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, The development of knowledge about the nonlrnear phenomena and'
- 'complex systems naturally has- come toa cons1derat10n a general problems of the
. theory of control :by" oscrllatrons and . chaos and mverse problems ‘of. chaotlcu '
. dynamics of : complex systems closely ‘connected - ‘with it. Recently that was. %

v expressed in: growmg 1nterest to such problems from both the theorlsts and thef':_f SR
aPplled researchers R SE R S R
, ‘This work is Just thought to the author to demonstrate practlcal" /
: approprrateness in theoretlcali consrderatron of lnverse problems for breakable ey

171 is used for thls purpose : el ~ ; e

. ‘ Let the requlred stochastlc solutron of a, synthesrzed dynamlcxsystem look’ i

e like the sum rectangular and cosine 1mpulse processes Le. . : S
x(t) zl(t)+z2 (t) R e

‘-‘f,i_»‘At known /1,, 1 12 \'\usmg the ~V1etta formulas [1 fonnula (ll)] constant

‘ '7;,’ }’2 —0 are unrquely deﬁned These coefﬁcrents

_A 1dent1fy a system of drfferentlal equatlons wﬂh nnpulse actlon [l formula (18)]
. Stochastrc decision of the system isx: (t) of kind' (1) at- the followlng mltrali :

; : However, the synthesrzed system 11, )formula ( 18)] is not autonomous that ’
~“as is known, complrcates its practical reallzatron Therefore we shall put a problem',ﬁ
7 of de51gn of the breakable dynam1c system srmulatlng the requrred random process -

B < (t) (l) :

Let us- wrlte the nonautonomous equatlon 1n the form

' 'F Ey 25k5(t—kT)
SR ; "‘—3‘kl . : : VR
toooe The 1n1tral condltlons deﬁne an arbltrary constant in’ the general declslon
,."x(t) “ +c2 cosy}t+ c3 sin 711‘ of the homogeneous llnear dlfferentlal equatlon

o x—F‘ obta1ned from (2) as ded(t kT)

: (,7 i

o , : Accordmg to ‘the’ accepted
‘ ‘-’descr1ptlon (l) ‘in the requlred stochastrc dec1sron x . the 1mpulses of the sme.ﬂ; L

form are away. So, it is necessary to put %( = 0in order to make 23(1) be equal to

zero. The movement on a trajectory x(f)= A(1)+A(1) cosy;t comes true

according to (2) up to a moment t=T-0 when the d-action moves system (2) from
a condition x(T-0) to x (T + 0) on a rule [1, formula (15)], i.e. x (T + 0) =

AV IV x(T+0)=(T-0)=0, ¥(T+0) =y AP +6.  New initial
conditions define coefficients 22(1), Zz(z)in continuous decision: x(¢)= Zl(z) +
+ 22(2) cosyt of system (2) att> T and t < 2T. And so on solution x (t) is restored.
Let us consider its k-th fragment x(r) = 4™ + A cosy t=xi(2),(k-1)T<t<kT. (It
is clear that Zl(k) = Al(k), Zz(k) = A%k)(-—l)k_l). Denoting x(kT) =171, we
calculate values: x(kT)= Z (k) 4 (—l)k _IZ B = Mr—1- The amplitudes are
expressed as follows: Zl( ) = = + 1)/ 2, A(k) (—l)k(r]k ~1x-1)/2. Let
the right end 7, is some function of left one: 7= @ (7x.1) where ¢ is the map

with nonsingular probabilistic measure. Denoting  (77) = %(gp (m)+ 1) it is easy

to find that Zl(k) = (7, _1) and the value of impulse action, for example, at a

moment t=kT: Op = X3 1 (kT +0)— %, (AT -0) =
~ k ~(k

=D PR - a8 = R @D - 4 = @ -y -y

All fixed moments t=kT (k=1,2,...) of impacts in the system are characterized by a
common property: x(k7) =0, Vk. Thus the system (2) can be rewritten in a more

- compact form:

$+7i% =y {S(RWE) - p(E-T))).
Let us integrate the equation from 0 up to te(kT,(k+1)7T). The left hand side
will be rewritten as ¥ + 712 x , the right hand one as

k
72 2, (W(x(T)) — y(x(i = DT)) = 7;* (W(x(kT) - y(x(0))) . The value y (x(kT)) can
i=1
t
be represented in the form of integral I S(x)w(x)dt, whose meaning on an
t-T
interval kKT <t < (k + 1) T remains constant and equal to the (k+1)-th rectangular
amplitude. Therefore the final expression of the synthesized auto oscillatory
system is as follows

E+yix=ri (- w(x))

! 3)
s (x)dt.
t—-T+0
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On a phase plane of variables (x, x ) the solution of the equation (3) looks like an
nonclosed curve made of arches of half-circles (see fig. 1) with centers in points
with coordinates (y (1), 0).

2.

Fig.1.

Along with the realization of random process x (t) of kind (1) (the possible
realization is shown on fig. 2) system (3) forms y (t) - sequence of adjoining to
each other rectangular impulses of fixed duration T but with random amplitudes
distributed on the law p,(x) = j&(y/(z)—x)p,,(z)dz (on fig. 2 y (t) is shown by a

dotted line). Obviously, py(;)(x,t) = p,(x),Vt.
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Fig.2.

The stationary probability density of the stochastic solution obtained by
observation of indefinitely long realization x (t) with the use of the Rozenblatt and
Parsen estimation [2] takes the following form:

I _ p@a L p,(2)dz

1
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Thus, nominating the ¢ it is possible analytically to define a probability density of
the solution x (t). For example, '
2n+1, —l<np<0
p(m) = '
Zn~1, O<np<l.

“)

PV =
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The map ¢ belongs to a class of piece-wise linear maps with uniform probabilistic
measure. Therefore, the iterations #; uniformly cover (-1,1),i.e. p,,(r) 12,1 x|<1..
Substituting these data in (4), we obtain

Pun(2) = 2”1/«( — arcsin Tl ) |z <1 (fig. 3).
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Let us define a power spectrum of the stochastic solution x (t) by use [the
formula (7), [1]. At the same time let-us limit the set of maps @ by ones with an

exponential correlation function of valuesz, : K, (j) = M(m, 14 ;) = 5,?le .

]
As A = 2 T+ M), A0 = (;_ =)/ 2, then
1 .
M(AP 4 = 2 (K (k= p+ 1) = Ky (k= p= 1),
1 1
K 4(P) =5 Kn(p)+ 1 (Ky(p=1)+ Ky(p+1), - ©

| K ()= 3 Kn(p) +5(Ky(p= 1+ Ky (p+ )
Substituting the given ratio in [1, formula (7)], we find
278,(1- R)sin* T
(1-2R cosw T+ R (0 T)* - 7*)’
(I_R')z+(1+R')2(COS[OZT_R')+RI), %
1-2R cosoT+ R

((1-RY +(1+ R)(cosoT - R) )
s 1 1 (L
s (@ T)I ( 1-2R coswT + R} 'y
where Sgi(-t) (w), i=1,2 are Fourier transformations of rectangular and cosine

Sx(l)({‘)) = Sz,(l)(w) + Szz(l) ((l)) -

2
Sz,(l)(a)) = T6:|Sg,(:)(w T)| (

Sy (@) = T6112

forms of impulses.

Power spectrum of the solution when ¢ looks like (5) is easily calculated
under the formula (7) since R;=1/2.

By change of map ¢ is also possible to carry out the power spectrum
control. As power spectrum is the function of a unique parameter R;, the control
reduces to purposeful change of R;.

|
A
/

Let us take the white noise as an example of required random process.
Therefore, we concretize a problem as follows: to find such a value of parameter
R: (and after ¢ ) and a maximal value of frequency @+, the distance function

[Sx(,)(a)*,Rl)—Sx(,)(O)| is less a given A -window of non-uniformity of a
spectrum. It follows from the representation that the function of dependence a» of

. . 1
Ry at various A on fig. 4, for example, we have optimum R; z-g, W« =T Or

f =51 tact.- for a 2 dB window of non-uniformity. Let us tell, for compariéon, a band
of uniformity of power spectrum for noise of the industrial generator G2-57 is
limited by value f =%ﬁm at A =2 dB. |
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The correlation function K,(j) = 0,72 (— 5) of the 7, values stipulates the

map of the following form:



-

-3n-2, —1<77<—%

1 1
——< < —
3 n

* :4—-3’
@ (1) 3n 3

~3+2, -;-sn<1.

So, equation (3) mcludmg the map ¢ has the stochastrc solution x(t) wrth a flat
power spectrum in a max1mally wrde frequency band (0, f act.)-

In course measuremcnts the 51gnals containing 51multancously random and
deterministic components with a given attitude are often required. As a rule
signals of two generators: generator of noise and generator of sine wave signals
should be summarized for this purpose. This problem rather easily can be solved
within the framework of the equation (3) by choice of an appropriate map ¢ ,for
example, of following kind i

2p+3-2a, -l<n<-l+a
@ (M =1-2n-14+2a, -l+a<n<a
2n-1-2a, a<n<l ,
A ratio of deterministic and random components in the spectrum can be
controlled by change a .So deterministic component is absent (continuous
spectrum) a=0,
spectrum consists of both continuous and drscrete parts a=0,5. Let us show it.

Tterations 7, of map ¢, umformly drstrlbuted on ( 1,1) and their

correlation functlon look like:

K()=7 Iq);”(x)xdx =21, 0-2a), > L =000y (®)
-1 .

where 1;_ 1(ﬂ)—— j2B)+5 stgn((pa(ﬂ))f] z((va(ﬂ)) Io(ﬂ)——(ﬂ -1,
Fl-2a

At a=0,5: Ki(j) = —1(0) = - “11 2(0) = {(-1‘)j-21’r-

Vj > 1. The undamped character of therglven correlation function is caused by a
strict periodicity of alternations of’signs (signn,,, = —signy, . Then by calculating (6)
and by substituting in (7) we have S,,(0)=S.(0)+S, (@), where
sin 2L (w—T)2 cos’ of

(w) — 2 + 2 2 -

)

2xr

T

S4(@) = S.(@)Y.d, (e -
r=t

G _

sin® @T

~(aTy

At o=0: K,,(j) 0, Vi1 and S,y (@) = 25,(w)+2T0, has a continuous

component only.
"~ Completely the discrete power spectrum of the solution of the equation (3)
is possible at small change ¢gs(#7), for example, as shown in fig. 5 by a dotted

line. Strictly sine wave oscillations are generated in this case.
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Fig. 5

The synthesized equation (3) can serve as a basis of apparatus realization of .
the random oscillations generator whose simplest scheme of which is shown on
fig. 6. The self-oscillatory system on the inverter and two integrators simulates the
left hand part of the differential equation (3) and of pulses former (PF), analog
storing device (ASD) and nonlinear converter (NP) simulate the right hand part. .
The experimental research has confirmed the basic theoretical statements, i.e. an
opportunity of a formation of the random signals and stipulated control by their
parameters and characteristics.
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Conclusion

The self-oscillating system forming a chaotic impulse process is
constructed. An expression of the stationary probability density -of process as
functions of a map prescribing the chaotic character of motions in the system has
been analytically obtained. A ratio for a power spectrum of chaos is obtained,
control by power spectrum over a wide range: from strictly discrete (case of
deterministic harmonic oscillations) up to continuous (a case of advanced chaos in
system). has been demonstrated. It was shown that the stipulation of probabilistic

measure, at preliminary synthesis of nonlinear map, predetermines a kind of

stationary distribution of the system’ decision. At the same time the power
spectrum of the solution is invariant with respect to a probabilistic measure of the
map. It is determined by Fourier images of the impulses forms and correlation
function for the map.
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