affine transformations, is known as wavelet analysis. The 
second one was exported from qu~tum field theory to turbulence 
theory, and is based on the consideration of the Fourier. transforms 
of functions cut at some large momentum k =.Acut~ff· 

An attempt to consider the problem as a whole and join these 
two approaches is presented below. 

~f'.·~--'·' _.. _._. ·~· .~ -·--· __ , -· ..... 
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2, . Broblem, 
'.;.· 

. • .,_ .. !_:··· '·. ',..:,·~·"·~- ._ ! :::·:.- " .· . ~._· '; -~-~ ... ~--- •... · ... 

Self..:similarity is a syriony!n of scale-invariance<To be scale-Invariant' 
~eans to h~ve saille prop~rties. at.diffei'enis~rues-. Classical f~actals 
are scale-invariant by con~truction. The Brownian motion is self~· 
similar: if we look 'at: the trajectdry of a Brownian particle at dif­
ferent resolutions. of a micros.<;ope we. will .observe more or ·less . the . 
·samepieture: •:,_.·:' :-., ___ .,·_ .. :· -:··,:.:. .. r. " 

As physical systems .are considered, -'the word self-similarity is · 
• ' • • •• 'o • • • • •, ~ -

more frequently' attributed to their dynamics than geometry. ' 
-The self-similarity of hydrodyn8Jll!c veloci~y fieJd fluctuations 

( ( ~v(l)}7) rv)213 is:attributed h~ th~ beh~vlor of theturbulerit v~locity . 
field measured :at.different:spatiai s~ales; For ·the. hydrodynainical 
veiocity-;field.,~tji~ physically_ deaf, that th.~ ,me·3:~~r~rne~tl at~ s~~ie· 
lo UfCess~rily implje_s averaging <?fmole¢u~ar~ yelocities over certain 
sp~~e doniail}. of.typical size lo: l'hif! prQcedun~_can be ge~eralizedto 
"an ayeiaging qfafunctjon'up tcfscale_l".~[PG96] • .. : ·- ,. ·' 

' -.. - c/Jt(~)· .=: r-n· F.., ¢(x ~ ;)d0 y. , .,'· ·. ·, ,·::(5) .. 
}IYI<l · " ~ . 

1 ,. • ~ ~ I • ' ~ ; < ••• ·'· • ' " .' ! :· '' 

There are at·least two'conjectureshere:. ·. -; ·: ;;._~:·; .-,. 
I \ t ',t • • s 'f : • I J ' ' l < ,.: _. I • - -· 

L ,The existence of a "true" (with no scale) field ¢1(x) : l -t 0. · · · · 
' : . . . . ' . . . '-: " : . . ., . :_; . 

2. The homogerieity of the ~'easure dJ..L(Y) -~ d0 y.'·:· i. 

Physically, it is quite clear that two different fields-l/>1(x) ~nd· ¢l'(x). 
live in different functional spaces if l /= l'. It is meaningh~ss, say, to 
subtract. their val_ues. Tl!erefore~ tne v:elocity:,_field of hydrodynamic' 
turbulence is something more than.a random vector field defined on 
RDxk. :. . .. .. - ··. - · . ·--. · 

To char~~terize th-e tur6ulent v~lodty at a cert~i~ 'poi~t ~ we 
ought to kl!OW the collection of veloCity values { ¢1(x)} at a set of ·" 
scales labeled by L.The set of scales may be countable< -: : · ~" ,; 

·- · '·--~, • .: .... 2 ·a· 
,; :l_ = 10 , kl0 , k l0 , k lo, ... ? 

.; 

·-. 

say, k = 1/2 for period-doubling 'decom~osition, or co'riti~uous.- __ · ~ ' 
'To characterize thisset it wa:S proposed in [0(;96] to use· a col­

lection of unit fieldsat different scales_: a'"referen~e"field" fR.z(~)}·,;-

3 



The principal question arising here is how t~ describe the inter~ction 
of the fluctuations of different scales. Practically, this problem is of­
te'n tackled by decomposition of'"real" (out~of .. scale) field into slow 

. (large-scale) and fast (small-scale) componen~s · 

r/J = V + v, where: Mv = 0. 

(M means the averaging, or mathematical expectation, here and af­
ter.) In this approach the slow component V governs the equation 
for v and the even-order moments ofv,-contribute to the equation for 

. .~ 

V; 
On the other hand, as we know from both the Kolmogorov theo­

ry.and renormalization group (RG) apprpach, there are no ab~ohife 
scales in hydrodynamics, except for dissipative scale and external 
scale (the size of the system). So, at leasLat this middle :... the Kol­
mogorov range - the equations should be scale-covariant. The struc­
ture which reveals itself here looks·Iike a·fiber bundle over RD, with 
leaves labeled by scale. The fluctuations of different scales may be 
dependent or independent of . each other for various physical situ­
ations; but at least some similarity should be present; 

To construct a basic system on this bundle let us follow the ideas , 
of multi-resolution analysis (MRA.) [MaJ86]. Let us.construct a sys­
tem offunctional subspaces {Vi·: Vi c 1£}, where 1i is a spac~ of 
physical observables. Let the system {Vi} be such .that 

1. ... cV2cVicVoc ... 

2. noolti =0, Uoolti = 1£. 

·3. Subspaces Vi and Vi+i are similar:J(x) E V; f+ f(kx) E, V;-r. 
if{ l/Ji(x)}iEiforms basis in Vj then { l/Ji(kx)}iEI forms the basis 
in V;-i: · 

.If the sequence {Vi} is bounded from above, the maximal subspace is 
called the highest resolution space. Let it be Vo. Then any function 
from Vi can be represented as a linear span ofVo ba5ic vectors. There... 
fore, the .basis l/Jo of the highest resolution space provides a basis for 
the whole bundle~ · · • · ' · 

It seems a.ttractive to generalize MRA axioms to the case of con­
tinuous set of scales. Since ihe chain of subspaces described above: ' 
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implies sequential coarse graining of the finest resolution field, some · · 
details are being lost in 'cou~se of this process. -The lost details can 
be stored into the set of orthogonal complements . 

,; 

Vo = v1 m w~, ·Vi -~ V2 m w2, ... : (6) 

So, 1i = L:k wk, wk n Wj = 0 if j =I= k, and the sy~tem {~} Call be 
considered instead of {Vi}. The forme~ has the structure of a-algebra; 
and thus it is suitable integration. · 

The fact that the fields lfot and l/Ji' live on different leaves suggests 
that their Fourier images should be taken separately at their leaves: · 

- ' > '• • 

lfot(x) =/ exp(-zk(l)~(l))¢1 (k<1>)d~~>(k<1>), (7) 

or some other care should be taken about it i~ order not to mix 
fluctuations with the same wave vectors but contributing to different 
scales. The choice of the left.:. invariant measure dp,~> (k(l>) is restricted 
by the fact that velocity components measured at a certain scale . 
are mainly concentrated close to this scale. So, the measure can be 
exp~essed as dp,~>(k) =·dkW(It"-~"-=- akl), where W vanishes' at x :--+ 
±oo, a is a constant.: . ' · · 

. The decomposition (7) turns out to be a kind of Gabor transfor-
mation [Gab46]. The measure dp, can be explicitly scale-dependent, 
since the probability spaceS (01, u, P1) depend ,on scale.- · 

·At this point we arrive to the difference from standard wavelet 
approach; where the probability space is· compl~tely determined at · 
finest resolution scale; However, if we accept the hypothesis that fluc­
tuations of different sizes can be statistically independent, we have 
to define_ the probability spaces separately. · . . · 

3· Wavelet realization 

We start our construd~~:ri of multi-scale desc~iption with the simplis-: 
tic on&-dimensional case;. which. is.· however. of praCtical· impoY:tance 
since only one· component of velocity field is often measured. 

: Any square-integrable-function f(t) E L2 (R) can be-represented 
as a decomposition with respect to the representations ;of the affine 

group 
t''= at+b, (8) 
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/(t) ~ c;'J;.>~>(: byw.(~,b)il:;b. . (9} 
- -

· which is just another form of the partition of unity with respect to a 
representation of the affine group in a Hilbert space [GJP85] 

i == c;/~ U*(g)jtjJ)~JLL(g}(tjJjU(g), 

which. ~olds if there exists such 1/J E 1;l that 

cw· ;,; ~~~~~~ ~ 1(7/J, IU(g)t/JWdJLL(g) '< oo · 

holds; dJLL(g) denotes left-invariant measure on the group G. The 
scalarproducts . - . 

Ww(g)J := (!, U(g)t/J)-

are k~own as w~velet coefficients. . . . 
. For the case of affine transformation group (8) the normalization 

const~t Cw can ~e easily evaluated in the Fourier space: . 

Cw ~ t)O l~(k)l dk = 2 {~ l~(k)ldk, 
Loo . k lo k, (10) 

where 1/J~t) _= 2~ J exp(z~t)~(k)dk; ·For the affine group (8) 

1 . (X- b). U(a, ?)1/J(x) := .Vat/J -a- ' dJLL(a, b) = dadb 
a2 .. (11) 

The corresponding wavelet coefficients are 

I 1 (t- b) Ww(a, b)= Vat/J --~ f(t)dt. {12) 

·For practical ana.Iytical calculations it is often more efficient. to per­
form wavelet decomposition and reconstruction in Fourier representa­
tion, since multiplicationshoula.be done then instead-of convolution: 

Ww(a, b)J = 2~ I vaexp(zkb)~(ak)](k)dk. {13)' 

The decomposition (12) and its inverse (9) are known as wavelet 
· analysis. (See1 e.g., [DauBS] for general review.) The scalar product 

·_./ 

6 

... 

f' 

... 
I \ 
\' 1 ·r 

(12) is readily seen to be the projection of the original "no-scale" . 
function f to the subspace Wa ofthe MRA system (6). · 

Iff is a raridomfmiction defined on a probability space.{!1, A, P), 
the wavelet coefficients · . · 

. ,,i - ' . . J -1 ·'(t~- b) . - ·. ·. . . 
Ww(a, b,'·) == ·Fa~.·-;-·· f(t, ·)dt, • (14); 

are also random; the 'stochastic integration is implied. As is .known 
from the the~~yof sto~hastic p~ocesses; any random function ~(t; w), t E 
Hl\ w E !1 can be represented in 8; spe~tral form . 

. {(t) := ft<t, ~)?(aA), . {15) 

where cp(t, A) is a: square-integrable function, 7J(dA) is a stochastic· 
measure 

M7](dA) =:= 0, MI7J(dAW ~ F(dA). 

A pai:ticul~r form of the spectral representation (15) is the-Fourier 
representation • · · 

_ . . ~(t) = jexp(zAt)7J(dM . .. - _ 

·_ In the mul ti-~cale ~ase 'we can introduce a collection of random pro­
cesses, each cif which belongs to.its qwi1. leaf'of MRA; labeled by 
resqlution par~meter a . . . 

.· ~aU)'~ J¢a(t, A)7Ja{dA). · 

The peculiarity of the stochastic case is that; in contrast to the de­
composition ofa function with respect to th~ given basi~ wavelet.tjJ(t), 
the function c/Ja(t, A), which depl:mds onboth the properties of ran­
dom process itself and filtering prop~rties ofmeasuring equipmimt, is 
not known exactly. Therefore, we have to construct a·decom,position 
which has a well-defi~ed limit to deterministic case and can be tack- . 
led without the exact s~ecificatio'n of the form of th~-b~ic ~avelet' :· 
1/J; ' . . . ' 

A. straightforward way to do itis to factorize the scaling part·of 
theleft-invariant measure from "the purely stochastic part": 

• . " ' ~. ' t • • • - ; -

~{t) = J· c/Ja(t,'A)r/a(ii~)da 
.- a-

7 



or in the spectral form 

~(t) ~ 21r~.pJ e•>.t{;(>.a)7Ja(d>.)~~., . (16) 

where 7Ja(d>.) can be considered as generalized wavelet coefficients, 
the/ existence of which doeS . not require the existence of "no-scale" 
prototype. The left-invariant measure dJL(a) = da/(2tra) on the mul­
tiplicative group x' = ax instead of (8) is used, since translations are 
alreiu:ly incorporated into' the exponent; 2tr multiplier is i-ntroduced 

. - .. • .. -.. f·. . . .' . 

for the convenience of Fourier transform. · 
The representation (16) was. constructed only to meet the non­

stochastic limit and is not unique. For instance, we can redefine the 
spectral measure to il:icorl>orate both the properties of the signal and 
those of the measuring apparatus: _ _ 

~(t) = J e•>.tila(d>.) ~a. 
The specific energy-per-scale density can be easily evaluated then: · 

I E(a)da = M'f ~(t)((t)dt 
= M I exp(zt(>.1 - >.2))7Ja1 (d>.t)iia2 (d>.2)dJL(at)dJL(a2)dt 
- . M I TJa 1 (d>.)iia2 (d>.)dJL(at)dJL(a2)' 
= J F(al! a2; d>.)dJL(at)dJL(a2) =E. 

(17) 
The equation (17) is a stochastic counterpart of a well-known equa­
tion for wavelet energy per'scale 

., ·E(a) =_c-1 j_IW(a,b)l2ab_ ~ _1_. J __ IW(a,kW dk. 
. . . .P_ a2 . . . 2trC.p 

(18) 

Similar spectral Characteristics' have been already used for the· anal.:. 
ysis ofturbulent dat·a [Ast96]. . ' 

; If random functions are considered the equation (18) can be rewrit-
·tenin the RG-Iike form · 

8E 1 /. A 2 .( ) 
aina = 21rC.p M IW(a, k)l dk, . 19 

where l-V(a, k) = 1/;(ak)i(k) can be underi.tood as the o~iginal noisy 
signal f perceived by the filter 1/J, i.e. as generalized wavelet coeffi­
cients, not necessarily having "no-scale" prototypes, cf..Eq. (16). 

8 

J 
j 

.(~ 
\I 

The logarithmic derivative. at. the I. h .. s. of (19) is exactly that of · 
ren9rmalization gro~p equation:However,.the r .. h;.~ of this equation 
was obtained without any cutoff a.'lsumptions, it was· formally derived 
from the decomp'osition of the initial (''infiniteresolution") sigiial' 
filtered by the window function.,P. · - . ' ·. .. · 

' Physically,· the eXistence of the iillnite resolution ·limit is often 
meaningless. For instance,· the behaVior of the electromaguetic COU-; 

piing constant at the Planck seal~ is just a nonsense. The same ha~ 
pens in hydrodynamics when the scale parameter comes close to the 
mean free path. However, there is a principal difference between the 
hydrodJ.Ilamic turbulence description and the quantum field theory. · 
The scale l (resolution) becomes a physical 'measurable parameter 
in hydrodynamics, and thus W(a, k) can be considered as Fourier 
compo'nents of the veloeity field fluctuations of different typical sizes . 

. The study of the behavior of W(a, k) can' provide a more consistent 
picture oLwhat happens. at, different, scales than standard Fourier 
deco~position:. . . . . . . · · · ·. . . . . 

4 High frequency cutoff 

Being utmost sca.Ie-invariant· at moderate scales, 'the behavior of 
turbulent veiocity field chang~ when approaching the smallest and . 
largest scales, betwe~which the hydrodynamical description is valid. 
The former is the Kol~ogorov dissipative scale (77), the hi~ter is the 
size of the system. The size of the. system can. often be set to. infini...,· 
ty with no harm tophysics;:whilst the dissipative scaleis ofphysical. 
importance; since the energy dissipation rate l-is very constant which 
determines the turbulence behavior in inertial range. · 

That is why in RG, as well as in spectral calculations, the cutoff­
dependent velocity field is often consi<fered: 

· v~(x) ~ (
2

1
)d I. - eJqJ(~k~)v(k)dk. (20) 

· 1r jlk!<F . . 

The cumulative energy of all harmonics ~th wav~ vectors less than or 
.equal to the cutoff value F is ·one of the main spectral characteristics 
of developed turbulence: . 

. ' . . . - : .·d . 
1 /- d 1 !u - d k . E(F) =~2M v~(x)v~(x)d X= ~M . v(k)v(k) (2 .. )d" (21) 

2 lki<F _. 1r 
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Similarly, we can. consider the ~umulativ:e' energy of allvd6~ityfiuc­
tmi.t~ons·with typical size greater· tha~ 'or equal t~ a: givim A. ,For 
simplicityletus consider a (:m~component velocity field'takell.~ a. 
function of time · · · · · · · 

E(A) =:, -~M~ai~A_v(t~v(t)dt = Jv.Mja~:.rlW;(a·, b)v'1~.d:~b 
22 

. .. = c;1 J.f- 11/J(:>rdy · MJiv(kW;!, · · ( ) 

. •' . ' . . . ·, 100 i?,b(y)l2 ' . ' 1 '/ - 2dk 
where hm 2 ... , . dy = Cl/1,' and. E = -M lv(k)l -·· 

·A-tO· a=A · y · .. ·• 2 27r 

is the. total energy of all velocity fluctuations. 
For non-vanishing A 

. . . . . · _· JA' ~~(:w ~Y 
E(A) = F(A)E, where F(A) = 1.tWf· . 

· ,. fo00 1/J: dy 
(23) 

For a better. definiteness, l~t us calculate the filtering function 
F(A) for a particular family of vanishin? moment~ wavelets , 
. d!' 
,Pn(x) = (-l)n dxn exp(-x2<2~, {ln(k) = Y2-ff(-:-:~Mnexp(-k2/2), 

{24) 
often used for studying hydrodynamical velocity, field [MBA91, MBA93]. 

The normalization constant for. this family is 

c~ = 2; i: k2
n-"le-k

2 d;; = 2?T_r(n)_. ',.~. 

and so , 
F. (A) = JXi yn-.le-Ydy {25) 
. n . r(n) . 

The 'dei;ivative of cumulative energy with respect to the logarithmic 
. measure da /a is 

. 8E . = E8Fn(E) '== ·_ 8A
2 

fn(A2) 
DinA 81nA 8JnA 

where fn(x) = xn-le-x fr(n)_. So we arrive at the RG-like equation 

~ = 2A2nexp(:._A2) E. (26_ )." 
81nA · r(n) ' .. 

For sufficiently small A the exponential term of the latter equation is 
close to unity, and thus the behavior is approximately proportional 
to A2 • · 

/ 
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Conclusion 

I~ the nr~ent paperV.:e give a mathematicalfi~mework fo~th~ anal:-
·- ; . : .. ..t' : < • : J > • - • • .. - • ' - • • : • ~ • • ; - ~ •• - • • ; -

ysis of functions which depend on scale. Usually, the scale-dependent 
functions express the value of a certain physical_quantity measured 
at a point·.x by averaging over !1 l!ox of'si?:e-l centered J~,t ~- Such 
functions are often used ii1 hydr_odynamics, geophysics, signal anal­
ysis. One of the most known ways ·or' treating reSolution-dependent 
functions is to identify the ~ize of t~e box.(l) wi~h the_inver?e wave 
number of the Fourier transform k- 1 =l. Thehigher wavenumoers 
~re ,tlien cui off. Sometimes this procedure. leads to confusion (many 
problems of field theory approach to hydrodynamic turbulence. orig-:· 
i~ate from this confusion). . . . . . :_ . 

In our approach, il_sing. the ideas of wavelet analysis, we keep 
wave vectors (k) and scales (a) separately. We derive a renormal­
ization woup' Iike.equations which' can be used to study the energy. 
distribution he tween different sca.les. ·The renormalizatioi1 group like 
equationsofthe·form . 

. 8E 
8 In l = {J(l)E, {27) 

Cf.Eqs.(23,26), obtained by m:eans of wavelet decomposition of the 
s~oc~astic process, provide a possibility to study the energetic .bud-:. 
get of experimentally measured . .stochastic signals with an accuracy, 
higher than that o[F,ourier Ille.thods. The reason· is rather obyious. 
If something is known about .the smoothing function ,P of the mea­
suring equipment, then wavelet decomposition can provide a more 
detailed estimation of energy-per-scale budget, as compared to just 
cutting the high frequencies; and vice versa the experimentally mea­
sured dependence of the form· (27) may give additional information 
not only on the signal in question, but. also on the smoothing func~ : 
timi of the equipment. The :esultscan 'be appli'ed in signal analysis,' 
in the investigation of turbulence velocity experimental data and · 
in further theoretic8.I research. 
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A Self-similarity in a bou:Qded domain 
-of scales . and: Scale-relativity 

• ! _.. . ' • 

In appendix, we would like to mention some results of other authors, 
which arenot used in-present work, but'are closely related'to the_ 
subject in question, and may be used in further investigations of this 
s~bject: _· . . . . ' 

A 'direct approach to scale-dependent functions, which was pro­
posed -by Nottal~ [Not93], is based o~ the assumption that physics 
is scale-dependent, but scale-covariant. The former means to give up 

the differentiability and co~sider ·functions v(x, z> with E~IJ av~~ z> 
not necessarily eXisting; the latter imposes generalized scale-covari-
ant equation · 

8v(x, l) 
a In l = {3( v(x, l)), (28) 

- which states that the scale behavior of a scale-dependent function is 
completely determined by the value of this function at a given scale; 

The benefit of the scale relativity[Not93] approach is a possibility 
to account for the processes which admit. self-similarity only at a 
limited· domain of scales· 

v(..\l) = .;\hv(l); 17 « l« A. 

For a homogeneous scale-dependent function (mono-fractal) v -
v0 (..\jl) 5, where 6 is independent of scale l. To get the additive rather 
than multiplicative formJor two sequential scale transformations, it 
is convenient to express_ them in the logarithmic form : -· 

In v(l') =In v(l) + V 6(l), 
· v0 vo · 

(29) 

where 6(l') = 6(l) = 6, V = ln(l/l').'In real hydrodynamic turbulence 
the multi-fractal behavior is observed: 6 = 6(l). In the inertial range 
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17 « l «A the exponent 6 is practically a constant, but closer to the. 
limiting scales 'fJ and A the dependence of scale becomes significant. 

The logarithmic form (29) suggests a direct generalization to the 
multi-fractal case 6 = 6(l); which is like the generalization of Galilean 
transfomi to Lorentz transform: -. · ' 

X' = f(V)[X ..;.' VT],'' . 
T' = f(V)(A(V)X + B(V)T]; (30) 

where T ~ ln{l/l0),~(T) = lnM(v,jv0 ), se_e [DG~6] for details. 
The composition of two scale transformations of this type behaves 

like a composition of tWo Lorentz boosts: when approaching the un­
passable limit A, instead of"Galilean" scale transform (29), the sca.Ie~. 
dependent tr~nsform with -

6(l) = 6o{1-ln2{A/l)/ln2{A/TJ))-1
/

2 
- {31) 

is applied.' 
The transforination group {30) can be- used to construct a wavelet 

decomposition at'a limiteddomain of scales. This, however, is the 
subject of.the next paper {in preparation). 

., 
" 
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