


1 Introduction

1.1 Motivation

The present work continues our study of stationary localized solutions of the AC-driven,
damped nonlinear Schrédinger equation:

W0 4+ U+ 200 P = —iy T — he'™, 1)

Originally proposed as an amplitude equation for small-amplitude breathers in charge-
density-wave materials in the presence of an applied AC field (1], this equation reappeared
later in a variety of contexts. Among these are breathers in long Josephson junctions [2] and
ferromagnetic chains with an applied microwave field {3], and solitons in the rf-driven plasma
[4, 5]. More recently, Eq.(1) was used to describe temporal and spatial soliton propagation
in a single-mode fiber ring cavity in the presence of an input forcing beam [6].

It was demonstrated by a simple semiphenomenological argument that solitons of Eq.(1}
may bind together to form bound states [7, 8]. Independently, a similar prediction was
made on the basis of the adiabatic equations of the Inverse Scattering-based perturbation
theory [9]. Subsequently, these bound solitons were observed in direct numerical simulations
of the full time-dependent NLS equation (1} [9, 8]. However, the above results are only
valid for small h and 4, and either do not discriminate between the two solitons (¥ and
W_) exhibited by Eq.(1) or focus on the stable soliton (¥_) only. The applicability of the
_ collective coordinate approach to the soliton dynamics is not unquestionable either; its main
drawback is that it is only applicable to widely separated solitons. It is fitting to note here
that our results presented below are not always in agreement with the collective coordinate
predictions. '

It is the aim of the present work to study bound states in more detail, and without
assuming the smallness of & and +. Since for v # 0 the system (1) is not conservative, it is
not obvious how one could define the binding energy. For this reason we avoid using the term
*bound state” and refer to these objects as “collective states”, “multisoliton complexes” or
simply “multisoliton solutions”. By doing this we are trying to emphasize the fact that the
multisoliton complexes are not necessarily stable, a property that would be imperative for
bound states. We will study a variety of soliton associations: ¥_ with ¥_ (we denote this
complex ¥(__)); ¥, with ¥, (denoted ¥ p)); Yy, Y(r—1)s ¥(emm), Y(cqm)s Y(rr4) ete

This paper has grown out of our attempts to tie up several loose ends left in our previous
publication [10]. Those open problems concerned the domain of existence of the ¥_ soliton
for large v (v > 1/2). Consequently, in the present article we concentrate on the case of
strongly damped equations, ¥ > 1/2. We are planning to return to the case of the weak
damping in future publications.

The paper is organized as follows. The next two subsections contain some technical
preliminaries: in Sec.1.2 we give explicit formulas for the background flat-locked solution and
in Sec.1.3 introduce the bifurcation measure that will be used throughout the paper. Sec.2
is devoted to the bifurcation of the ¥_ soliton, the problem carried over from the previous
paper {10]. For the case of the weak damping, v < 1/2, we construct the ¥, and ¥ - solitons
as asymptotic series in the vicinity of the upper boundary of their domain of existence. The
asymptotic analysis serves to confirm the numerical conclusions of [10], namely that the
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¥, solution merges with the flat background while the W_ goes over to a finite amplitude
solution decaying as a power law. Proceeding to the strong damping, v > 1/2, we report a
new phenomenon: . instead of becoming a power-law decaying function, the ¥_ soliton turns
into a new branch of three-soliton solutions. This branch appears to be not unique; a host of
other localized solutions is presented in Sec.4. Before that we describe a simple variational
formalism (Sec.3) which is then used to identify different localized solutions as two- and
three-soliton complexes. Our key result is the bifurcation diagram Fig.5 illustrating links
and relationships between all soliton complexes obtained so far.

1.2 Flat Background

As in [10} we fix, without loss of generality, = 1 and make the transformation ¥(z,t) =
e''y(z, ), reducing Eq.(1) to an autonomous equation

et o =+ 2 = iy — . (2)

The advantage is that we will be able to deal with time-independent solutions instead of
periodic ones. The time-independent solutions of Eq.(2) satisfy

oo — P+ 2 = —ivdh — ks (3)

this is the equation that we are going to study in this paper. We first recall briefly some facts
about the flat-locked (or continuous-wave) solutions to Eq.(1), i.e. homogeneous solutions of
Eq.(3). It is convenient to decompose g as ¥o = 1/po €xp (¢6) ; then
i
tanf = T35 0<0<m,.

-and pp is a root of the following cubic equation:

4p5 —4p5 + (1 +4%)po — B* = 0. 4)

Approximate [5, 11] and numerical [12] solutions of Eq.(4) are available for small & and
7. The analysis for general k and 7 is presented in our previous publication [10]. Although
we did not write out explicit formulas for the roots, we identified regions of characteristic
behaviour of the roots on the (h,+v)-plane, and gave analytic expressions for boundaries
between these regions. In fact, explicit solutions can be easily found in reference books; we
list them here since they prove useful in calculations.
An explicit formula for the roots is written in terms of coefficients of the associated
incomplete cubic equation, )
: v+ Py+Q=0,

where y = pg — 1/3, and the coefficients are given by

1 1
P=-(4-2),
4(7 3)

1

and
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The number of real (positive) roots varies with & and 4. Two characteristic regions of 4 can
be identified as follows. '

First, when v < 1/v/3, the coefficient P is negative, and Eq.(4) may have three or one
real positive root, depending on how h compares with hy and h_, where

hy = hi(¥)
1/2
LR IO ®

If h is greater than h, or smaller than A_, the discriminant of Eq.(4),

o-m{) @)

is negative and the equation has only one real root:

1 AN
=91 .
Po=3 ( 3) sin 2a’
1/3
Ctana = <tan g) (|a| < E) ,
2 T4

ﬁw=%ﬁéfn(w$9.

Here positive values of }, a and 3 correspond to & < A_ and

1 1
po< z—=vV1-32

3 3
Negative (), a and S pertain to & > h, and

1 1
po > §+§\/1—377.

If v <1/+/3 and h falls between h_ and hy, the discriminant (6) is positive and there
are three positive roots, 0 < p((,l) < p[(f) < p((,s) :

1/2 )
m_1_,(_P a_T
P =3 2( 3) °°S(3 3)’

vz
@_1_,(_ P a, T
P =3 2< 3) cos(3+3),

1 P 1/2
p((,s) =3 +2 (——3—) cos g,

where

and



where
Q/2
_—(—P/3)3/z (0<a<gm).

1t is not difficult to find the ranges of the above roots:

cosa =

1

-3V1-37< o < oo (1)

1
3
p-(7) < A < i)

11 '
() < < 3+zvVI-3%

where L1
peln) =z £ 5V/1-3% (0

In the second region, when v > 1/\/§ , the coefficient P is positive, discriminant negative
and we only have one real (positive) root:

1/2
po = % -2 <—§> cot 2a,
B 1/3 x
= —_ < —
tan o <tan 5 (|a| = 4) 5

tanf= 5 (—?)m (a<3).

This completes the description of the flat solutions of Eq.(3).

where

and

1.3 Bifurcation measure

In order to describe transformations and bifurcations of solutions to Eq.(3) quantitatively, we
need a real-valued functional which would represent solutions as points in R!. In our previous
publication [10] we used the value [9(0)| as a bifurcation measure. The disadvantage of this
measure is that it is very sensitive to numerically-induced shifts of the solution as a whole:
¥(z) = P(x — o). Also it completely disregards the variation of the soliton’s shape away
from the point £ = 0 while it is the soliton’s “wings” that change most significantly as new
solitons attach to the multisoliton state. For these and some other reasons which will become
clear below, we find it useful to replace the single-point measure by an integral characteristic
of solutions.
Using Eq.(2) it is straightforward to verify the following relation:

dE
¢Y L ovE =
dt+ i ]

o [ {1 B0 9= bl + Gl ) ®)

where
VB [ - el b D)

—ltpof? + |thol* + h{tho + %o) } dex. )

Wihen v = 0, the quantity E is conserved and represents the energy of the system. In
this case it is a natural candidate for the bifurcation measure. We have found it useful to
retain 2 Eq.(9) as a bifurcation measure even in the case ¥ # 0, when it is not conserved.
Although the meaning of this quantity is not so-obvious now, we will still be referring to E
as energy.

When ¢ is a time-independent solntion, we have d£/dt = 0 and Eq.(8) gives a useful
representation for the energy of static solutions:

= [ {0l = 04T = ol
+i4o + o) } du. (10)

2 Bifurcation of the 1_ soliton

We start with returning to a question remained unanswered in our previous publication [10}.
There, we attempted to find, numerically, the upper boundary of the domain of existence of
the 4 and _ solitons.

2.1 Types of the asymptotic decay

In order to find the upper boundary, it is useful to consider first the asymptotic region,
|| — oo. The solitons decay to the value iy exponentially:

a(z) = o ~ TPHI a5 2] - oo,
where p, k > 0 and the complex exponent k = —p + ik satisfles [10]
(K2 = 1= 4fghol” £ VAol = 72 (L)

Both (k%) , are negative for certain l#0]? and hence there can be no solitons with these
asymptotic values. In the region v > 1/v/3 this happens for fyo|* > v/2: in the region
1/2 <7 < 1/V3 both £? are negative for v/2 < [¥ol? < p_ and for |yp|? > py: finally. in the
region v < 1/2 this situation takes place for [¥]2 > py. Next, when [yo|* lies between po
and py (where p_ and py are as in Eq.(7)), one root (£?); is positive and the other one (#%)2
negative. There can, in principle, exist solutions with such asymptotic values. However.
none were found [10]. Furthermore, flat solutions with p_ < [al? < py are unstable [10].
and hence these solitons would be of little interest even if existed,

There are two ranges of |to|? where solitons can exist. The first one is lol* < 4/2 (for
all 7). Here both (x?);2 are complex yielding nonzero p and k. The solitons undergo an
oscillatory decay to the flat background, with the decay rate

o =42 /(1 = 4lol?) + 92 — 4lthl!
pt = ) + 5 .

(12)



and the wavenumber of undulations

/~T _ 4l
k= v W’oi . (13)
2p
For v < 1/2 there is also-another range: 7/2 < |ibo|> < p_. Here both x? are positive, and
solitons approach their asymptotic values monotonically (k = 0), with the decay exponent

P = 1=l — VAl — 7 (14)
The inequality |1o|> < 7/2 can be rewritten as h < h.(y) where
Tha(7) = (=7 +/2) (15)

and now we can summarise our conclusions in terms of & and ~: For small v, v < 1/2, the
. and _ solitons can only exist for A < hy. They exhibit two types of asymptotic decay:
monotonic for k., < h < hy and oscillatory for b < h,. The corresponding decay rates are
given by Eqgs.(14) and (12), respectively.” On the contrary, in the region v > 1/2 the decay
is always oscillatory. Here there can be no localized solutions above the value A = h.. For
k < h., the decay exponent is given by Eq.(12) and the wavenumber of the asymptotic
undulations by Eq.(13). )

2.2 Weak damping, 7 < 1/2

Now we are prepared to discuss soliton transformations in the vicinity of the upper boundary.
Assume 7 is smaller than 1/2 and fixed. As h increases to the value hy, where hy(7) is given
by Eq.(5), the decay exponent p, Eq.(14), goes to zero. The fate of the two solitons, 1, and
¥_ turns out to be different.

The amplitude of the i, soliton was observed to decrease while its characteristic width
was increasing and eventually the 14 was seen to merge with the flat solution: ¥4(x) — o
as h T hy. On the contrary, the soliton 1_ retained a finite amplitude and remained well
localised in this limit (though the decay exponent p did tend to zero). We were able to
obtain this solution in a very near vicinity of the point k. (More precisely, we were able
to find the ¥_ with the asymptotic value |1fo|* deviating not more than by 10~ from the
curve p_(7). In terms of k, this means that the upper boundary is given by A4 () to within
the accuracy of order 10-%.) This implies that as h — hy, the soliton 1_ transforms into
a localised solution decaying as a power of z. (There is a very subtle question of whether
the 1_ exists arbitrarily close to hy, i.e whether this power-law decaying solution is actually
reached. This point is discussed in section 5.)

These numerical observations can be substantiated by constructing the solitons ¥ and
¥_ as asymptotic series for b — hy. Letting ¥(z) = o(z)[1 + 6x(z)], substituting into
eq.(2) and keeping up to quadratic terms in 6x = u + iv, yields

u Uz . 3u? + o2
() ()omm()

1= 6l4of? B
b= (S ). n

where the matrix

Assume that k approaches h, from below; then we can define a small parameter €2 by

Wol* = p(7) — €. (18)
Using (18), the matrix L reads
Lo VT3l g . (6 0)_
—y i /im3e |7 € (g2 )=

= Lot € L. (19)

-~

For h close enough to hy (more precisely, for h between h, and k) the deviation 6x(z)
decays as e~?kl, with the positive exponent p being given by Eq.(14). As |t} T p, p tends
to zero. Using (18), one finds

Py /T3y —1

that is, p ~ €. Consequently, we expand the small deviation éx as

(§§)=((()))+(E;)+ (20)

where z = ez. Substituting into eq.(16) and equating the coefficient at the power et vto ZEro

yields
Uy
Lo( " ) =0, (21)

2 64/1 =392 &2

or, equivalently,

v(z) = pua(z), : (22)
where
= 1—4/1-342
————7 .

Next, at the order ¢* we get

uz \ _ i uy ,'Jlu.z-}-v2
W)= (@ -e) (0) - (PhT) 2

This system of two linear algebraic equations is only solvable if the right-hand side is or-
thogonal to the vector (1, —v1) in the sense of the R*-scalar product. (The vector (w1, —v1)
is the zero-eigenvalue eigenvector of the conjugate matrix L}.) This condition gives

dz .
(1= )55 23— s+ 203 — )l =, (21)

¢

where we have made use of (19) and (22). Since, as one can easily check, p is smaller than
1, the quantity

2(1 - p%)
3—pu? =%
7



is positive and we have two solutions of eq.(24) :

.3 1
U = ——,
V7 2p_ cosh®(z/z0)

31
= 2p_ sinh*(z/z0)

These give rise to two different perturbations éx :

3(1 + Z,U,) 62 4
6 + = + 0 € )
X 20— cosh®(ex/zo) (<9

_3(1 +1:u’) 62 0(64).
2p- sinhz(ez/zo)

The function 8x* is bounded for all  and so this perturbation of the flat b.ackground
yields a true nonlinear solution valid for all z. As ¢ — 0, this solution merges with the flat
background and therefore, is nothing but the soliton . ) )

The function §x~ grows indefinitely as z — 0; hence this perturbation gives f)nly an
asymptotic approximation of the solution, valid for large x| >> zo. The a:symptotxc series
(20) does not have to converge for all . For those sufficiently large = wht?re it does converge,
the asymptotic solution ho(L +6x7) should be identified with the 1_ soliton. Sending e — 0
for a fixed x, one gets

& =

S 2
SR ELLE S
20 2
Thus, when % tends to the value hy, the t_ soliton should approach a finite-amplitude
solution with a power-law decay.

5x

2.3 = 0: explicit solution

As an illustration to the asymptotic and numerical analysis we consider the case v = 0. In
this case we have a pair of explicit solutions [13]:

. 2sinh’® o (25)
Pi(z) = o + 1 + cosh arcosh Az /’

where a is defined by the magnitude of the driver:

b V2 cosh® @ . (26)
T (1 4+ 2cosh? @3

and 1 and A are given by
1

1/’0: 2
2(1 + 2 cosh «)
V2sinh a
_oposimha = |/ _oga = —2smhe (21)
A = Wosinh & Yo 1+ 2cosh?a

> 0,

Let now h — hy = /2/27 or, equivalently, a — 0. In agreement with the predictions of
the asymptotic analysis, the 1, soliton goes over to the flat solution while the w_ becomes

a rational (unction:
1 2029

% 2?4+ 3
These transformations are reflected by the behaviour of the energy. Substituting (2.3)
into eq.(10), the energy of the solitons vy is given by

po(x) — (28)

8 sinha + § sinh?a — 3 cosh? a

EY =Ely) = — : 29
L] V2 (1 + 2 cosh® @)3/ (29)

8 h?
E™ = E[y_|=E*+ Er_____(‘os 1 a (30)

V2 {14 2cosh? )3/’

1
3 = arccos ( )
cosh a

As h — hy (a — 0), the energy of the 4, tends to the energy of the flat solution (i.e. to
zero):

where

EY = Clhy = 1) + O ((hy — B)/Y), (31)

with (" = (16/5)21/83%/% = 6.934. On the contrary, the energy of the 1_ soliton tends to

a finite value which indicates that the ¥_ does not flatten out but approaches a localized
solution with a power-law decay:
8T

E- = — —An(hy — h) 4+ O ((hy — h)*'?). 32)

2.4 Strong damping, v > 1/2

The situation in the region 4 > 1/2 turns out to be more complicated. In this region the
decay rate is given by Eq.(12); as we mentioned in subsection 2.1, it goes to zero as h — h,
and |to]? — /2. Similarly to the case y < 1/2, the ¢, soliton was observed to merge with
the (lat solution here. (We were able to find the 4 arbitrarily close to the value b = h.).
It was natural to expect the yi_ soliton to behave similarly to the v < 1/2 case as well. As
we have already mentioned, in the region ¥ < 1/2 we were able to find t]w/zi_ soliton with
the asymptotic value |1o|? deviating from the curve p_(7) not more than by 1072, On the
contrary, when ¥ > 1/2, the upper boundary was found to digress quite substantially (rom
[4o]? = /2. It has remained unclear in Ref.{10] what causes this digression and what finally
happens to the 1_ soliton as h increases.

In order to clarify the situation, we have designed a sixth-order numerical algorithm
based on the continuous analog of Newton's method and performed an accurate study of the
neighbourhood of the point & = h.. (For references and a brief review of the method, see
[10].) Results of this study are presented in Figs.1-3. This more accurate analysis revealed
that the reason why we were not able to approach the point h = k. close cnough in Ref.[10},
was the existence of a new turning point. At this point the i branch turns into a new
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Fig.1 The bifurcation diagram of the one-soliton solution for 7 = 0.52. At the point k =
k. = 0.360843 (where jo|*> = 7/2 = 0.26) the soliton 1, detaches from the flat solution
(whose energy is zero.) The point Ay, = 0.3318065 is a turning point; at this point the ¥,
soliton transforms into the i_ solution. The %_ soliton ceases to exist for & > 0.3607921 or,
speaking in terms of the asymptotic values, for |to|* > 0.2544168. The question of what happens
for k between k = 0.3607921 and h. = 0.360843, was left open in the previous publication [10].
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Fig.2 Bifurcation to a three-soliton complex for v = 0.52. Two parts of this figure show
a small neighbourhood of the point k.. The lower curve is the last segment of the %_ branch
from Fig.1. The solution corresponding to the upper curve is plotted in Fig.3. The part b is an
enlarged portion of the part a next to the turning point.
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Fig.3 Localised solutions corresponding to the three branches of the bifurcation diagram in
Figs. 1 and 2. a,b) ¥y, the lowest branch; ¢,d) ¥_, the middle branch; e,f) a new branch into
which the ¢ branch turns at the point h = 0.3607921. It is quite obvious from the comparison
of the three sets of pictures that the last solution is a combination of “psi-minus” and two
“psi-pluses”. (Below we call this complex 1/)%+_+).) In these pictures, 4 = 0.52 and h = 0.3465.

11



branch of localised solutions, see Fig.3 Solutions of this branch are nonlinear superpositions
of three solitons: %_ soliton in the middle and two 1, solitons at its sides.

A more extensive search revealed the existence of a larger variety of multisoliton com-
plexes. The corresponding energies are plotted in Fig.5 below (Sec.4.) Before proceeding
to the description of the resulting bifurcation diagram, we introduce a simple variational
formalism which will allow us to identify its various branches.

3 Collective coordinate description

We now present a simple semiphenomenological argument for the existence of soliton com-
plexes, which would also allow to estimate their separation distances. It is convenient to
consider three-soliton configurations first; the two-soliton state will be obtainable as a sim-
ple particular case. We set up a trial function in the form of a linear combination

bias(z32) =t + ¥ + 3 — 240, : (33)

where
Y=tz +2), Ya=1z), ¥s=1s(z—2)

are three different or identical solitons sitting at the points z = —z,0 and +z, respectively.
Here z is a positive value that is allowed to depend on time: z = 2(t). We have to use a
bit awkward notation 111,13 in order to distinguish the linear combination of three solitons
from the genuine three-soliton solution; our notation for the latter would be t(123).

The damped driven NLS equation (1) follows from the stationary action principle 65 = 0,
where ‘

5= / L [, 7] dt (34)

and the Lagrangian
L=T-E : (35)
comprises the kinetic )
T= -;-/ (d)tE - %t’/’) dz (36)

and “potential” term
B [ {4 ol =it o+ )
—|wbol? + [¥ol* + R (o + Po) } de. (37)

Substituting the Ansatz (33) into Eqs.(35)-(37), we obtain for the kinetic term

T = Ti1 + Tas + Tz + Tra + Toay (38)
where ) m
i. - -
Ty = 52/ {‘d‘;}(’/’l — o) — C'C‘} dz, ’ (39)
12

L

RO A R

PRSP S

T

AT

i, dijry — _ .
T3y = '“:2‘3/ {—Jf(l/’z — ) = C.C.} dx, (40)
oo L dyn— (IEJ
T3 = 57 / {(WL/‘,? + 1[‘1?) - c.c.} dr =
LT hooT Y oo
= 5% (rhy — gath) 12, 7 (1)
and g
, . Zdo
T+ Tp= 54
with
o(z)=1 / {(Jz - l,_'u) (¥ + 1) — c.c.} dr. ‘ (42)
In the above formulas, Wy = {4 2), vy = (), and g = (e — z). The terms Ty

and T, vanish because () and () are even functions, and 73 =0 because vy and vy
approach the same value 1g at the plus and minus infinity.
We now have ’ g
ido

L=-——E(2).

. 2d: (=) .
where I} = E[¢hapg(; 2)] is the functional (37) evaluated at the lincar combination (33).
Varying the action (34) yields
d . dU,

(E47y0)= =2 =0. - (13)

d= dz

124.(43) is of the form of a constraint; it describes only stationary solutions. We could have
casily made it dynamical just by adding one more time-dependent variable (the canonically-
conjugate momentum), but since we are only iuterested in stationary configurations, Eq.(13)
is quite sufficient for our purposes.

In the three-soliton case, we confine ourselves to symmelric conligurations and assume
that 3 () = ¥3(z). In this case the Ansatz (33) describes two identical solitous v (which
can be either two ,’s or two 1_’s) placed at the distance 2z from one another, and an
additional soliton 1, sitting symmetrically in between. The intermediate soliton can be of
the same variety as the two side oues (like in ¥(444)) or of the different kind (¢.8. ¥(4-4))-
Notice that the function

P+ Py = ¢+ 2) F (e —2)
is even and so the term Typ + Ty3 does not necessarily have to be edual Lo zero.

The tvyo—soliton case arises if we eliminate the middle soliton by letting ¢y (a) = ¢'o: then
the quantity o vanishes. In this case we do not need to assume that ¢ () = ya{): ¥ and
13 can stand for any combination of 44 and _ solitons. The Euler-Lagrange cquation (13)
reduces simply to

dE
-0 (1)
dz

This is almost the same variational principle as the one employed in {7, §] (see also [11].)
The only difference is thal we are using the total energy (37) while the authors of [7. 8

13
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Fig.4 The energy of the two-soliton linear combination ¢y_y_ = v_(z + 2) + ¢_(.z -
z)—1pg, as a function of the intersoliton separation, 2z. The energies of the other two-soliton
linear combinations, 1, 1%, and ¥_1p,, as well as of four symmetric three-soliton superpositions

(bsosrpp, o v P, ¥_by and P_1,1p_) look qualitatively similar.

14

8.00

IE
6.00 -
4.00 —
2.00 —
O'Ooo 33 0.34 0.35 0.36

Fig.5 The bifurcation diagram featuring single-soliton, two-soliton and symmetric three-
soliton solutions. 1. Notice that the branch 1,b (—+)» departing from the triple turning point as a
solid line, becomes dashed as it continues to the right. This is meant to indicate that we had
to relax the residual of the numerical scheme as we advanced in the direction of larger h. We
were unable to compute the solution at the dashed section with the residual § less than ~ 10~
~10~%. 2. The branch ¢(+ 4 (solid curve into which the branch _ turns near the value & = h,)
terminates at A ~ 0.3465; we were unable to advance it further to the left. This solid curve
partially conceals the branch y? ., (second dashed curve from the bottom). The latter starts
at about the same point as the curve 1,b(+ +) but extends all way to the quartic turning point
where it turns into the ¢(_+ e For those h where the complex ¢v(+_+) exists, the energies of the
two orbits, ¢(+ + and ¢(+ —4)s are graphically indistinguishible.
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utilised only the interaction term | [1|*dz. For small b and « this difference is unessential,
but for larger values of these parameters there can be quantitative deviations.

For small h and ~ the solitons can be approximated by explicit formulas. In this case,
assuming a wide separation between the two solitons the integral (37) can be evaluated
analytically [7, 8] and the equation (44) has a sequence of roots (“two-soliton orbits”), z,:

™
22,= 5= 1), n=1,23,., (45)
where k is the soliton’s asymptotic wavenumber:
P(z) — ho ~ ePHII as ) = oo

The above expression applies uniformly to all three two-soliton linear combinations (144,
Yo and ¢_¢;.) Although eq.(45) was derived for small h and v only, the general ar-
gument behind this result is more general. 1t simply states that when two solitons are
widely separated, the first soliton is only affected by the tail of the second one, and since the
tails have undulations, the potential of interaction exhibits alternating minima and maxima
{7, 8]. Consequently, eq.(45) with k defined by Eq.{(12)-(13) can be used as an estimate for
the two-soliton orbits for not only very small A and «.

4 Multisoliton bifurcation diagram

Using the numerically precomputed solitons ¥_ and ¥, we. have evaluated the effective
potential of interaction U.g = E + o for all three two-soliton and all four symmetric three-
soliton combinations. The potential is shown, as a function of the inter-soliton separation
2, in Fig.4. This particular figure corresponds to the ¥ _1_ linear combination; however, for
all other two and three-soliton combinations the potential looks qualitatively similar. The
potential of the soliton-soliton interaction is attractive at short distances, and then intervals
of attraction and repulsion alternate. As in the previous section, the consecutive points of
extrema are denoted by z,: z; is a maximum, z; a minimuin and so on. A reservation that
we have to make here is that it is only for sufficiently large intersoliton separations that the
energy Ueg of the above linear combinations yields the true potential of the soliton-soliton
interaction.

The positions of the first three extrema obtained in this way, are given in Table 1 (second
column). In the first column of this table we give the genuine values of the inter-soliton
separation, i.e. the separations exhibited by the numerical solutions of Eq.(3). (Notice that
in the two-soliton case, the separation distance between the solitons is 2z not z.) Finally,
the third column contains the separation distances as obtained by the approximate formula

(45).
4.1 Two-soliton complexes

Numerically we were able to find five different two-soliton complexes: four symmetric and
one asymmetric. First of all, as depicted in Fig.5, two distinct two-1; soliton solutions
detach from the flat solution at h = h,. These two complexes are only different in their
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intersolitou separation distances (Fig.6). For the driver’s strength b = 0.35 (which will be
used as a reference value throughout the paper), the corresponding separations are 2z; & 7.60
and 2z == 28.00. By comparing to the predictions of the variational analysis (which gives
2z, = 7.95, 22, = 18.20 and 223 = 28.45, see Table 1) one of these solutions can be identified
with the first orbit (we denote it 1/’(1++)) and the other with the third. to be denoted L“?++).
(Hence the notation, z; and z3.) Surprisingly, we were not able to find, numerically, the
two-v_ soliton complex with the solitons sitting at the second orbit, z,.

Both numerically found two-it; soliton solutions are plotted in Fig.6. For the sake of
comparison, we plot the linear combination byl +2) +Py(z — z)—to for 2 = 5 and z3
in the same picture. In plotting these linear combinations we take z; and =3 to be equal
to their nwmerically observed values, and not the maxima of the corresponding two-soliton
interaction potential.

As the driving strength, h, is decreased down to hay = 0.3318065 (which coincides with
the threshold value for the one-soliton solution), the 1/,v(3++) complex turns into the solution
which can be interpreted as 1['?__). For our reference value of h, A = 0.35, the observed
intersoliton separation is 223 & 26.20 while the variational method gives 2z;3 = 25.60.

The threshold driving strength for the lowest orbit, '/’f++)’ lies significantly higher: h{, =
0.336837. Similarly to the higher orbit, the solution 11'(1++) transforms into the complex
’l/’(]__). For h = 0.35, the variationally-predicted and numerically observed separations for
this solution, are, respectively, 2z; = 4.85 and 22y & 5.60.

Both “double-»_” complexes are shown in Fig.7. On the same picture we plot the
corresponding linear combinations yr_3_ — for exactly the same values of the separation.

Finally, we also obtained the asymmetric two-soliton solution. ¥(_4). This complex
“lives” at the third orbit and detaches from the corresponding 1/"(—’++) and 'l/‘?__) solutions at
their merging point, b = huy = 0.3318065. At the reference point h = 0.35, the complex
’l/,’?_+) has the orbital distance 225 & 28.075 whereas the potential of interaction has its third
maximum at 2z4 = 27.45. This solution is presented in Fig.8. The lincar superposition
Y1, is also shown for the sake of comparison.

Here we should mention a computational problem encountered in obtaining this asym-
metric solution. For small & close to the turning poiut we were able to compute it with the
residual 6§ ~ 10~8. However, as we moved in the direction of greater k, the convergence of
our numerical algorithm deteriorated and we had to telax the residual. In particular, the
portion of the asymmetric branch plotted by the dashed line in Fig.5, was computed with
the residual § ~ 10-5~10-5. The separation value 2z; = 28.075 in Table 1, was obtained
with the residual § = 0.5 x 107°. . .

We also have to mention here that we were not able to find the asymmetric solution
living on the first (or second) orbit.

4.2 Three-soliton complexes

We now proceed to three-soliton associations. Two distinct “three-¢r,. " solutions detach from
the flat background at the point h = h, (see Fig.5). The first solution has = & 7.15, and.
comparing to the first maximum of the potential Ueg (which Jies at = = 7.925), we identify
it with the first orbit. The other solution has z & 28.0 whereas the third extrenum of Uy
is al =3 = 28.425. Consequently, this solution can be interpreted as the third orbit.
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Decreasing h from h = h, to the threshold value hy,, = 0.3318065, the third orbit goes
over to the ¢} __| solution (the uppermost curve in the bifurcation diagram Fig.5}. At
I = 0.35 the separation distance between the central and the side solitons, is z3 = 26.175,
which is in a rcasonable agreement with the third extremum of Ueg: z3 = 25.575. Fig.10
displays this solution as well as another ¥___; complex, to be described further on.

At the turning point h,, = 0.3318065 two more three-soliton branches are tangent to the
1,/5{’4__) - - 1/':(’+++) curve. One of these is the l'/"?+—+) complex which has z &~ 25.05. The fact
that this solution can be identified with the complex I/'?+_+, follows from the comparison with
the variational estimate which gives z3 = 27.50 for the corresponding linear combination.
and from the graphical comparison of the two configurations, Fig.11.

We have already encountered a collective state of the soliton ¥'_ and two solitons vy in
Sec.2: see Fig.3 e,f. However solitons constituting that complex had the separation distance
= == 14.80 which is close to the second extremum of the corresponding interaction potential.
2y = 17.275. Cousequently, the multisoliton solution discussed in Sec.2 should be identified
as the dv'f+#+) complex (i.e., the second orhit).

For those & where the second orbit was found, its energy is practically equal to the energy
of the corresponding third orbit, ‘l/"k;+_+). (For this reason the two curves merge into one in
Iig.5.) However the two orbits -are different in their respective domains of existence: we
were unable to continue the branch dvf+_+) to the left of the value h = 0.3465 whercas the
Chot)

At the turning point h,, the dV?+_+)
latter collective state has 2y = 28.75, with the variational estimate giving =3 = 27.50. The
corresponding profiles are plotted in Fig.12.

The above four three-soliton collective states “live” at the third orbit. We have also
found the corresponding first-orbit complexes, 'z/v(1+++), Ulz___), l/'(1‘+_+). and L'E_+,). The

complex ¥ exists all way to the the turning point Ay, = 0.3318065 (see Iig.5).

solution transforms into the l,"'?_+_) complex. The

l,'"(l‘g_) brauch (see Fig.10 a.b) is the second branch from the top in Fig.5. The numerically
observed solution has the scparation z; ~ 3.95 while the variational estimate is z; = -L70.
At RY, = 0.339644 it turns into the 1GE_+ y solution, plotted in Fig.12 ab. The observed
separation is z; &~ 8.80 while the variational estimate is z; = 7.15.

The 1/,’(1+++) branch (see Fig.9 a,b) detaches from the flat solution; it has z; & 7.15, with
the variational estimate being z; = 7.925. At the point Ay = 0.341612 it turns into another
three-soliton first-orbit complex which deserves a special comment.

The solution in question has a shape similar to an ice-cream cone {fig.13.) It is not quite
obvious whether this solution should be identified with the t/'(l+_+) or 'l,’"(l____) complexes.
In order to make the accurate identification, we compare the numerically fonud “ice-cream
cone” solution with the linear combinations ¢ vy (Fig.13 ab) and v_y_v_ (Fig.13 c.d).

iraphically, the 1,tp_1h, seems to provide a better approximation. 'T'his indicates that the
“ice-cream cone” should be identified with the 1,’w’+_+) complex. - Another indication comes
from the relation between the energies of the first-orbit complexes. Since the ¥_ soliton is
“more energetic” than ¥y, it is natural to expect the energies to relate as E(’+++)< Eliin<

E‘_+_)< E(I___). This relation between the energies of the numerically obtained first orbits

is achieved only if the “ice-cream cone” is identified with the 1!';+_+).
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5 Concluding remarks and open problems

I. A striking feature of the bifurcation diagram Fig.5 is almost the total absence of second-
orbit complexes predicted by the variational approach. For example, the potential of inter-
action of two 1'_ solitons has two maxima, at 2z; = 4.85 and 2z3 = 25.60, respectively, and
a minimum in between, at 2z, = 15.35 (see Table 1). However. despite all our attempts.
we did not succeed in obtaining the complex U’{(l__) by means of our Newtonian iterative
algorithm. A similar situation occurred for most of the second-orbit complexes: the only
exception was the zzf(z+_+) solution. :

A natural question is, therefore, whether these second orbits are really suppressed by
some cxclusion principle or is this simply a consequence of a deficiency of our numerical
scheme. In order to check ou this, direct numerical simulations of the full time-dependent
NLS (2) were carried out, with the initial condition in the form of two .. solitons at the
distance of approximately 2z, from each other. The formation of the stable bound state
1,/»'(24') was indeed observed in these simulations {15]. (It is worth noting here that the ufﬂ_)
complex had also becn observed for stronger dampings, ¥ = 0.6. See {8].) Thus we still
need to understand what prevents this and other second-orbit complexes from the numerical
detection within the stationary NLS equation (3).

2. It is interesting to compare the soliton separations as predicted by the perturbative
formula (45) with positions of the extrema of the potential Uz obtained by the calculation
of the energy of two- and three-soliton linear combinations, and with the actual separations
of solitons in the numerically found multisoliton complexes. (That is, to compare the third,
second and first columns in Tables 1 and 2.) As it could have been expected, the percentage
error in the approximate results decreases as one proceeds from lower to higher orbits and
the lincar combination approximation becomes more adequate.

There is a very good agreement between the perturbative valucs (45) and positions of
extrema of U for complexes made up of 4_ solitons only ((__y and ¥ ___y). The agreement
is worse for complexes involving solitons ;. For example, the perturbative value for the
third orbit is 57/(2k) = 25.601 while the full variational results for the z,":(’___). L“?+_+)
and 1,/'(3+++) complexes are 25.575, 27.50 and 28.425, respectively. The deterioration of the
agreement for complexes involving v, is due to a weaker localization of the v solitons in
the neighbourhood of the point b = h,.

Finally, we need to mention that for the complexes of the ¢ solitons sitting on the first
orbits (1/wz__) and ¢'%___)), the perturbative formula (45) gives a somewhat more accurate
result than the full variational approach. (See Tables 1 and 2.) The nature of this phe-
nomenon has remained wunclear. One possible explanation could be that the relation (15)
between the asymptotic wavenumber and separation distance is deeper than the explicit
perturbative expression for the soliton which was used in its derivation.

3. We mentioned several other computational problems that we faced and that are still
awaiting their resolution. These include the continuation of the asymmetric (/’(3_+) solution
in the direction of higher k and the continuation of the 1,[)'(2+_+) branch towards smaller h.

4. With a single exception of the 1/:'(3_+) complex, we did not discuss asymmetric two and
three-soliton collective states. We expect asymmetric branches to detach from symmetric

com»plexes at all five turning points. For example, the 1,/7:(’_++) and lj':(’__ﬂ branches should
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Table 1
221 | 25 | w2k || 2z, 2z, | 3x/2k 2z 2z3 | 57 /2k
num. | var. num. | var. num. var.
P4 || 760 | 7.95 {5120 - 18.20 | 15.361 28.00 | 28.45 | 25.601
Wi——y || 5.60 | 4.85]5.120 - 15.35 | 15.361 26.20 | 25.60 | 25.601
W(-+) - 7.90 | 5.120 - 17.20 | 15.361 || 28.075* | 27.45 | 25.601
Table 2
21 21 7 [2k 23 23 3 /2k 23 23 5w /2k
num. | var. num. | var. num. var.
Yiessy || 745 17.925 [ 5120 - 18.175 | 15.361 || 28.00 | 28.425 | 25.601
Y- | 595 | 4.70 |5.120 - 15.325 | 15.361 {| 26.175 | 25.575 | 25.601
Yi+-4) || 5.02 {6.925 | 5.120 || 14.80 | 17.275 | 15.361 || 25.05 | 27.50 | 25.601
Yy || 880 | 7.15 | 5.120 - 17.275 | 15.361 || 28.75 | 27.50 | 25.601

Table 1 and 2. The intersoliton separations for the two- and three-soliton collective states.
In each of the three cases, z;, z; and 2z, the first column is the separation distance for the numer-
ically obtained solution and the second column is its variational approximation. For comparison
we also produce the corresponding prediction of the perturbative formula (45) with k given by
Eq.(13). In both tables A = 0.35; all calculations were done on the interval (—100, 100) using
a sixth-order iterative algorithm with the step Az = 0.025 and residual value § ~ 10~%. The
exception is ") where the residual was § = 0.5 x 105, :
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emerge from the quartic turning point, where ¢"(3+++), ‘ll'(3+_+), 1,/)(3_+_), and 1,1!?___) solution
meet. :

5. The bifurcation diagram Fig.5 is incomplete without understanding of how all mul-
tisoliton branches are connected. We have demonstrated, numerically, that the ¥_ solution
continues as the d’f+_+) complex. It is natural to expect more mergers between various pairs
(or groups) of branches in a neighbourhood of the point & = k.. We speculate that the pro-
cess of proliferation of soliton complexes always occurs via the “addition™ of low-energetic,
small-amplitude ¥4 solitons in the vicinity of .. Details of this transformation are still to
be clarified.

6. When compiling the existence chart for the ac-driven damped NLS equation, we have
identified two characteristic regions of v values, 4 < 1/2 and y > 1/2 [10]. In the latter region
(which the present paper was devoted to), solitons have oscillatory tails and this gives rise
to an oscillatory potential of interaction, whose extrema correspond to stationary collective
states. As we have already mentioned, the proliferation of multisoliton states occurs via
the attaclinent of low-energetic, small-amplitude 3, solitons near the value of I where the
¢4 soliton merges with the flat solution. (This point corresponds to the upper boundary
of the domain of existence of the #..) In the former region, neither ¥, nor «_ solitons
have oscillatory tails in the vicinity of the merger point — yet multisoliton complexes were
observed in computer simulations for 7 < 1/2 [9]. It would therefore be interesting to find
out what is the mechanism of their proliferation in that region.

7. Another open question is the multisoliton states’ stability and lifetime. The variational
two-particle approximation yields a sequence of equilibrium soliton separations. the first one
corresponding to a maximum in their interaction potential Ueg, second to a minimum. and
so on. Consequently, one could expect that at least for small dampings, the first and third
orbits will be unstable while the second one will have a finite lifetime due to dissipative losses
[8]. However, direct numerical simulations do not always support this intuitively appealing
idea. A suitable counterexample comes from the work of Wabnitz [9] who examined the case
of v = 0.360 and b = 0.231. In this case the soliton’s asymptotic value is ]L,"u|2 = 0.061.
the asymptotic wavenumber & = 0.190 and the perturbative results (45} for the first two
extrema of Uyr (the maximum and minimum, respectively), are 2z; = 8.26 and 2z, = 24.78.
On the other hand, the simulations of Ref.[9] revealed a stable stationary soliton doublet
with the separation distance 2z =~ 8. Contrary to what one could have expected from the fact
that this bound state is stable, it obviously corresponds to the mazimum of the interaction
potential (i.e. it should be identified with the z/'('__) complex.)

8. The fact that some of the muiltisoliton states may prove to be unstable, does not mean
they would play no role in the soliton dynamics. Numerical simulations indicate that some
temporally-periodic solitons have a spatial structure similar to the lirst-orbit two and three-
soliton complexes {16, 17] and so the soliton collective states may happen to provide a better
starting point for the perturbative or variational construction of time-dependent solutions.
Another reason to keep an eye on the unstable states comes from the fact that they will be
visited by chaotic attractors. Multihump structures were indeed observed in simulations of

7 chaotic regimes in the damped driven sine-Gordon and NLS equations [11, 16, 17].
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We study blfurcatlons of locallzcd statlonary solltons of thc extemally dnven '
damped nonlmear Schrodmger cquatlon . '
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