


1 Introduction

In previous papers (see, e.g., [1, 2]) we have studied the transports along
paths in fibre bundles. In them is not always essential the fact that the
transports are along paths. This suggests a way of generalizing these inves-
tigations which is the subject of the present work. ‘

Sect. 2 gives and discusses the basic definition of transports along maps
in fibre bundles. Sect. 3 studies in details the case when the map’s domain
is a Cartesian product of two sets. Here presented are certain examples too.
Sect. 4 is devoted to linear transports along maps in vector bundles. Partial
derivations along maps are introduced as well as the general concepts of cur-
vature and torsion. It is pointed out how a number of the already obtained
results concerning linear transports along paths can mutatis mutandis be
transferred in the investigated here general case. Sect. 5 investigated, in
analogy with [3], the consistency (compatibility) of transports along maps
in fibre bundles with bundle morphisms between them. Sect. 6 closes the
paper with a discussion of different problems: An interpretation is given
of the obtained in Sect. 3 decomposition of transports along maps whose
domain is a Cartesian product of two sets. A scheme is proposed for per-
forming operations with elements of different fibres of a bundle as well as
with its sections. It is proved that the Hermitian metrics on a differentiable
manifold are in one to one correspondence with the transports along the
identity map in an appropriate tensor bundle over it. At the end, some
remarks concerning tensor densities are discussed.

2 The basic definition.
Special cases and discussion

The fact that 7 is a path in definition 2.1 of [1] for a transport along paths
in fibre bundles is insignificant from a logical view-point. This observation,
as well as other reasons, leads to the following generalization.

Let (E,7,B) be a topological fibre bundle with base B. total space £,
projection 7 : E — B, and homeomorphic fibres 7 ~1(x), * € B. Let the set
N be not empty (N +# 0) and there be given a map »: N — B. By ida is
denoted the identity map of the set M.

Definition 2.1 A transport along maps in the fibre bundle (E,=,B) is a
map K assigning to any map »x : N — B a map K*, transport along »,
such that K* : (I,m)— K[, where for every l,m & N the map

K om o) = 77 (e(m), {2.1)

l—m

called transport along » from [ tv m, satisfies the equalities:

Kr_ o okr.,, = K, Lmnel (2.2)
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Kp, = ideaqny, €N (2.3)

The formal analogy of this definition with definition 2.1 of {1] is evident.
In particular, if » is a path in B, ie. if N is an R-interval. the former
definition teduces to the latter. The two definitions coincide also in the
flat’ case when N = B and » = 7dp. In fact,in this case I}, = I\-i:isa)—'v(ﬂ
for a path v : J — B, J being an R-interval, s,t € J, defines a transport
along paths in (E,7,B) which depends only on the points y(s) and ¥{t) but
not on the path -y itself. On the opposite, if Tis a transport along paths
having the last property, then 1\’;‘:?)__?{1) := I7 , is a transport ajong the
identity map of B in (E,w, B). By [4, theorem 6.1] the so defined transports
along paths are flat, i.e. their curvature vanishes in the case when they are
linear and (E,7,B) is a vector bundle. Due to these facts, we call the
transports along the identity map flat transports.

The general form of a transport along maps is given by

Theorem 2.1 Let x: N — B. The map K : % — K% {l.m) Ki.
I,m € N is a transport along » if and only if there exist a set Q and a family
of one-to-one maps {Fy : 77 x(n)) — @, n € N} such that

Kfon = (Fay Vo (F), LmeXN. (2.4)

The maps F* are defined up to a left composition with 1:1 map depending
only on x, i.e. (2.4) holds for given families of maps {Fr a7 Yx(n)) -
Q, n € N} and {/F7 : 77 (s(n)) =’ Q. n € N} for some sefs Q and Q iff
there is 1:1 map D* : Q —'Q such that

'Fr = D*oF,, né€N. (2.5)

Proof. This theorem is a trivial corollary of lemmas 3.1 and 3.2 of [1] for
On = 7Y x(n)), n € N and Rpown = K ImeEN. B

The formal analogy is evident between transports zlong maps and the
ones along paths. The causes for this are definition 2.1 of this work and [1,
definition 2.1], as well as theorem 2.1 of the present work and [I, theo-
rem 3.1]. Due to this almost all results concerning transports along paths
are valid mulatis mutandis for transports along maps. Exceptions are the
results which use explicitly the fact that a path is a map from a real interval
to a certain set, viz. in which special properties of the R-intervals, such as
ordering, the Abelian structure (the operation addition} an so on, are used.
This transferring of results can formally be done by substituting the symbols
sforv, Nfor J, Kfor I, ,m,n € N for r,5,¢ € J. and the word map(s)
for the word path(s).

For example, definition 2.2, proposition 2.1 and example 2.1 of {1} now
read:

Definition 2.2 The section ¢ € Sec(E,w, B) undergoes a (K- jiransport or
is (K-)transported (resp. along s : N — B} if the equality

a(x(m)}y = K no(sl)), {,meN (2.6)
holds for every (resp. the given) map »: N - B.

Proposition 2.1 If (2.6) holds for a fized 1 € N, then it is valid for every
leN.

Example 2.1 If (E,=,B) has a foliation structure {Kg4; a € A}, then the
lifting %, : N = Eofsx:N— B through v € E given by

(1) 1= 1 (N Kagups
where K,y 3 U, defines a transport K along maps through
K () i=5(m), ue€ (D)), Lm e N,

On the transports along maps additional restrictions can be imposed,
such as (cf. {1, Sect. 2.2 and 2.3]):

s the locality condition:

N g LmeN CN; (2.7)

t—m
s the ‘reparametrization invariance’ condition:
K = KXy rimyy forl:lmap7: N' o N, LmeN"; (2.8)

o the comsistency with a bundle binary operation § : ¢ = 3, * € B
(e.g. a metric, i.e. a scalar product):

Bty = By © (Kilam ¥ Kl ) . {29)
for Byt w3 (&) x 7~} &) — M, z € B, M being a set. ¢.g. M=R, G

o the consistency with the vector structure of a complex {or real) vector
bundle:

K 2 Qut po) = ALt K0, MpeClorR), wv € 7 (1))
(2.10)

The last condition defines the set of linear transports along maps.

Examples of results that do net have analogs in our general case are
propositions 2.3, 3.3, and 3.4 of [i]. But the all definitions and results of
Sect. 4 and Sect. 5 of [i] have analogs in this case. They can be obtained
by making the above-pointed substitutions.
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3 The composite case

Of special interest are transports along maps whose domain has a structure
of a Cartesian product, i.e. maps like 5 : N — B with N = A x M,
A and M being not empty sets. In this section, transports I{Z’” ()
along n s Ax M — B are considered and their general form s %ounlé.
Here and below a,b,c € 4 and 2,9,z € M. By n(-,z) : A — B and
n{a,-): M — B are denoted, respectively, the maps 7(-,z} : a — 7{a, x)and
na, ) 2 (e 2),
Applying (2.2), we get

o K7

(a.r)— (b}’ (3.1)

Koy = Ko=) © Klaa)~ea) = Ko=)
Using (2.1)~(2.3), we see that K, = Ix’Fa‘r]ﬁ{bll_) and (K1, =
I(E’mx)_.(a‘y) satisfy (2.1)-(2.3) with, respectively, » = 7, I = *K, I = a,
m = b, and n = ¢ and »x =1, Ke= K, I=z,m=yg and n==z Con-
sequently, a transport along n decomposes to a composition of 1wo (com-
muting) maps satisfying (2.1)-(2.3). Note that if the locality condition (2.7)
hotds, then these maps are simply the transports along 5(-.x) and n{a,).
So, applying lemma 3.1 of 1], we find

H) o (HD), K] = (G o ("GT), (3.2)

71 —_
K {e,z)—(bx) — ( {a,z)—(a.w) ~

where ZHZ : 7=} (n{a,z)) — Qx and Gz 1 77 (n{a, 7)) — Q¢ are 1:1 maps
on some sets Qy and Q¢ respectively. {The maps =H? and °Gy are defined
up to a left composition with 1:1 maps depending on the pairs x and 7 and
a and 7 respectively - see [1, lemma 3.21.)

The substitution of (3.2) into (3.1) yields

(HT) ™ o (WHIY 0 ((GY) T 0 (GR) =
= (61 o (G o (FHY) T o (PHD).

Separating the terms depending on z and y in the second equality, we see
that there exist one-to-one maps C_, : Q¢ — Qa which are independent
of z and such that :

(tG2) o (GHY) ™ 0 (HD o (61 = Cly (3.4)

-1 .
K {o,z)—(b) (3.3}

1t is trivial to check the equalities C_, = Cl_,oCd—cand Chy = idgg-
Hence, by {1, lemma 3.1], we have cl, = (C.'t’;")'"1 o with certain 1:1 maps
G Q¢ — Qo (defined up to a left composition with a map depending
only on 7 {1, lemma 3.2]) on some set Q¢ . The substitution of this result
into (3.4) and the separation of the terms depending on @ and 4. shows the
existence of 1:1 map D2 : Qu — Q¢ depending on 7 and w. for which

CHDY o (G o (€D = (DD (3.5)
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Hereout
THY = (D1) e Co (%G1 or Gl = (CY o Do PHY).  (3.6)

Substituting (3.6) into {3.3), we finally, in accordance with {2.1). get

- W -1 " -
T (F(b.y)) ° Fan (3.7)
with

F'  =Clo(°GD)= DIo("H]):  placey — Q. (3.8)

(azx)
As we noted above, the maps *G7, “HZ, and ¢ are defined up to the
changes
°GT — PR o ("GY). THD — TPl o (THY). (3.9)
and CJ — Pl o Cq, respectively, where Pl Qe — Qo TPy Qu —
Qn, PL: Q¢ — Q¢ are L1 mappings. The transformation concerning Ca
is valid if C7_, is defined independently. But this is not our case. Due
to (3.4} the changes (3.9) imply Cr_, —PLo g ol 3)_]. To describe
this transformation throngh Cy we must have

Cn - PLoClo (PP (3.10)
From (3.5} it is easy to verify that the transformations (3.9 and (3.10) imply
DI — PloDle("P) 7. (3.11)

At the end, according to {3.8). all this leads to the change
F["n‘r] — Plo F(’f”}. {3.12)

as should be by {2.5).

Together (3.9)-(3.12) form the set of transformations under wlich our
theory is invariant.

Thus we have proved
Proposition 3.1 The set of maps {I\'E’m‘]_(b_y)} forms a fransporl along
n:AxM — Bif (37) and (3.8) are valid for somc 121 nwaps shown an
the commutaiive diagram

GG?

71 (n(a, ) Qa

I:\n
{a.r)
Ty 7 ¢ (3.13}

Qu Qc
Dl

WA



that are defined up to the transformations given by (3.9)-(3.12).

Remark. In fact HJ and 6% determine the srestricted” transports
B ajmtprm) and K, 1) through (3.2). In the case when the locality
condition (2.7) holds for x = 7, they are equal, respectively. to the transports
K:(_:':) and K7 along the restricted maps 5(-, &) and n(a.-). Note also
that if Q. Qx, and Q¢ are regarded as different typical fibres of (£, 7, B),
then the shown maps represent different ways for mapping a concrete fibre on
them. This interpretation is more natural if one puts Qg =Qn = Qc = @,
(} being the typical fibre of (£, 7, B). This is possible due to the arbitrariness
in °G7, *HZ? and CJ.

Example 3.1 Now we shall prove that the considered in [5] transport in
a family of (vector) bundles {0 & = {Eo.7ma M), a € A} over one
and the same hase (manifold) M defined by the maps abf ., wN2) —
ﬂ'b_l(y), such that E"ny_.,_ o"'bfz_.y = e, and Up . = idﬁilr], is a
(Rat) transport along the identity map of the base of a suita bly chosen fibre
bundle.

A given family {(Eayma, M), ¢ € A} of fibre bundles over one and the
same base is equivalent to some fibre bundle (E, 7, Ax M) over the composite
base A x M. In fact, if {{ Ea, s, M), a € A} is given, we construct the fibre
bundle (E,x,A »x M) by putting

E = U E., pi B Ax M, w(u)= {8y, 7, l0))
acA

where v € E and a, is the unique ¢, € 4 for which E,, 3 . Conversely, if
(E,r,Ax M) is given, we can construct {(Ea. 7o, M), a € A} through

E, = U " Ha,z), o : E,— M, ma(u)=2u.
zeM

wherea € A, v € E,, and 2, I8 the unique z, € M for which # Y a,2y) 3
u.

Now it is trivial to check that the above-defined transports are °'bfr_.y =
I(Ej;’)‘f(b g e they are equivalent to the (flat) transport along the identity
map idaxp t A X M—AxMin(E,m, Ax AM).

Example 3.2 The described in the previous example general construction
can be specified in the case of a flat transport in the fibre bundie of tensors
of a fixed rank k € NU {0} overa differentiable manifold M as follows.

Let A, = {{p.q) : m4¢ € Nui{el, pt+te = r} and T, (M),
(p,q) € A, be the tensor space of type (p,y) over © & A, The ten-
sor bundle of type (p.q) Is {pg) = (Té’(.‘\{),rr(p'q),M) with TH(M) =
Usens T71, (M) and T(pg)(u) = &, foru € TF| (M). = being the unique
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z € M for which T?|, (M) > u. The tensor bundle (T.(M),mr, Ar ¥ M)
of rank r is constructed by the above scheme: To(M) = Upaea, (M) =
Upigmr Uren Til; (M) and mo(u) = ((prg), &) for u € Tr(M) with (p,q) €
A, andz € M being defined by TP| (M) w. Son!((p, q),x) = waq)(:c) =
77|, (M)- Then the desired transport along ida, xas Is described by the maps
oA Prg=p'+¢"=r #',z" € M satisfying the rela-

MR ORI (g b
tions:

~idarx M .
K {(pha' o)~ (""" )"}

7| o0 - T,
II IJ'

T ,id,‘er T ":dAer _
I‘((pn'qn)’mn)__‘((pm‘qm)‘zm) o I‘((plﬁql)‘rl)_.((prl,qlr}’rlf) =

— rpidarss
= I‘((pf’ql)‘xi')__.((plf"qlﬂ)‘IIH)5

rrridarx :

I‘((ﬁq’fﬁ‘)—o((pﬂq’)m’) = ’dT;’,’ (M)
pl + ql' = pﬂ‘ + qﬂ - pn'fl + qu — 7‘, * ‘,vl'“.,l:-'f,:z:”f E f‘f[.
Example 3.3 Every transport along =" : M — M'ina bundle (Eqg, 7. M')
induces a transport along »' x ' for s A — A'in any bundle (E,m, A’ X
M") for which the fibres w4 a', ') are homeomorphic to w5 (y') for any
o € A and 2,y € M'. In fact, by example 3.1, (E, 7, A’ M") is equivalent
to the family {£ar = (Eat, Tar, M), a € A"Y with Egr = Ugrear =Y a',z")
and wo{u) = &’ forv € 7~(a', ). As the fibres of all the introduced fibre
bundles are homeomorphic there are fibre morphisms {Rq, idyp) from £gr on
£o, ie. hy t Eor — o and 7, = % 0 hgr, @' € A’ Then it is easy to verify
that the maps

I{ st X ™

-1
{a)— () " (h*’{b)ln-*(x'(b).x"(yn) ©
° (h"'(")iw‘l(x'(a)‘x”(x])) ‘ W_l(zr{a)3x”{z)) - W_i(xl(b)! :"”(y))

define a transport along »' x »" in (E, 7, A x MT).

Example 3.4 This example is analogous to example 3.2 and is obtained
from it by replacing p and g by integer functions over M.
Let f.g: M - NU{0}, f+g=r¢€ Ny {0}, and

e = (fﬁ;fu,f),a.-f,g,M), (M) = | T;'(gj)lx(m and 7y o(u) = 2
!

zEM

for u € Tj((j)}\ {M). The transports along maps in the so defined fibre
z

bundle preserve the tensor’s rank, but, generally, they change the tensor’s

type.



4 Linear transports along maps

In this section £ := (E,m,B)is supposed to be a complex (or real) vector
bundle.

As we said above, a linear transport (or L-transpor!) wlong maps
a vector bundle is one satisfying eq. (2.10). For these transports mutalis
mutandis valid are almost all definitions and results concerning linear trans-
ports along paths in {vector) fibre bundles [2, 6, 7, 8. This is true for the
cases in which the fact that a path is a map from a real interval into some
set is not explicitly used. In particular, by replacing the path v : J — B
and the linear transport along paths L] _,. 8.t € J with. respectively, a
map » : N — B and a linear transport along maps LiT .. {.m e N, one
obtains a valid version of sections 2 and 3 of {2], section 3 to proposition
3.3 and section 5 to proposition 5.3 of [6], and sections 1. 2, and 4 of [8].
The other parts of these works, as well as [7), deal more or less with explicit
properties of the real interval J, mainly via the differentiation along paths
D" (or DY) [2]. These exceptional definitions and results can. if possible, be
generalized as follows.

Let N be 2 neighborhood in R¥, k € N, e.g. one may take N = Jx- -xJ
{k-times), J being a real interval. So, any [ € N has a form [ = (..., I e
R*. We put g0 1= (0,... .0,8,0,...,0) € R¥ where £ € R stands in the a-th
position, 1 < a < k.

Let SecP(£) (resp. Sec(£)) be the set of C? (resp. all) sections over § and
Ly . bea C* (on 1) linear transport along » : N — B. Now definition 4.1
from [2} is replaced by

Definition 4.1 The a-th, 1 <a <k partial derivation along maps gencr-
ated by L is @ map JD 1 D where the a-th (partial) derivation along
x (generated by L) JD* is a map

an H SeCl (EIX(N)) — Sec (E]X{N)) (41)

defined for o € Sec’ () by
(D%0) (D)) = limy E (Lfyeo a1+ €)= a(x(m)] L4

The (partial) a-th derivative of o along = with respect Lo L is ;D*o. Ils
value at =(1) is given by the operator

D« Sect (€)= 7 (D) (4.3)

by Diio = (D7) (1))

Evidently, for & = 1 this definition reduces 10 definition 4.1 of [2].

On the basis of the above definition, almost all of the above-mentioned
exceptional definitions and results can be modified by replacing in them
y:J — B, L]_,, D", and D7, respectively with = : N — B. Ly .. D"
and . Df - Below we sketch some results in this field.

A corollary of (2.2), (2.3). and (4.2) is

Proposition 4.1 The operators 2D are (C- finear and
pr.oly., =0 {4.4)

If {e;} is a field of bases on (N Le. {e;(n)} is a basis in 7 Ha{n)).
n € N, then in it the L-tra.}:.sport. L along maps is described by the matrix

H(m,lix) = IHJ;(m,I;x)]V _nE dime{x (1)), which is defined by
1=

Lj‘_,me,-(l) =: H{-(m,l;x)e_,-(m). A simple caleulation of the limit in {$.2)
verifies

Proposition 4.2 Ifo € Sec! (€], (ny) - then

et x(1))

o +a1‘",-(1:x}oj(x(1))] el (4.5)

'Dfid:[

where the components of L are defined by

. GHL(L, m; ) SH(m. )
oLl ) = 2 - . 4
i) dme dme (+.6)
. m={ m=f
The components of L satisfy
D6 = (T, e (4.7}
and form k matrices (I, (I} := [uf")(lgx)]i_! La= 1. L which under
. ig=1

the transformation e;{{) = ¢i{I) = A;(l)e,-{l) change 10

}
T = AT TN AW + AT AN (4.8)

aie

with A{l) = [Aj([)], which is a simple corollary of (1.7). Hence, the differ-
ence of the matrices o', of two L-transports along one and the same map
behaves like a tensor of type (1,1) under a transformation of the bases.
On the above background one can mufelis mutandis reformulate the
remaining part of Sect. 4 of [2). In particular. in {his way is established the
equivalence of the sets of L-transports along maps »: N — B.N C R* and
the one of partial derivations along maps. Sect. 6 and the rest of Sect. 3 and
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Sect. 5 of [6] can be modified analogously, only in the last case the tangent
vector field ¥ to y 1 J — M has to be replaced with the set of tangent

. . <!
vectors {ia} to s, (1) 1= (3—6-,&—1) (5‘:—,— x(”) .

The introduction of torsion and curvature needs more details which will
be presented below.

Let M be a differentiable manifold and there be given a ¢ map
NN’ — M, with N being a neighborhood in RF and N’ -in R¥ kK € N
Let n(-,m) : L — n{l,m), (l,) : mo— nli,m) for (I,m) € N x N'. Let
7.(-,m), and o), e Nym€ Noa=1,..,kb= 1..... k" be the
tangent vector fields to n(-,m) and 7(l, ), respectively.

Definition 4.2 The torsion operators of an L-transport along maps in the
tangent bundle (T(M),=, M) are maps Top:n— T0p o N x N — T(M)
which for (I,m}€ N x N' are given by

T tm) o= D) = Do) € T (M) (49)
Similarly, for p: N x N' — B, B being the base of a vecior bundle
(E,x,B), we have
Definition 4.3 The curvafure operators of an L-transport along meps in
(E,=, B} are maps
Rap 0 R, (1,m) = R (Lm): SecX(E,x. B} — Sec(E.7, B)
defined for {I,m) € N x N by
RY (1,m) 1= oD o D) prtt) o DI, (4.10)

The further treatment of curvature and torsion can be done by the same

methods as in [7, 4] (cf. [5, Sect. &)).
In the composite case there arises a Kkind of ‘restricted” partial derivation
along maps generated by L-transports along maps.
Let N = A x M with M being & neighborhood in R* for some k € N.
In this case instead of definition 4.1, we have

Definition 4.4 The a-th, 1 £ a < k, partial derivative of type 3, B € A
along the map » : A % M — B generated by an L-transport L along maps
in @ vector bundle § = (E,m, B) is a map o&2 1 # Bpx where

BD* : Sec? (Elx(ﬂx;\”) — Sec (£|X{AXA,”) {4.11)

is the partiel derivation along » (generated by L) whieh is defined by the
equation

ey e
(5070 (dy2)) == l‘—mo{E(Lta.z+s«)-(,@.ﬂ"(”(“»1‘+f -

- Lf‘mz]__w‘r)a(z(a,m))y\ (4.12)

&

19

-

ST vt

for o € Sec! (flx(AxM}) and (o,x) € Ax M. The a-th (partial) derivative

{of type 8} of o along x with respect of L is Apxg. Its value ai s, z) is
given by the operator

BD{, zoy + Sec! (Elxuxm) — 77 (8,2 ) (4.13)
by Bpf‘a,za)“ = (ED”U) s, z), with a° being the a-th componeni of © €
M C R

For A = @ this definition reduces to definition 4.1.

Notice that the operator 2571 used in (5, eq. (7.14)} is a special case
of Bp*, viz. (ibV{,(a)) (a,2) = L, V' (tDidm o) (a,x) fori=1,... dim M,
abe A, ¢ € M, M being 2 differentiable manifold and V' being a vector
field on M with local components Ve

Now the corresponding results from (2, 6, 7, 8] can be modified step
by step on the basis of definition 4.4 in the above-descrihed way, where
definition 4.1 was used.

5  Consistency with bundle morphisms

The work {3} investigates problems concerning the consistency of transports
along paths in fibre bundles and bundle morphisms between them. A critical
reading of this paper reveals the insignificance of the fact that the transports
in it are along paths; nowhere there is the fact used that the path v is a
map from a real interval J into the base B of some fibre bundle. For this
reason all of the work [3] is valid mutatis mutandis for arbitrary transports
along maps; one has simply to replace the transports along paths, like PRV
y:J — B, st e J, with transports along arbitrary maps, like K[, s
w: N — B, Im€N. Below are stated mutatis mutandis only some
definitions and results from {3]. There proofs are omitted as they can easily
be obtained from the corresponding ones in [3l.

Let there be given two fibre bundles & = (En,7h Bi), h=1,2in
which defined are, respectively, the transports along maps 11 and %K. Let
{(F,f)bea bundle morphism from & into {z, te. FiE — Eqy f:B1
Byand mpo F = fom [9). Let Fi:= Fl"f’(i‘) forz € Byand s: N — B1
be an arbitrary map in Bi.

Definition 5.1 The bundle morphism (F, f) and the pair (1K, %K) of trans-

ports, or the transports 15 and 2K, along maps are consistent (resp. elong

the map x) if they commute in a sense that the equality
Fx(m) o} 1]3,’;‘_‘”! = 2](,"3:; O L oy(lys I,m € N (51)

is fulfilled for every (resp. the given) map .
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A special case of definition 5.1 is the condition (2.9} for consistency
with a bundle binary operation {in particular, a bundle metric). which is
obtained from it for: 1 = (E,n,B) x (E,=,B), &2 = (M, 7o, mo) With a
fixed mg € M, mo: M — {mg}, Fr = B with z € B, f:Bx B — {mg},
K, = Ki, x Ki,, and I = idpy

Let, in accordance with theorem 2.1 (cf. [1, theorem 3.1]), there be chosen
sets (1 and @ and one-to-one maps "F}:" s w17 alla)) — @ h=1,2,
which are associated, respectively, with the maps »x : Np — By, In €
Ny, h=1,2and are such that (cf. (2.4))

T

-1
= (*Fm) T oE, lh mn € N h=1,2. (5.2)

Proposition 5.1 The bundle morphism (F, f) and the pair (1. 2) of tran-
sports along maps, which ave given by (5.2) by means of the maps 'F and
2R, are consistent (resp. along a map ) iff there exists a map

Cols, fox) 1 Q1 — Qo (5.3)
such that
F — (2Ff°")_1 pEnrY
)y = UF o Colx, fox)o 'E), {5.4)
or, equivalently, that
Fup = K15, 0 Cligy = fo %) 0 K (5.5)

where I € N is arbitrary and
C(lo; Y e (QFJOx)'*l 1
Daxafo'/') = lo OCO{M,fOX]O(FIU) (56)
for every (resp. the given} map .

Let there be given two fibre bundles & = (Eh,frh,.B;,). h=1,2 We
define the fibre bundie &o = (Eo, o, By) of bundle morphisnis from §; onto
£, in the following way:

Eo = {(Fy, [): By (b)) = 27 (f(b1)), by € By, 1B — By}, {5.7)
WQ((Fbl,f)) = bl, {Fbl,f) S Eo, b1 & B]. (58)

Tt is clear that every section {F, f) € Sec({épj is a bundle morphism from
£y into £ and vice versa, every bundle morphism from &; onto £, is a section
of £&5. (Thus a bundle structure in the set Morf(£;, €2) of bundle morphisms
{rom £ on £z is introduced.)

I in & a transport K along the maps in By is given, then. according
to definition 2.2 (see eq. (2.6)), the bundle morphism {F.f) € Sec(fo) is
(K -)transported along x: N—-Bi :

{Fx(m)vf) = I{f—‘m(Fx(l)a f} l,??le N. (59)
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Given in £; and £, the respective transports 15 and 21 along the maps
in By and Bz respectively, they generate in §o 2 -natural” transport %K
along the maps in By. The action of this transport along » 1N — By on
(Fupr ) € 7y (=(1)) for a fixed | € N and arbitrary m € N is defined by

o (Feys 1) 1= (B 0 Fatn © K §) emsixmn. (5:10)
Lemma 5.1 If (F.f}€ Sec(&o), then (5.1) s equivalent to
(Frgmp £ = O ¥l Futys f)- I,m € M. (5.11)

Proposition 5.2 The bundle morphism (F. [} and the pair {1K.*K') of tran-
sporis along maps are consistent (resp. along the map >} if and only iftF.f)
is transported along every {resp. the given) map with the help of the de-
fined from (*K.2K) in Lo transport along maps O

6 Concluding discussion

(1) The substitution of (3.8} into (3.7) gives

=3 - -
Koy = (100) 7 0 CLyoG = I Dy e U (6.1)

where (cf. (3.4})

n = (O e Gl Qe Qo pr, = (D) e DY Qn — Qu
{6.2)
are ‘transport like’ maps. From them transports along the identity map
in corresponding fibre bundles can be constructed. For instance. for Di—y
this can be done as follows. Consider the fibre bundle (M x Qy.7. M)
with 71(z,4) i= %> (z,q) € M x Qy. Hence 7.'1'1(.1') = {x} x Qu. Defining
P :{z}xQy — QH by Po(a,¢) 1= ¢, we see that Dy, = prto DiyoPr
is a transport along idp in (M % Qu.my. M) It depends on i as on 2

parameter. Consequently, we can write

Kl o = (P o¥HNY o Dp o, o (PT e HD (6.3)
This decomposition is important when P7l o Hi is independent of
¢ € M. Such a situation is realized in the special case when B = A
M' and 7 = 7' x " with A= A and 9+ M — M7, de. for
{some) transports along o' x 4" in (E.m, A" »x M. According to exam-
ple 3.1 the fibre bundle (E,m. A" x M) is equivalent to the family {&ar
£ = (Ea'aﬂ'a‘vﬂﬂ), Eu = Uflemrﬁ_l(ﬂl-m’). Talu) = af for e €
o' 2", o €A} Let €0 = { Eo.7o, M') be any fibre bundle for which
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there exist bundle morphisms (hqr, idagr) from &y into &g. 1. har @ Egr — Eq
and 7p = Tp o hary @ € A'. (The existence of §o and h,s is a consequence
from the fact that the fibres of all the defined bundles are homeomorphic:
e.g. one may put §o = &y for some fixed &' € A".)

If 0]{;‘1y is any transport along »"in &g, then a simple calculation shows
that

= hjhyy 0 Oy 0 hurga) (6.4)

defines a transport along »' x »” in (E,x,A"x M"). The opposite statement
is, generally, not valid, i.e. not for every transport along »' x »" in the fibre
bundle (E,7, A’ x M') there exists a decomposition like (6.4).

1x' x x" .
Kiam—tbn)

(2) In vector bundles, such as the tensor bundles over a differen-
tiable manifold, sometimes the problem arises of comparing or performing
some operations with vectors from different fibres, or speaking more freely,
with vectors (defined) at different points. A way for approaching such prob-
lems is the following one.

Let the fibre bundle (E,#, B) be endowed with (maybe linear) transport
K° along the identity map of B and, e.g.. a binary operation 3.8 B
rl{z) % x=Hz) — Q for some sets Qs z€ B. The problem is to extend
the operation [ on sets like 7 1(y) x v (2} a5 € B. A possible solution
is 10 replace 3 with {B,} for some maps:

B8, (y.z)— sz s y) % 7 Hz)i— Qs

where
3;"2 =00 {KS_,I x KO_.). {6.3)
For instance, if §» = 7~Y(z) and (E,7, B) is a vector bundle one can
define in this way the linear combination of vectors from different fibres by
the equality

(A + pv)z = AI\’SMIu + kv, hpeC oue 7yl vE 7 Hz)

1t depends on = as on a parameter. If 0 is linear, then (Aw 4+ pvlen =
Ko _ . (du+ po)y, &, x" € B.

Also in this way can be introduced different kinds of integrations of the
sections of {E,7,B)if on Q= corresponding measures arc defined. Viz. if
du, is a measure on Qrand o € Sec(E,n,B), the integral of ¢ over a set
V C E is defined as [ (KO oly)) dpz- This procedure is especially useful

v

in tensor bundles in which there are different possibilities depending on the
wunderstanding of the product of the integrand with the measure. e.g. it can
be a tensor product that may be combined with some cont raction(s) too.
The situation is important when (E.=,B)is endowed with a transport
along maps of a given kind, ie. along x € K, where K is a certain set of
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maps onto B. A typical example of such a set is the set of all paths on B,
te. {y: v:J— B, JCR}

Let for some z € B there be a neighborhood U 3 z in B with the
property that for any ¥ € I/ there are a unigque map »y : Ny~ B, % €K
and a set My G N, such that s lpg, + My — U, #y g, (mz) = 2, and
y |a, (my) = y for some mz,my € M,. A well-known example of this kind
is the case of geodesic paths (curves) on & differentiable manifold endowed
with an affine connection {10, 11].

In such a neighborhood U one can repeat the above discussion {of the
flat case) with the only change that K 3_,I has to be replaced with K ams-

The use of transports along the maps sy has the disadvantage that the
result depends on sg, but as they are unique in the above sense this is
insignificant. If the fibre bundle admits some snatural’ family of such maps,
as the above-pointed case of geodesic curves, the question of this uniqueness
does not arise at all. If the set of maps with the considered property does
not exists or is not unique, then the pointed procedure does not exists or is
not unique and, consequently, one gets nothing or not a ‘reasonable’ result,
respectively.

(3) The class of Hermitian (resp. real) metrics ona complex (resp.
rea}) differentiable manifold M turns out to be in one-to-one COITeSpon-
dence with the class of flat linear transports in the tensor hundle of rank 1
over it (see example 3.2). Below is presented the proof of this statement.

The tensor bundle of rank 1 over Mis

(T30 T, m, {(1,0), (010} % M)

with m1(x} = ((p,ghz)} for u € TP (M), p+ ¢ = 1. According to proposi-
tion 3.1 there are the following four kinds of transports along id{(1,0),{0,1)} xM*

by = LGN SF R = GeGn (60
o - LASDREN | E0E =070 (6D
[10, = LhGREMmEY = tFoFy =Gyl €16 € 0 G,y (6.8)
o1, = Leme o B ey = GrtoCe oG, (6.9)

Here, for brevity, we have put: Fz := Fiji o)) = CoGy "Fyi= F{ib.n,z) =
oGy, G 1= 009Gy, G; 1= NG, C:= C(i,o)v C = Cigay where
the dots (...) stand for idq,0),(0,0)}xM- These maps act between vector
spaces and are linear because of the linearity of the considered transports.
Let in all vector spaces, as well as in the fibres To{M) := T(}Ix(M) and
Tr(M) = Tf’lI(M), z € M, some bases be fixed in which the matrix of a
map X € {Fzy “Fr, Ga, ‘G C, C, 10} will be written as (X1
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A (fibre} Hermitian (resp. real) metric on Misg:a— gz 2 € M.
Here g; @ To{M) % To(M) — C (resp. R) are 13 linear (resp. bilinear),
nondegenerate, and Hermitian (resp. symmetric) maps [12). Let in the
above bases the matrix of gz be G{z); we have det G(z) # 0 and Ghax) =
G(z) (resp. G (2) = G(z) as in the real case Gt = GT), where t (resp. T)
means Hermitian conjugation (resp. transposition), 1.¢. transposition plus
complex conjugation (denoted by a bar). Because of this there js a unitary
(resp. orthogonal) matrix D(z), ie. Dt = D71 (resp. DT = D), such
that G(z) = DY(2)Gp o D(z) With Gpg := diag(+1,:--,+1,—1....,—1) for

: p—times g—times
some unique p,q € NU{0}, p+ ¢ =dim M [13).
Now the idea Is to interpret the maps (6.8) for y = x as metrics.
In fact, if for u,v € To(Af) we put gz(u, ) = (golu, )7 with

ge(n, )= L0 u € THM), (6.10)

we find G(z) = [Fs)~?[Fz]- This matrix will be Hermitian if, e.g..we choose
(R = (B de FOU = FI. which leads to (Li—g)' = Li_s In
particular, we can choose 21 = ¢t and G = &1, For this selection the
maps {6.10) form a Hermitian metzic on M.

Conversely, let there be givenr an arbitrary Hermitian metric g with
G(z) = DH)Gp o D{(=): pt = D. Take some constant unitary matrix A
(AT = A=) and any C for which [CN[C) = ATGpqA. Let us define {*C] :=
((C)H*. Putting {Gz] = AlD(x), from Dt = D we get [G)1 = [GL)7h
At last, define in a fixed basis ['Gs] = (G2 (GZ' = G1). Thus we have
constructed a transport along id{(1,0)(0.1))xM with [Fe] = [C1AtD(z) and
["Fi] = ([C'}t)-1 A'D(z). In particular, we have (L2, = DHG, D),
so that [L32:] = G(z).

In this way we have proved

Theorem 6.1 The class of Hermitian metrics on a differentiable manifold
is in one-to-one correspondence with the class of transports along the identily
map in the tensor bundle of rank 1 over that manifold which have decom-
positions like (6.6)-(6.9) in which *C-1 and "G (and, hence. "F71) are
Hermitian conjugate to C and Gz (and F) respectively.

(4) The problems concerning linear transports along maps in the
tensor bundles over a differentiable manifold can be investigated in the same
way as in [6, Sect.3] in which the text hefore proposition 3.3 remains true
mutalis mutandis in the considered in the present paper general case.

(5) At the end we want 0 pay attention to tensor densities. Usu-
ally [14], a tensor density (field} is defined as a quantity which is locally
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represented by a set of numbers (resp. functions) with a suitable transfor-
mation law. Qur equivalent view is that the tensor densities (density fields)
are tensors {resp. tensor fields) that appropriately depend on one fixed basis
in the corresponding tensor space and which are referred to modified (with
respect to the tensors) bases.

Let M be a differentiable manifold and a basis {oEf(:r]} be fixed in
TP, (M), and {1EB(z)} be an arbitrary basis in it. Here A and B stand for
the corresponding multiindeces (e.g. A = (aqs---n0p) B = (heeoos Bz
Crye--Bp = 1,...,dim M). We define a tensor density (field) of type
(p,q) and weight w € R (with respect to {oEZ(z)}) as a tensor {field)
¥T(z) € Tg| (M) whose Jocal components § T4 () are referred to bases like
{13E(2)|*E4(2)}, where |AE(z)] is the Jacobian between the above bases.

ie. J3E(x)] 1= det (JE(z)), 3E{z) = [()1;‘1/816] So. we have
YT (z) = wTA (SB[ ES. (6.11)

Tt is easy to verify that the components of the so defined tensor densities
have the accepted transformation law (14, ch. L. Sect. R]. Conseyuently. the
both definitions are equivalent.

We shall mention only two features of the tensor-density case.

(i) There exists a class of transports along maps like y : R x N — M.
i.e. I\'E’v‘,}_"(w‘m), v,w e R, {,m & N, which map fensor densities of weight
v at one point into such of weight w at another point. For these transports
the results of Sect. 3 are valid, in particular, for N = A and g = idmear we
have the case considered in example 3.1 (with A = R).

(il) Of course, one can differentiate a tensor-density field as tensor field
using (6.11), but this operation does not lead directly to what one expects.

In fact, applying (4.5}, one finds

8—‘3’; (@5 (1) +aTH (L) (a’rf(zum] ARG
d

x 1EE (1)) + 8T (1) ('})E{x(!))l_wW\BE(x(f])Y“). (6.12)

DE@ET) = |

The term in parentheses in the last termis equal to wag In |LE (1)} which.
due to (4.8), can be written as

~w (AT (L)~ 0T 5)) = 4w i) - o DN TE s). ).

where the points in the gamma’s stand instead of the absent indices.
Here and above TS 4(1; ») are the components of T in the basis {,Eff}.
i.e.
E.4 _4 ? 5 ‘D
DR(ER) = JTH B 2hEE ()
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and 9T = 9T | pas s - S0, if we put Frilis) = Ire (i), PF{lis) =
Ire(d; x), and PE(] ) = Pai”;"}l,sgswg- we get

DRETYE w(OBF (1) (FT(x(1) = [5‘% (§75 (1)) + J05 B )
% (TPOAD)) £ wPE ) TS ()] BEG” 1EE (<) (6.13)

Thus the operator {4.3} when applied on tensor density fields produces,
of course, temsor fields which, generally, are not tensor density fields as
by (6.12) their components with respect to the corresponding bases depend
on them in a way different from that of tensor densities. On the contrary,
the right-hand-side of {6.13} is a tensor density field whose components,
following [14, ch. V, Sect. 1], should be identified with those of the a-th
partial (plus or minus) derivation along the map » of the initial tensor
density field; the components of this derivation being defined bv the r.h.s.
of (6.13).

It can be proved that when x is a path and the transport along it is a
parallel transport assigned to a covariant differentiation (linear connection)
(see [2, p. 19]), the components of the r.his. of (6.13) coincide with the
covariant differentiation along the tangent to the path vector field of the
initial tensor density field (see [14, ch. V. Sect. 1]).

In the special case when T = [,% we have P~ = = P* . ie. the defined
derivation is unique.

The appropriate approach to the derivation of tensor demsity fields is
based on transports of tensor densities mentioned in (i) and the genesal
theory of Sect. 4, but this will be done elsewhere.
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