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1 Introduction 

In previous papers (see, e.g., [1, 2]) we have studied the tra.nsports along 

paths in fibre bundles. In them is not always essential the fact that the 

transports are along paths. This suggests a way of generalizing these inves

tigations which is the subject of the present work. 

Sect. 2 gives and discusses the basic definition of transports along maps 

in fibre bundles. Sect. 3 studies in details the case when the map's domain 

is a Cartesian product of two sets. Here presented are certain examples too. 

Sect. 4 is devoted to linear transports along maps in vector bundles. Partial 

derivations along maps are introduced as well as the general concepts of cur

vature and torsion. It is pointed out how a number of the already obtained 

results concerning linear transports along paths can mutatis Jn<dandis be 

transferred in the investigated here general ca.se. Sect. 5 investigated, in 

analogy with [3), the consistency (compatibility) of transports along maps 

in fibre bundles with bundle morphisms between them. Sect. G closes the 

paper with a discussion of different problems: An interpretation is given 

of the obtained in Sect. 3 decomposition of transports along maps whose 

domain is a Cartesian product of two sets. A scheme is proposed for per

forming operations with elements of different fibres of a bundle a.s well as 

with its sections. It is proved that the Hermitia.n metrics on a differentiable 

manifold are in one to one correspondence with the transports along the 

identity map in an appropriate tensor bundle over it. At the end, some 

remarks concerning tensor densities are discussed. 

2 The basic definition. 

Special cases and discussion 

The fact that 1 is a path in definition 2.1 of [1] for a transport a.!ong paths 

in fibre bundles is insignificant from a logical vie\v-point. This observation, 

as well as other reasons, leads to the following generalization. 

Let (E, ~,B) be a topologica1 fibre bundle with ba•e B. total space E, 

projection rr: E-+ B, and homeomorphic fibres 1l'-1(:z:), :z: E B. Let the set 

N be not empty (N # 0) and there be given a map x : N - B. Ily idM is 

denoted the identity map of the set M. 

Definition 2.1 A transp·ort along maps £n the fibre bundle (E,11',B) z"s a 

map J( assigning to any map x : N -+ B a map J( x, transport along x, 

such that J(x: (l,m) ~--t K(_m, where for every l,m EN the map 

K{:...m: ,.- 1(x(i)) ~ ~- 1 (x(m)), (2.1) 

called transport along.~ from l tom, sat£sfies the equalit£es: 

J(~ ..... n o A't ... m ~ K(._.n, !, m, n E .r,r, (2.2) 



K/-.1 = idr.-l(x(lll• lEN. (2.3) 

The formal analogy of this definition with definition 2.1 of [1] is evident. 

In particular, if x is a path in B, i.e. if N is an E.-interval. the former 

definition reduces to the latter. The two definitions coindde also in the 

'fi , h !I' B d 'd I f . I . I' l·idB 
at case w en = an x = 1. B· n act, m t 11S case s-J := \r(s)-r(t) 

for a path 1: J-+ B, J being an E.-interval, s, t E J, defines a transport 

along paths in (E,tr,B) which depends only on the points -y($) and 'l(t) but 

not on the path 1 itself. On the opposite, if I is a. transport along paths 

having the last property, then ](~~:)-r(t) := r:-.t is a transport along the 

identity map of Bin (E, r., B). By [4, theorem 6.1] the so defined tra-nsports 

along paths are flat, i.e. their curvature vanishes in the case wh0n they are 

linear and (E,r.,B) is a vector bundle. Due to these facts, we call the 

transports along the identity map fiat transports. 

The general form of a transport along maps is given by 

Theorem 2.1 Let x: N _,.B. The map 1~·: x 1-- 1~·x: {l.m) 1-- 1~/ .... m' 

l, m E N is a transport along x if and only if there exist a st I Q and a family 

of one-to-one maps {F;': ~- 1 (x(n)) ~ Q, n EN} such that 

](1:_m = (F,;:)- 1 o (F(), l, mEN. (2.4) 

The maps F:; are defined up to a left composition trith 1:1 nwp depending 

only on x, i.e. (2.4) holds for given families of maps {F77 : r.- 1 (x(n)) --"' 

Q, n E N) and {'F;' : tr-1(x(n)) ~' Q, n E N} for somr 8el8 Q and 'Q iff 

there is 1:1 map nx : Q -+1 Q such that 

'F:; = Dx o Fn, n E IV. (2.5) 

Proof. This theorem is a trivial corollary oflemma.s 3.1 and 3.2 of [1] for 

Qn = tr- 1 (x(n)), n EN and R1-m ~ fiLm• I, mEN. • 

The formal analogy is evident between transports along ma.ps and the 

ones along paths. The causes for this are definition 2.1 of this \vork and [1, 

definition 2.1], as well as theorem 2.1 of the present work and [1, theo

rem 3.1]. Due to this almost all results concerning transports a-long paths 

are valid mutatis mutandis for transports along maps. Exceptions are the 

results which use explicitly the fact that a path is a map from a real interval 

to a certain set, viz. in which special properties of the E.-intervals, such as 

ordering, the Abelian structure (the operation addition) a-n so on, are used. 

This transferring of results can formally be done by substituting the symbols 

x for"(, N for J, J( for I, l,m,n E ]\T for r,s,t E J, and the word map(s) 

for the word path( s ). 

For example, definition 2.2, proposition 2.1 and example 2.1. of [1] no\v 

read: 
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Definition 2.2 The section a E Sec(E,r.,B) undergoes a (K-)transport or 

is (K-)transported (resp. along x: N ~B) if the equality 

a(x(m)) ~ Kt: ... ma(x(l)), l,m EN (2.6) 

holds for every (resp. the given) map x: N ~ B. 

Proposition 2.1 If (2.6} holds for a fixed IE N, then it is valid for every 

IE N. 

Example 2.1 If(E,11',B) has a foliation structure {J\.o-i a E A..L then the 

lifting Xu : N .....,. E of x: N _,. B through u E E given by 

-x.(l) :~ ~- 1 (x(l))n I(,l•l• 

where J{ a(u) 3 u, defines a tra.11sport A" along maps t.lJrougli 

K 1:_m(u) := x.(m), u E ~-1 (x(l)), l,m EN. 

On the transports along ma.ps a.dditional restrictions can be imposed, 

such as ( cf. [1, Sect. 2.2 and 2.3]): 

• the locality condition: 

Ic>{IN'- A·x 
/ ..... m- 1->m• !,mEN' eN; (2.7) 

• the 'reparametrization inva.riance1 condition: 

} ·.or - }'" ' 1 · 1 · N" N l E N"· (2 8) 
\.1-+m - \T(/)-+T(m)' 10r . map r. _,., , , m. J , • 

o the consistency with a bundle bina.ry operation f3 : x - !3:n x E B 

(e.g. a metric, i.e. a scalar product): 

f3x(l) ~ f3x(m) 0 (J(I:_m X K,:.m) (2.9) 

for f3x: tr- 1(x) x r.- 1(x) ~ M, x EB, M being a set. e.g. M = R, C; 

• the consistency \Vith the vector structure of a complex (or re;;.l) vector 

bundle: 

K,:,m(>.u+!w) ~ >.KLm11+J1Kt-mv, A,fl E C (orR), tt.V E 7r-
1 (x(l)). 

(2.10) 

The last condition defines the set of linear transports along maps. 

Examples of results that do not haYe a11alogs in our general case are 

propositions 2.3, 3.3, and 3.4 of [1]. But the all definitions a.nd results of 

Sect. 4 and Sect. 5 of [1] have analogs in this case. The.v can he obtailH~d 

by ma.king the above-pointed substitutions. 
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3 The composite case 

Of special interest are transports along maps whose domain has a structure 

of a Cartesian product, i.e. maps like x : N ---. B with N = A x Af, 

A and M being not empty sets. In this section, transports l~·~,x/-(b, l 

along 1J : A x M .....,. B are considered and their general form JS ound. 

Here and below a,b,c E A and x,y,z E M. By ry(·,x) : A _...,. Band 

17(a,·): M- Bare denoted, respectively, the maps 1J(·,x): a ........ q(a,x) and 

ry(a,·): x ,._. ry(a,x). 

Applying (2.2), we get 

K" - K" oN" - K" o K" (3 1) 
(a,x)--+(b,y) - (a,y)-(b,y) (a,x)--+(a,y) - (b,x)-(b.y) (a.;:)-(b,x)' · 

Using (2.1)-(2.3), we see that x](: ..... b := b.'~,x)~(b .. d and al{;)_Y ::::: 

K{:,,x)-(a,y) satisfy (2.1)-(2.3) with, respectively, " = ry, I\ = ''!\, I = a, 

m:::: b, and n:::: c and x:::: 1], ]( :::: al(, l:::: .1~, m:::: y, and n:::: z. Con

sequently, a transport along 1] decomposes to a composition of two (com

muting) maps satisfying (2.1)-(2.3). Note that if the locality condition ( 2. 7) 

holds, then these maps are simply the transports along 17( • •• T) and 17( a, · ). 

So, applying lemma 3.1 of [1], we find 

Y" (XH") -1 (XH") 
\.(a,x)--(b,x):::: I> 0 a 1 

J'" ('G'')- 1 ("G'") (3 2) 
~ (a,x}--(a,y) := y 0 ~~ x ' • 

where xH'd: ~-1 (ry(a,x)) ~ QH and "G~: ~-1 (ry(a,x))- Qr; are 1:1maps 

on some sets QH and Qa respectively. (The maps xH~ and 0G'') are defined 

up to a left composition with 1:1 maps depending on the pajrs x and 17 a.nd 

a and ry respectively- see [1, lemma 3.2].) 

The substitution of (3.2) into (3.1) yields 

](~,x)-+(l>,y) = 

= 

('libJ-1 
o ('li'd) o ("G~)-1 

o ("G~) = 

('G~)-J 0 ('G~) 0 (X!f~)-1 0 ('Jl:i). 
(3.3) 

Separating the terms depending on x and y in the second equa1i ty, we see 

that there exist one-to-one maps c~--b : Qa ......... Qa which are independent 

of x and such that 

('c~) o (XH~)- 1 
o CH'dl o ("G';)-1 = c:_,. (3.4) 

It is trivial to check the equalities c:-.b = C~--b oC:l--c a-nd C~'--a = -idQa· 

Hence, by [!,lemma 3.1], we have C~ ..... & = (C~) -l oC~ '"'ith certain 1:1 maps 

c~ : Qa ___, Qc (defined up to a left composition with a map depending 

only on Tf [1, lemma 3.2]) on some set Qc . The substitution of this result 

into (3.4) and the separation of the terms depending on a and b. shows the 

existence of 1:1 map D~: QH- Qc depending on 17 and a·. for which 

('H;}) o ("G~)- 1 o (C;))- 1 = (D';)- 1
• (3.5) 
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Hereout 

xlfi = (D~)- 1 o C:J o (OC~) or OC'; = (C~)- 1 o D']. o (JH,:1). (3.6) 

Substituting (3.6) into (3.3), we finally, in accordance with (2.-t). get 

( ) 

-I 

1~· 11 - F 11 o F 11 

{a,x)-(b,y) - (b,y) (ru) 
(3.7) 

with 
F1" 1 = c; o ('Gi) = D'; o (xH;}): r.- 1 ('/(a .. r))- Qc. (:3.8) 

a,x 

As we noted above, the maps OC'i, xn~, and C~1 are defined up to the 

changes 
"Gi ___, apJ o (nc'Z), :rH~1 - )PJ o ()'H~1 ). (3.9) 

and C~ --+ PJ! o C;}, respectively. where "P2 : Qc - Q(.-. ~p;~ : Qu -

QH, P'2;: Qc--+ Qc are 1:1 mappings. The transformation <'onc<>rning Cd 

is valid if c~--b is defined independently. But this is not our (~S€'. Due 

to (3.4) the changes (3.9) imply C~--b - t-p~ o C2-& o (:~ Pd) _,. To descrilw 

this transformation through C:! we must have 

C 71 __. P 71 o C'1 o ("'P'1) _, 
<1 (' rz G · 

( :).10) 

From (3.5) it is easy to verify that the transformations (:Ul) and (:3.10) imply 

D') _. P;j o D'): o (.rp;p- 1
• (3.11) 

At the end, according to (3.8). all this leads to the cha.n~P 

F'l) - p'l o F'l 
(a.x) (' (" . .r) • 

(:3.12) 

as should be by (2.5). 

Together (3.9)-(3.12) form t.he set of transformnt.ion:-> umkr ,,·hi<"h our 

theory is invariant. 

Thus we have proved 

Proposition 3.1 The set of maps {A'(~.:~·)--(b.y)} form." a fta11spnrf along 

11: Ax M--+ B iff (3.7} and (3.8) are valid for somr 1:1 111aps shown 011 

the commutative diagram 

ac;z 
r.- 1(11(a,x)) Qr; 

!·~'/ 
(a ,J·} 

:1-"JI;} (','/ ( :l. \3) 

Qu -------- Q,· 

D
,, ,. 

.) 



that are defined up to the transformations given by (3.9)-(3.12}. 

Remark. In fact Xf{~ and aci: determine the 'restricted' transports 

1\~,x)-(b,x) and J((o.,x)-(a.,y) through (3.2). In the case when the locality 

condition (2.7) holds for x = 1), they are equal, respectively. to the transports 

]{~~·~>and Ki~~) along the restricted maps ry(·,X) and ry(n,·). Note also 

that if QG, QH~ and Qc are regarded as different typical fibres of ( E, r., B), 

then the shown maps represent different ways for mapping a concrete fibre on 

them. This interpretation is more natural if one puts Qc = Qu = Qc = Q, 

Q being the typical fibre of(£, 1r, B). This is possible due to the arbitrariness 

in OCi, xH'i_ and Ci.. 

Example 3.1 Now we shall prove that tl1e considered in [5} transport in 

a family of (vector) bundles {~, : ~' = ( E" "" M ), a E ..l} over one 

and the same base (manifold) AI defined by the maps a.bJ~·-v : r.; 1(a:) -

r.,-1(y), such that b,cly--z o a,blx-y = a,qx-z and 0 '
11lx-;· = .id -1

1 
I' is a. 

""" :r 

(flat) transport along the identity map of the base of a suitably cl1osen fibre 

bundle. 

A given family {(Ea. 11'a 1 M), a E A} of fibre bundles over one and the 

same base is equivalent to some fibre bundle (E, To, Ax;\!) O\'er t.l1e composite 

base Ax M. In fact, if {(Ea, 1ia, .AI), a E A} is giveJJ, we construct the fibre 

bundle (E, r., Ax M) by putting 

E = U E" r.: E- Ax M, r.(u) =(au, r.,Ju)), 

oEA 

where u E E and au is the unique au E A for whidt Ea,, ::1 11 .. Conversely, if 

( E, 1r, Ax M) is given, we can construct {(Ea, To 0 , .M ), a E A} tllroug-11 

Ea = U 1l'-
1 (a,x), 1r0 : Ea--; J1, 1l"a(U) = .l" 11 • 

xEM 

where a E A, u E Ea, and Xu is tlle unique Xu E A1 for wllic}J r.- 1(a,xu) :3 

u. 
Now it is trivial to check tha.t the above-defined transports a.re o.,b lx-y == 

K(::X)~(b,y)' i.e. they are equivalent to tl1e (flat) transport along the identity 

map idAxM: Ax M ~Ax Min (E, r., Ax M). 

Example 3.2 The described in the previous example genera.] construction 

can be specified in the case of a flat transport in the fibre bundle of tensors 

of a fixed rank k E N U {0} over a differentiable manifold M as follows. 

Let A, = {(p,q) : p,q E N U {0}, p + q = r} and Tflx(M), 

(p, q) E A, be the tensor space of type (p,q) over x E M. The ten

sor bundle of type (p,q) is ~IP.ol := (T{(M),r.(v,oi•M) with r:(M) := 

UrEMTflx(M) and "lp,q)(u) = x, (oru E Ttlx(M) . . t being the unique 
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X E M for which Trlx (M) 3 u. The tensor bundle (T,(M), r., A, X M) 

of rank r is constructed by the above scheme: T,(M) := U1p,q)EA, TJ'(M) = 

Up+o=,UrEMT:Jr(M) and r.,(u) = ((p,q),x) foru E T,(M) with (p,q) E 

A, and x E M being defined by TJ'Ix (M) 3 u. So r.; 1 ((p, q), x) = r.
1
-l 

1
(x) = 

p,q 

TJ'Ix (M). Then the desired transport along idA,xM is described by the maps 

'}_.id .... >< M I I II /J I II M . f . th I 

'II , 'I 'I II ,, ") "I, p + q == p + q == r, x , x E sa.t1s ylllg e re a-
_p,q,x--.p,q,x 

twns: 

TK('t;:q~rx')-((p",q"),x"): r;'!x' (AI) ..... r:.:'jx" (M), 

Tj{idAr ><M O Tf'l.'idAr><M _ 

((p 11 ,q 11 ),x")-((p111 ,q 111 ),x'11 ) ((p' ,q'),x1)--.((p" ,q"),x 11 ) -

_ Tj(idAr><M 
- ((p',q').x')-((p 11' ,qm),x'")' 

r K{.t;,~q~}.:z:')-((p',q'),x') :::; idTP,'I (]If)' 
0 r' 

p' + q1 == p11 + q11 == p111 + q111 = r, x', .1:
11

, ::c 111 E 111. 

Example 3.3 Every transport along x": Af .....,. -~1 1 in a bundle (Eo, r.0 , M') 

induces a transport along x' X x 11 for ;c1
: A-.- A' in any bundle ( E, 1r, A' x 

M') for whkh the fibres ?r-
1(a',x') are homeomorphic to 1iQ 1 (y') for any 

a' E A' and x', y' E }.1.'. In fact, by example 3.1, (E, r., .41 x .H') is equivalent 

to the family {~a.'== (Ea.'• "a.'• A1'), a' E A'} \Vith Ea' == Ux'EM' 1l'-
1 (a1

, x') 

and 1l'a.{u) == x' for u E 1r-1 (a', x'). As tlie fibres of all the illtroduced fibre 

bundles are homeomorphic there are fibre morphisms (ha•, id.M·) from ~o.' on 

~o, i.e. ho.': Ea.' --1- Eo and 11'a.• == r.0 o ha', a'<: A.'. Then it is easy to verify 

that the maps 

Kx'xx" ·- (h I )-1 o 
(a,:r:)-(b,y) .- "'(b) 1r-l (x'(b),,.."(y)) 

0 ( hx'lollc'(•'lo),x"lr))) : r.-
1 (x'(a), x"(x)) ~ r.- 1 (x'(b). x"(y)) 

define a transport along x 1 x x'' in (E, n, A' x .M'). 

Example 3.4 This example is analogous to example 3.2 a.nd is obtained 

from it by replacing p and q by integer functions over Jt.f. 

Let f,g: M - N U {0}, f + g = r EN u {0}, and 

~(J,sl := ('Tj (M), r. J.s• M) , 'T.'(M) := U yflxJI (M) and T<J (n) := x 
9 g(x)\x ,g 

xeJ·,.f 

for u E r:(~lL. (M). Tile transports along maps in the so defined fibre 

bundle preserve the tensor's rank, but, genera.l!y, they change tlle tensor's 

type. 
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4 Linear transports along maps 

In this section~:== (E,1i,B) is supposed to be a complex (or real) rector 

bundle. 
As we said above, a linear transport (or L·fransport) olong maps in 

a vector bundle is one satisfying eq. (2.10). For these transports mutatis 

mutandis valid are almost all definitions and results concerning linear trans

ports along paths in (vector) fibre bundles [2, 6, 7, 8]. This is true for the 

cases in which the fact that a path is a map from a real interval into some 

set is not explicitly used. In particular, by replacing the path 1 : J - B 

and the linear transport along paths L"J_ 1• s, t E J \Vith. respectively, a 

map x : N - B and a linear transport along maps Li-m. I. m E N, one 

obtains a valid version of sections 2 and 3 of (2], section :1 to propo$ition 

3.3 and section 5 to proposition 5.3 of [6], and sections l. 2, and ·I of [8]. 

The other parts of these works, as well as [7), deal more or less with explicit 

properties of the real interval J, mainly via the differentiation along paths 

v-r (or Vi) [2]. These exceptional definitions a.nd results can. if possible, be 

generalized as follows. 

Let N be a neighborhood in JR.k, k E N, e.g. one may takeN = J x · · · x J 

(k~times), J being a real interval. So, any I E N ha.s a form l ::: (/1 •... , Jk) E 

JR.k. We put Ea := (0, ... ,0,£,0, ... ,0) E R_k where E E JR. sta-nds in the a-th 

position, 1 :5 a :5 k. 

Let SeeP(~) (resp. Sec( OJ be the set of cr lresp. all) sections over~ and 

Lj_.m be a C 1 (on l) linear transport along x: N- B. ?'\'ow definition 4.1 

from [2] is replaced by 

Definition 4.1 The a.th, 1 :S a :5 k partial derivation olong mop8 gcncr· 

ated by L is a map a V : x f--lo a V" where the a·th (partial) daivat.ion along 

x (generated by L) ,Dx is a map 

,D' : Sec1 
( ~lxiN)) ~Sec ( ~~x(N)) ( 4.1) 

defined for <1 E Sec1 Wx(N)) by 

(,'Dx<1) (x(l)) :~lim[~ (L/+,'-I"(x(i + E"))- "(x(/)))]. 
t--+0 E 

( 4.2) 

The (partial) a·th derivative of u along x with respect to L is a"D"u. Its 

value at x(l) is given by the operator 

D/o: Sec1 
( ~lx(N)) ~ ,.- 1 (x(l)) ( 4.3) 

by 'D/oa :~ (,'D"<1)(x(l)). 
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Evidently, fork= 1 this definition reduces to definition 4.1 of [2]. 

On the basis of the above definition, almost all of the a.bove-mentioned 

exceptional definitions and results can be modified by replacing in them 

I: J- B, L; ..... t, V"~, and VI, respe~tively with X: N- B. Lt'-m• avx. 

and aD[;, . Below we sketch some results in this field. 

A corollary of (2.2), (2.3). and (4.2) is 

Proposition 4.1 The operators aV" are (C·]linea7' and 

V~c 0 L/_.m := 0. I 4.4 l 

If {ei} is a field of bases on x(N). i.e. {<:1(nl} is a basis in ;;- 1(x(n)). 

r1 EN, then in it the L-transport L along ma.ps is described b.\' the matrix 

H(n1.,l;x)::: [u~.(m,l;x)r_ . n :::: dimc(r.- 1 (x(/)). which is dE:>fined by 

l,J=l 

Li--mei(l) :::: H~(m,l;x)ej(m). A simple calculation of the limit in (·L2) 

verifies 

Proposition 4.2 If a E Sec1 Wx(N)). then 

x [iJ"'(x(l)) i J l 
v,,a~ {J[" +,f,(l;x)" lxli)) c;(/). 14.5) 

where the components of L are defined by 

[Jf{i (I, m; x)l 
. __ )";;---;;-- -

f'.(l; x) := 8ma 1 
a J m= 

JH'IHi.l:x)l 
' I -1.6 l 

The components of L satisfy 

aV"ej::: (af .. Y.Jei I 4. 7) 

[ . l" 
and form k matrices afx(l) := af'J(l:x). . a::: l. .... k \\'hirh under 

I,J=J 

the transformation ei(l) ,___... e~·(l)::: A~·(l)ei(l) changC' to 

i) 

,f~(l) ~ A -'(1)(, r x(l)) A( I)+ A_, (I) ill' .·I ill 14.8) 

with A(!) :::: [ A~(l)], which is a simple corollary of ( I. 7). Hencf'. t hC' differ

ence of the matrices af ><of two L-tra.nsports along on(> and th0 sanH' map 

behaves like a tensor of type (1, 1) under a transformation of th0 hases. 

On the above background one can nwfatis mutandi..- rdormulat<> th<> 

remaining part of Sect. 4 of[2]. In particular. in this way· is established the 

equivalence of the sets of L-tra.nsports along maps x: N- H. N ~ Rk and 

the one of partial derivations along maps. S(>rt. 6 and 1 h<' I'C'~t of S('(·t. :3 and 
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Sect. 5 of [6] can be modified analogously, only in the last case the tangent 

vector field i' to 1 : J - Af has to be replaced with the set of tangent 

vectors {xa} to x, ><.(1) :~ (":;;!'1) (a~· 1,11). 

The introduction of torsion and curvature needs more details which will 

be presented below. 

Let M be a differentiable manifold and there be given a ('1 map 11 : 

N x N'- 111, with N being a neighborhood in JRk and A''- in :rrtk', k, k1 E N. 

Let ry(-,m): l ~ ry{l,m), ry(/,·): m ~ ry(/,m) for (1,m) EN x N'. Let 

ry:(·,m), and ry~(/,·), /EN, mEN', a~ l, ... ,k, b ~ l, ... ,k' be the 

tangent vector fields tory(·, m) and ry(l, ·),respectively. 

Definition 4.2 The torsion operators of an L-transport along mops in the 

tangent bundle (T(M).~.M) are maps To.b: ry ~ T,~b: .V x N- T(M) 

which for (l, m) EN x N' are given by 

T " (l ) v•l·,ml "( ) V"11 ' 1 '(I ) T \I I 
a,b , m := {a 17b ·, m - mb 17a , · E 11 (1.m}(. . (.J.9) 

Similarly, for ry : N x N' - B, B being the base of a \'ector bllndle 

(E,1r,B), we have 

Definition 4.3 The curvature operatOr$ of an L-transpo1·t along maps m 

(E.~.B) are maps 

Ra,b: ry ~ n:,,: (1, m) ~ n:_,(l, m): Sec2 (£, 1l', B)- Sec(£,1l', B) 

defined for (1, m) E N x N' by 

R" (I m) ·= vn(·,m) 0 :rvl(l,.) _ .nfl(l,·) 0 V7l(·.m) 

a,b ' ' a bL-' bV a • ( 4.10) 

The further treatment of curvature and torsion ca.n be done by the same 

methods as in [7, 4] (cf. [5, Sect. 8]). 

In the composite case there arises a kind of 'restricted' partial derivation 

along maps generated by L-transports along maps. 

Let N = .4 x AJ with Af being a neighborhood in RJ.: for some kEN. 

In this ca..'3e instead of definition 4.1. we have 

Definition 4.4 The a-th, I ~ a ~ k, partial derivatit·e of type ;3, {3 E A 

along the map x : A x M _, B generated by an L-transport L along maps 

in a vector bundle ~ = ( E, 1r, B) is a map rfv : x ........,. ~3-p><. who·£ 

~x: Sec1 ( ~lx(AxM)) -Sec ( ~lx(Adl}) (4.11) 

is the partial derivation along x (generated jy L) tchich i8 dr:_{lned by the 

equation 

(~"o) (x(a,x)) := )i_r;),[~(L(o,x+,"H9.x)o(x(a,x+c'))-

L(,,x)-(,,,x)o(x(n,x)))] (4.12) 
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for a E Sec1 ( ~lx(AxM)) and (a, x) E A X M. The a-th (partial) derivative 

{of type {3) of o along x with respect of L is f:D• a. Its valve at x( a, x) is 

given by the operator 

"v(a,x"): Sec' ( ~lx(AxM)) ~ ~-'(x({3,x)) ( 4.13) 

by f>D(r>:,xa)O' := (~"'a) x(a,x), with x 11 be£ng the a-th component of x E 

M <;;Ill.'. 

For A= 0 this definition reduces to definition 4.1. 

Notice that the operator ~,b\7~ used in [5 1 eq. (7.14)] is a special case 

of f:D•, viz. (~·"'v~(ol) (a, x) ~ I:Yi (~"M a) (a, x) fori~ I, ... , dim M, 

a, bE A, x E M, M being a differentiable manifold and V being a vector 

field on M with local components Vi. 

Now the corresponding results from [2, 6, 7, 8] can he modified step 

by step on the basis of definition 4.4 in the above-descrihe-d \vay, where 

definition 4.1 was used. 

5 Consistency with bundle morphisms 

The work [3] investigates problems concerning the consistency of transports 

along paths in fibre bundles and bundle morphisms between them. A critical 

reading of this paper reveals the insignificance of the fact t.ha.t the transports 

in it are along paths; nowhere there is the fact used that the path 1 is a 

map from a real interval J into the base B of some fibre bundle. For this 

reason all of the work [3] is valid mutatis mutandis for arbitrary transports 

along maps; one has simply to replace the transports along paths, like l;_.t, 

1 : J - B, s, t E J, with transports along arbitrary maps, like Kt-m' 

x : N - B, l,m E N. Below are stated mutatis mutand£s only some 

definitions and results from [3]. There proofs are omitted as they can easily 

be obtained from the corresponding ones in [3]. 

Let there be given two fibre bundles ~h := (Eh, 1l'h, Bh), h = I, 2 in 

\Vhich defined are, respectively, the tra.nsports a-long maps 1A' and 2](. Let 

(F, f) be a bundle morphism from ~1 into 6, i.e. F : £, - E,, f : B, -

B, and ~2 oF~ f o 1l'1 [9]. Let Fx :~ Flx;-'tx) for x E 81 and x: N _, B, 

be an arbitrary map in B1. 

Definition 5.1 The bundle morphism (F, f) and the pair eH, 2K) of trans

ports, or the transports 1 ]{ and 2!{, along maps are consistent ( resp. along 

the map x} if they commute in a sense that the equality 

F 'I'" 'J··fO>< F 
><(m) 0 ~l-m = ~1--+m 0 ><(/), l,mE N ( 5.1) 

is fulfilled for every (resp. the given) map x. 
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A special case of definition 5.1 is the condition (2.9) for consistency 

with a bundle binary operation (in particular, a bundle metric), which is 

obtained from it for: 6 = (E,~,B) x (E,r.,B), 6 = (M,r.o,mo) with a 

fixed moE M, r.o: M ~ {mo}, Fx = f3x with x E B, f: B x B ~ {mo), 

1K" K" K" d 2 pfox "d 
J ...... m = 1-m X 1--+m' an l\.J_.m = t M· 

Let, in accordance with theorem 2.1 (cf. (1, theorem 3.1J), there be chosen 

sets Q1 and Q, and one-to-one maps hF,:' : ~i; 1 (xh(/h)) ~ Qh- h = 1, 2, 

which are associated, re.<>pectively, with the maps xh : Nn - Bh, lh E 

Nh, h = 1,2 and are such that (cL (2.4)) 

h]{xh = (hFxr.) -1 0 hF,X" 
lh-+mn mh In ' h, mh E Nh, h = 1, 2. (5.2) 

Proposition 5.1 The bundle morphism (F, f) and the pair eH. 21\.) of tran

sports along maps, which are given by (5.2} by means of the maps 1F and 

2F, are consistent (resp. along a map x) iff there exists a map 

Co(x,f ox): Q1 ~ Q,, 

such that 

F.( I) = ('F,1'" r 1 
o Co(x, fox) o ('F,"), 

or, equivalently, that 

F 2,-fox C(/ f ) h-• 

><(I)= .nzo-m o o; x, ox o J\1--.Jo' 

where lo E N is arbitrary and 

C(lo;x,fox) := ('F,;'"r1 
oCo(x,fox)o ( 1F1~) 

for every (resp. the given) map x. 

(5.3) 

( 5.4) 

(5.5) 

(5.6) 

Let there be given two fibre bundles ~h = ( Eh, r.h, B, ). h = 1, 2. We 

define the fibre bundle ~o =(Eo, 11o, B1 ) of bundle morphi8m_..:; from ~ 1 onto 

6 in the following way: 

Eo:= {(F,,f): F,,: r.j''(b1) ~ "21(f(bJ)), b1 E B1, f: B1 ~ B,), (5.7) 

"o((F,, f)):= b, (F,, f) E Eo, b1 E B1 • (5.8) 

It is clear that every section (F, f) E Sec(~o) is a bundle morphism from 

~1 into 6 and vice versa, every bundle morphism from 6 onto ~2 is a section 

of ~o- (Thus a bundle structure in the set Morf(6,~2) of bundle morphisms 

from 6 on 6 is introduced.) 

If in ~o a transport ]( along the maps in Bt is given, then. according 

to definition 2.2 (see eq. (2.6)), the bundle morphism (F. f) E Sec(~o) is 

(K- )transported along x: N ~ B1 if 

(F.(m)• f)= J(['_,m(F•I'l' f), l,mEN. ( 5.9) 
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Given in ~1 and ~2 the respective transports 11\. and 21\. along the maps 

in B1 and B2 respectively, they generate in ~o a ·natmal' transport 0/\. 

along the maps in B1 • The action of this transport along Y. : .Y - 8 1 on 

(F.(I)• f) E r.0
1(x(l)) for a fixed IE ;V and arbitrary mE Sis defined by 

0Hi ..... m(Fx(l)•f) := eA·{::._':n o Fx(IJ o 1 /\·~-1· J) E r.Q 1
(x(m)). (.5.10) 

Lemma 5.1 If ( F, f) E Sec(~o ), /hen ( 5.1) is cqHit'olcnt lo 

(F•(m)•f) = 0A'{'_,,.{F•(/)•fl· /,mEAl. ( 5.11) 

Proposition 5.2 The bundle morphism (F. f) (llld lhf pair( 1l\-_.2J\') of tran

sports along maps are consistent (ru:p. along the map x) if and only if (F. fl 

is transported along every (resp. the gi1'fn} map % 16th !/)( hdp of thf de

fined from (11\., 21\) in ~o transport along maps 01\ .. 

6 Concluding discussion 

(1) The substitution of (3.8) into (3.7) gives 

-o (' ") -l n o ,11 11 'I -t 11 r 'I 

J, 1,,,·)-(b,y) = G, oC,_, o( (,x) = ( 111,) o D,._, o( II.,) ( 6.1) 

where (cf_ (3.4)) 

c;_, := (C;l--1 oC;: Qa ~ Qa, Di-, := (D~)--
1 o D';: Qn ~ Qu 

(6.2) 

are 'transport like' maps. From them transports along th(' ident-ity map 

in corresponding fibre bundles can be const.ructE>d. For instanrC'. for D'} ..... 11 

this can be done as follows. Consider the fibre bundlE> (.H x QH. 111• M) 

with ~ 1 (x,q) := x, (x,q) EM x Qu. Hence r.j' 1(,·) = {.r) x Qu. Defining 

Px: {x} X QH- QH by Px(X, q) :::::: q, we see that o;:_v ::::: P;; 1 0 D~-yO PJ' 

is a. transport along i-dM in ( Af x Q H. 111, ;\f). It dc."pe-nds ·on 11 a~ on a 

parameter. Consequently, we can write 

F" (P-- 1 'Ji")--
1 ~D" (l'-- 1 ''11'1) 

\ (o,x)-(b,y) :::: !I 
0 b 

0 :r-y 0 l' 0 rr · 
(6.3) 

This decomposition is important when PJ~t o JJ-1,;1 is indE:'pcndent of 

x E M. Such a situation is rea.liud in the special \as(' wlwn H ::::: A.' x 

M' a.nd 1J == 1}
1 x 1]

11 with r/ : A -+ A' and 11" : M - M'. i.e. for 

(some) transports along 1]1 x 7] 11 in (E. 1r, .-\
1 x A/'). Arcordinf!; to exam

ple 3.1 the fibre bundle (E,11,A 1 x AI') is eqniva}C'nt. t.o t.hC' family {~n' : 

~a' = (Ea•,1ra•,M'), Ea' == Ux'EM'7r- 1 (o'.:r'). ii'0 •{!1) = .r'. for u E 

11-1(a1,x'), a1 EA.'}. Let ~0 = (£0 ,1r0 ,.H') tH' any fibre hnndl<' for ,~,-·hich 
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there exist bundle morphisms (ha•, idM·) from ~u' into ~o- i.e. h,,,: Eu•- Eo 

and 11"a• = :rro o ha'' a E A'. (The existence of ~o and ha• is a consequence 

from the fact that the fibres of all the defined bundles arC' lwmeomorphic; 

e.g. one may put ~o = ~b' for some fixed b' E A'.) 

If 0J(;::_Y is any transport along x" in ~0 , then a simple calculation shows 

that 
l"x

1
Xx

11 -1 0 ·x" 
) 

J\(a,x)-(b,y) := hx'(b) 0 1\r-y 0 hx'(a) (6.4 

defines a transport along x' x x" in ( E, :rr, A' x .H'). The opposite statement 

is, generally, not valid, i.e. not for every transport along;/ x x" in the fibre 

bundle ( E, 7f, A' x M') there exists a decomposition like ( 6.4 ). 

(2) In vector bundles, such as the tensor bundl€>s over a diffHen

tiable manifold, sometimes the problem arises of comparing or performing 

some operations with vectors from different fibres, or speaking more freely, 

with vectors (defined) at different points. A way for a.pproaching such prob

lems is the following one. 

Let the fibre bundle(£, r., B) be endowed \vith (ma.vhe linear) transport 

l\"0 along the identity map of B and, e.g., a binary operation 1J, i3 : x ~-> :3x : 

:rr- 1 (x) x ,.- 1(x)- Qx for some sets Qx, x E B. The problem is to extend 

the operation (3 on sets like n-1 (y) x :rr-1(z). y,:; E B. A possible solution 

is to replace /3 with {iJx} for some maps: 

73x: (y,z) ~ ;r;·': ~- 1 (y) x ,-- 1 (z) :- Q,. 

where 
-,;Y·' " (l·O 1.o ) 
Px :=Px 0 \y_.xX \z-x · 

(6 .. 5) 

For instance, if Qx = :rr- 1 (x) and (E,:rr,B) is a vector bundle one can 

define in this way the linear combination of vectors from different fibres by 

the equality 

(Au+ j.LV)x :=..\]{~_.xu+ jll\·~-xv, ),,It E C, u E ~- 1 (y). v E ,.-'(z). 

It depends on X as on a parameter. lf [\•O is linear, then ().u + flV)x" = 

f(~'--x"( ..\u + JlV )x•• x
1

, x" E B. 

Also in this way can be introduced different kinds of integrations of the 

sections of (E,:rr,B) if on Qx corresponding measures arc defined. Viz. if 

dJ1x is a measure on Qx and a E Sec(E,r.,B), the integral of a over a set 

If>;: E is defined as f (1<~-xa(y)) dflx· This procedure is especially useful 

v 
in tensor bundles in which there are different possibilities depending on the 

understanding of the product of the integrand with the measure. e.g. it can 

be a tensor product that may be combined \vith some contraction(s) too. 

The situation is important when (E,r.,B) is endow<>d with a transport 

along maps of a given kind, i.e. along x E K, where K is a CHtain set of 
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maps onto B. A typical example of such a set is the set of all paths on B, 

i.e. {/: -r: J- B, J >;: R}. 

Let for some x E B there be a neighborhood U 3 x in B with the 

property that for any y E U there are a unique map xy : Ny -+ B, xy E K 

and a set My ~ Ny such that xy IM
11 

: My -+ U, Xy ]M
11 

(mx) = x, and 

xy lM (my}= y for some mx, my E My. A well-known example of thiS kind 

' is the case of geodesic paths (curves) on a differentiable manifold endowed 

with an affine connection [10, 11]. 

In such a neighborhood U one can repeat the above discussion (of the 

flat case) with the only change that ](~-x has to be replaced with ](:;..1111 --..m~-

The use of transports along the maps xy has the disadvantage that the 

result depends on xy, but as they are unique in the above sense this is 

insignificant. If the fibre bundle admits some 'natural' family of such maps, 

as the above-pointed case of geodesic curves, the question of this uniqueness 

does not arise at all. If the set of maps with the considered property does 

not exists or is not unique, then the pointed procedure does not exists or is 

not unique and, consequently, one gets nothing or not a 'rE>a.sona.ble' result, 

respectively. 

(3) The class of Hermitian (resp. real) metrics on a complex (resp. 

real) differentiable manifold /11 turns out to be in one-to-one correspon

dence with the class of flat linear transports in the tensor bundle of rank 1 

over it (see example 3.2). Below is presented the proof of this statement. 

The tensor bundle of rank 1 over M is 

(rJ(M)UT?(M),~"{(1,o),(0,1)} x M) 

with ~1 (u) = ((p,q),x) for u E T:lx(M), p+ q = 1. According to proposi· 

tion 3.1 there are the following four kinds of transports along id{(l,0),{0,1)}xM: 

Lx--+y ·- Lid{(l,O),(O,l)}xM - F-1 F - c-1 0 G 
((I,O),x)--+((l,O),y) - y 0 :r - y ,~;, 

(6.6) 

L; ...... Y - Lid{(l,O),(O,l)}xM = •p-1 0 "'F = "'G-1 0 "G 
((0,l),x)-+((0,1),y) Y X Y XI 

(6.7) 

£1.0 
x-y - L'"H'·'I·''·'ll•M = ·F-1 oF = ·c-1 o ·c-1 o coG (6.8) 

({l,O),x)->((O,l),y) y x y x, 

£0,1 
x-y - Lid{(l,O),(O.l)}xU = p-1 0 ·p = c-1 0 c 0 ""'C 0 ·c:r. (6.9) 

((0,1),x)-((1,0).Y) Y x y 

Here, for brevity, we have put: Fx := F((i.,o),x) = Co Gx, "'Fx := F({O,l),x) = 

if' o if' G ·= (1·0lG··· if' ·- (o,1JG ... C ·- C... 'C ·= C··· wl1ere 

V V:z:l X • X' U'z .- 7 X l ,- (1,0)1 • (0,1)' 

the dots ( ... ) stand for id{{l,O),(O,l)}xM· These maps act between vector 

spaces and are linear because of the linearity of the considered transports. 

Let in all vector spaces, as well as in the fibres T,(M) := Tdlx (M) and 

T;(M) := Tf\x(M), x E lv!, some bases be fixed in wltich the matrix of a 

map X E {Fx, "'F:z:, Gx, ~x, C, "C, L~~x} will be written a.s [X]. 

1.~ 



A (fibre) Hermitian (resp. real) metric on M is g : x ~ Yx- x E .M. 

Here 9x : Tx(M) X Tx(M) ~ C (resp. R) are q linear (resp. bilinear), 

nondegenerate, and Hermitian (resp. symmetric) maps [12]. Let in the 

above bases the matrix of 9x be G(x); we have det G(x) # 0 and Gt(,) = 

G(x) (resp. GT(x) = G(x) as in the real case Gt = GT), where j (resp. T) 

means Hermitian conjugation (resp. transposition), i.e. transposition plus 

complex conjugation (denoted by a bar). Because of this there is a unitary 

(resp. orthogonal) matrix D(x), i.e. nt = D-1 (resp. DT = n-l ), such 

that G(x) = Dl(x)Gp,,D(x) with Gp,q := diag(~,~) for 

p-times q-times 

some unique p,q E NU{O}, p+ q =dim M [13]. 

Now the idea is to interpret the maps (6.8) for y == :r as metrics. 

In fact, if for u, v E Tx(J\1) we put Yx(u, P) :== (g 3.( u, · ))TI with 

Yx(u, ·) := L;~xu E r;(M), (6.10) 

we find G(x) == [•Fx]- 1 [Fx]· This matrix will be Hermitian if, e.g .. we choose 

[•Fx]-l = [Fx]l, i.e. •F;1 = FJ, which leads to (Lx-xlt = L;_x· In 

particular, we can choose "C-1 = ct and ··G.;:- 1 =ct. For this selection the 

maps (6.10) form a Hermitian metric on .H. 

Conversely, let there be given an arbitrary Hermitian m('tric g with 

G(x) == Dt(x)Gp,qD(x), nt == D. Take some constant unitary matrix A 

(Al = A-1 ) and any C for which [C]l[CJ = AtG,,,A. Let us define [•C] := 

([C]l)- 1
. Putting [Gx] = AlD(x), from Dl = D we get [G,]l = [Gx]- 1 

At last, define in a fixed basis ["Gx] = [Gx] (•G; 1 = GJ.). Thus we have 

constructed a transport along id{(I,O),(O,l)}'M with [Fx] = [C]AlD(x) and 

[•Fx] = ([CJl)-1 AlD(x). In particular, we have [Li~,] = JJl(y)G,,,D(x), 

so that [L;~x] = G(x). 

In this way we have proved 

Theorem 6.1 The class of Hermitian metrics on a differentiable manifold 

is in one-to-one correspondence with the class of transports along the identity 

map in the tensor bundle of ra.nk 1 over that manifold which h(/ve decom

positions like (6.6}-(6.9} in which -c-1 and ·G;1 (and, hwc<. ·p-I) are 

Hermitian conjugate to C and Gx (and F) respectively. 

( 4) The problems concerning linear transports along maps in the 

tensor bundles over a differentiable manifold can be investigated in the same 

way as in [6, Sect.3] in which the text before proposition 3.3 remains true 

mutatis mutandis in the considered in the present. paper general case. 

(5) At the end we want to pay attention to tensor densities. Usu

ally [14), a tensor density (field) is defined as a quantity which is locally 
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represented by a set of numbers (resp. functions} with a suitable transfor

mation law. Our equivalent view is that the tensor densities (density fields) 

are tensors (resp. tensor fields) that appropriately depend on one fixed basis 

in the corresponding tensor space and which are referred to modified (with 

respect to the tensors) bases. 

Let M be a differentiable manifold and a basis { 0E~(.rl} be fixed in 

T{lx (M), and {rE1'(x)} be an arbitrary basis in it. Here.{ and B stand for 

the corresponding multiindeces (e.g. A= (o1 , .... orl· B = (.31 .. ... j)p), 

O:t, •.. ,/Jp == l, ... ,dimM). We define a tensor density (field} of type 

(p,q) and weight w E R (with respect to {oE,1'(x))) as a tensor (field) 

Q'T(x) E Tf\ (,M) whose local components Q'Ti(.r) are referred to bases like 

{1/,E(x)lwrEf(x)}, where 1/,E(x)l is the Jacobian belween the above bases. 

i.e. 1/,E(x)l := det (/,E(x)), /,E(x) := [<h\/ih-6]. So. we have 

:;'T(x) = 0'T,f(.1:li/,E(.rJI",Ef I 6.11) 

It is easy to verify that the compon('nts of thE> so defint•d t<'nsor densities 

have the accepted transformation lav .. · [14, ch. II. SC'n. SJ. C'ollS('qiiC'lltly. th€' 

both definitions are equivalent. 

\Ve shall mention only two features of the tC'nsor-density casf'. 

(i) There exists a class of transports along maps likE' 'I : IR x .\' - ,\1. 

i.e. K(v,l)-tw.m)' V, WE R, l, m E N, which ma.p tensor densit.i<'~ of weight 

v at one potnt into such of weight w a.t. another point.. For t hC'Sf' transports 

the results of Sect. 3 are valid, in particula.r, for N ==.\!and '1 :::= idf.x!ll we 

have the case ronsidered in example 3.1 (with A== IR). 

(ii) Of course, one can differentiatE' a tenf>or·densit.v fi<'ld as t<'nsor fi('ld 

using (6.11), but this operation does not lead dirC'ctly to what one f'Xpects. 

In fact, applying ( 4.5), one finds 

'De, (~'T) = [iJ~a (:;'78(x(l))) + afb~(l;x) (o'Tf(x(/)))]\!,E(x(/)J\" x 

X ,E{5(x(l)) + :;'T(x(l)) (i&E<x(l))r"' a~a lbE(x(/)1\"). (6.12) 

The term in parentheses in the last term is equal to 1PiF In ]bE(.r.{l))j whirh. 

due to ( 4.8), can be written as 

-1V (!r~;(l; x)- ~r~;(l; x)) = +w (:r~''(l: x)- ~r;;~(l: >:).). 

where the points in the gamma's sta.nd inst.e<~d of th<' ah~('llt illdir<'s. 

Here and above ~r£i(l;x) an.' the compon<'nts of"P i11 th<' !msis { 1E~}. 

i.e. 
ve,(E~) = :rS~(l;xlrEP<x(l)). 
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and or .. -:= 0 f···i A_ A. So if we put P-(l: ><) := 1 f 0 (I; x). p+(l: x) == 
a. ••. a ... l£8 -a£8 ' a . a .,.. " 

!f~e>_(l; x), and 0P1t(l; x) :== pa±(l; x)J,E~=t>EJ, we get 

v;:,(Q'T) ± w (0P,±(I; x)) (Q'T(x(/))) = [a~' (!J'T8 ( x(/) )) +; r£·~(1; x) X 

X (!{'T}'(x(l))) ± wP,±(I;x)(0Td(x(l)J)) [/,E(x(I)Ji'" ,E{'(x(l)). (6.13) 

Thus the operator ( 4.3) when applied on tensor density fields produc~s, 

of course, tensor fields which, generally, are not tensor density fields as 

by (6.12) their components wjth respect to the corresponclin~ bases depend 

on them in a way diifen~nt from that of tensor densities. On the contra-ry, 

the right-hand-side of (6.13) js a tensor density field whose components, 

following (14, ch. V, Sect. lJ, should be identified with thosf' of the a-th 

partial (plus or minus} derivation along the map :x of the initial tensor 

density field; the components of this derivation being defined b~, the r.h.s. 

of (6.13). 
It can be proved that when xis a path and the transport along it is a 

parallel transport assigned to a covariant differentiation (linrar connection) 

(see (2, p. 19J), tl1e components of the r.h.s. of (6.H) coincide with the 

cova.riant differentiation along the tangent to the path vector fit>-ld of the 

initial tensor density field (see [14, ch. V, Sect. 1]). 

In the special case when P'o" :;:::_ r~~- we have p~ :::. -JH. i.e. the defined 

derivation is unique. 
The appropriate approach to the derivation of tensor density fields is 

based on transports of tensor densities mentioned in (i) and the general 

theory of Sect. 4, but this wm be done elsev .. ·here. 
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