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1 Introduction 

The properties of curvature and torsion tensors of a linea.r connection and 

the satisfied by them Bianchi identities are well-known [1, 2]. Looking over 

the given in [3] definitions and properties of the curvature and torsion of 

linear transports along paths, one can expect to find out similar results in 

this more general case too. To their derivation is devoted this paper. Sect. 2 

reviev.:s some definitions and results from [4, 3] and also contains new ones 

needed for our investigation. Sect. 3 proposes a geometrical interpretation 

of the torsion of a linear transport along paths on the basis of the question 

of the existence of an 'infinitesimal' parallelogram. Sect. 4 deals with the 

geometrical meaning of the curvature of a. linear transport along paths. It is 

shown that the curvature go\'erns the main change of a. vector after a suitable 

transportation along a 'small' (infinitesimal) close path. Sect. 5 gives the 

derivation of the generalizations of the Bianchi identities in the case of linear 

transports along paths. This is done by using the developed in [5] method 

for obtaining many~ point generalizations of the Jacobi identity. Sect. 6 closes 

the pap"er with some concluding remarks 1 including a criterion for flatness of 

a linear transport along paths. 

2 Some preliminary definitions and results 

Below are summarized some needed for this investigation definitions and 

results for linear transports along paths in vector bundles and their curvature 

and torsion. 
Let (E, ,., B) be a real' vector bundle with base B, total space E and 

projection,. : E -+ B. The fibres ,.-1 (x), x E B are supposed to be iso

morphic real vector spaces. Let 1: J-+ B, with J being a real interval, be 

an arbitrary path in B. According to [4, definition 2.5] a linear transport 

(L-transport) in (E, 1r, B) is a map L : 1 -+ L", where the L-transport along 

1 is U : (s, t)-+ £";_, s, t E J. Here£;_, : ,.-1{/-(s)) -+ ,.-1 (-y(t)) is the 

L-transport along 1 from s to t. It satisfies the equations: 

L';_,(Au + JlV) = >-L;_,u + JlL;_, v, \it E IR, u, v E ,.-'( ·r( s) ), (2.1) 

Li-r o L7 ..... t = LJ_.r, r, s~ t E J~ (2.2) 

L-;_, = idct h(•)) (2.3) 

with idu being the identity map of the set U. 

1 All of the results of this work are valid mutatis mutandis in the complex case too. 
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Propositions 2.1 and 2.3 of [.l] state that the general sl rue! me of L;_, is 

L;_, = (17r' oF~". -', t E J, (2.4) 

where the map F'} : 1r-
1(1(s)) -7 V is a linear isomorphism on a. vector 

space V. The map F2 is defined up to a left composition \Vit.h a. linear 

isomorphism D'Y : V .....-+ 1::_, with l::_ being a ,·ector space. i.e. up to the change 

ps-r -t D""~ oF;. 

Let {e;(s)} be a basis in r.-1 (1(s)). Here and below the indices i,j, k, ... 

run from 1 to dim(1r-1 (x)) = const =: n. The matrix of the L-t.ra.nsport 

L (see [4, p. 5]), H(t,s;"f) = [Hj(t.s:"f)] = H-'(.s.t:;), is defined by 

L7-tej(s) = Hj(t,s;;)ei(t), \!.1here hereafter summation OHT repeated in

dices is assumed. The matrix of the coefficients of L [4. p. 1:3] is fo(s) = 

[fj(s;"()] = iJH(s,t;"f)fiJt ],=,·Therefore for a C 2 L-transport. we have 

H±1 (s+t:,s;"f) = H~ 1 (-'.s+t:;"() = 

) t:
2 

( , iJL,(s)) 2 _ 

=ll'ft:f0 (s +-:- f 0 (s;L,(s)'f-iJ- +O(t: ). (2.o) 
2 s 

with Jl being the unit matrix. Here we haYe used 

8' H(,,t;o) i _ f ( )f ( ) + i•r ,(>) 

8{2 I t::::s - "' S "' $ (Js • 

OJ'H(t,>;ot/ _ [' I \f ( ) _ i>r.,(,) 
8t2 I - 'Y 'S' 1' S Os . 

t=s 

(2.6) 

These equations follow from the fact that t.he genera.! form oft he mot.rix His 

H(t,s;1) = F-1 (t;"()F(s;"f) for some nondegenerate matri' function F [4]. 

Let q : J x J' -+ l\1, J, with J' being IR.¥inten·als. b(~ a. C 2 map on 

the real differentiable manifold M with a tangent bnndle ( T(:\1), ,-, kf). Let 

~(·,t): s >--* ~(s,t) and q(s,·): t >--* q(s,t), (s,t) E J x J'. Here by q'(·,t) 

and q"(s, ·) we denote the tangent to q(·, t) and 7J(s, ·), respectively, vector 

fields. 

By [3, definition 2.1] the torsion (operator) of a C' L-transport L in 

(T(M), "• M) is a map 

T: ~ >--* T": J X J'--) T(M) 

such that 

T "( t) ·- JJ•I·,tt "(· t) ~*·· 1 '( ·) T I '1) 
s, .- $ Tf ' - Vt Tf s, E 1J(S,t} 1\ ' (2. 7) 
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\vhcre 'D~ is the associated with L differentiation along paths [4), defined by 

v;a := ('D-'a)('r(s)) := [ ,
0 

(L;'+,_,a(s + <))1! 
06 J 1~:::0 

for a C 1 section 0'. 

Analogously [3], for ~ : J x J' --+ B \he curvature (operator) of an 

L-tra.nsport Lin the vector bundle (E, r., B) is a map 

R: ~ >--* R": (s,t) "'* R''(s,t): Sec2 (E,1r,B)--+ Sec(E,r.,B) 

such that 
R1l(s) t) := 'D7ll-.n o 'Dt)(s.-)- 'Dll(s,-) o 'Dt)(·,l)_ (2.8) 

In terms of the coefficient matrix f the components of torsion and cur

vature are respectively [3) 

(T"(s,t))' = fj(s;7J(·.t))(7/'(s.t))2 - l'j(t:7J(s.·))(,/(s.t))1 , (2.9) 

r ( " ( ) )'] - iJ ) iJ l R s,t 1 - a/"1,.-J(t - a/nt-o(s) + 
+ r,(·,t)(s)r,(,,·)(t)- r,(,,.j(t)r,( .. t)(s). (2.10) 

Below we shall need the following definitions: 

Definition 2.1 The torsion vector field (operatoT) of an L-transport in the 

tangent to a manifold bundle is a uction T" E Sec ( (7'(.'\1), ", M)]n(J,J'J 

defined by 
T"(~(s, t)) := T"(s, t). (2.11) 

Defining (:D"a)(i(s)) := JY;a, from (2.7) we get 

T"(ry(s,t)) = (D"(·.t)~"(·,t)- pn(,,)~'(s,·)) (~(s,t)). (2.12) 

Definition 2.2 The curvature vector field (operator) of an L-transport is a 

C' section R" E Sec' ( (E, "• B)J,(J,J')) defined by 

R"(q(s, t)) := R"(s, t). (2.13) 

Definition 2.3 An L-transport along paths is called .fiat (""cuTvature free} 

on a set U <;;; B if its curvature operator vanishes on U. It is called fiat if it 

is fiat on B, i.e. in the case U =B. 
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Figure 1: Geometrical interpretation of the torsion 

Geometrical interpretation of the torsion 

Let ry: J X J'-+ M be a C 1 map into the manifold M, (s, t) E J x J', and 

0,£ E lR be such that (s + 6, t +e) E J x J'. Below we consider 6 and s as 

'small' (infinitesimal) parameters with respect to v .. rhich expansions like (2.5) 

will be used. 

Consider the following two paths from 17(s, t) tory( s+o, t+;) (see figure 1 ): 

the first, through ry(s+o,t), being a product ofry(·,t): [s,s+o]-+ M and 

ry(s + 6, ·):[I, t + e]-+ M, and the second one, through 17(8, t +;),being a 

product of ry(s, ·): [t, t + c]-+ M and ry(·, t +c): [s, s + 6]-+ M. (Here o and 

.s are considered as positive, but this is inessential.) 

Up to 0(62
) and O(e2

) the vectors A:= ory'(s, t) and B := Ery"(s, t) are 

the displacement vectors [6] (linear elements [1]), respectively. of ry(s + o, t) 

and ry(s,t+s) with respect to ry(s,t). 

Using (2.5) and keeping only the first order in£ and 8 terms in it, we get 

the following component relation: 

(L;~·:~,B )'- (L;'~;~,A)' = (B-A)'-oc(T"(s, t))' +0(6s2 )+0(62s). (3.1) 
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According to [1, ch. V. sect. 1] this result. has the following interpre

tation. Aftu· the 'L-t:·an.'-portafion' of tu·o linwr clcmud;; .·1 and B along 

each other we get, up to second ordn ten11S. n ptntngon with a closure vtc

tor -6EfTJ(s. t). This implies the existence of an infinitt'sim<1l parallelogram 

only in the torsion free case. 

Using agcjn (2.5) and keeping only fir:-;t order term.". il.fter :'-ome algebra. 

we find 

( LT/(s+l.·) 0 [T!(·,t) B- LT)(·,I+~) 0 L'l(S;·) A)' = 
f-t-l·c "'s-s+S · s-s+c' f-,+c 

oc f(L''1'··1 B)'- (L''i·.<l .4)']-ec(T''I.• I))' · 
L -'t-t+c ~-s+,\ · ¥ , • • T 

+ 0(63
) + O(tl'f) + O(oc2

) + 0(c 3
). (3.2) 

:\'"ote that if 'I is a family of L-paths. i.e. r;;:_::~ 1 'Jl~ 1 .t) = 17'(s2.t) and 

L;11(~L 17"(s, f 1 ) = r/'(s. t2 ), for oll s. s,. ·~2 E J one\ t. t 1 , t 2 E .J'. the expression 

in the square brockets in (3.2) is simpl:· (B- .-1) 1
• 

Sol the torsion describes the fir~ I order uHTf'ct ion to t ]w differ('nce of 

two (infi.nit.<,simal) displacement \Tctors \Ylwn 1 hf'y cnc ( L- )transported in 

the abon'-described way. 

4 Geometrical interpretation of the curvature 

Let (.E, r., B) be a vector bundle. '7 : J x J' ...-.t lJ be a (' 1 map. and L be 

a C 2 L·transport along paths in (£,".8). Let (s.l) E J x .!'and 6.; E JR. 

81 C > 0 (this condition is in~ignificant for the finRl result) he such that 

(s+6,t+c) E J x J'. 
Consider the pa.ths on figure 2. The result. of an L-t.ransport of a \'ector 

from ry(s, t) to ry(s + 6, t) along 17(·, t)i1,-'+•'l' then from 17(' + 1>.1) to 17(s + 

S,t +c) along ry(s+6,·)11,.t+,l' then from 17(s +D. I+<) to 17(-<.l +<)along 

17(·, t + c)i1,,,+Si' and, at last, from 17(s, t + <) to 17(·'· I) along 1)(.<. · )11,_1+,1 is 

expressed by 

Proposition 4.1 For any C 2 L-tmnsport. tl'e ha!'f 

LTJ(s,·) L 71 (·,t+!) L"(.s+O,·) LT)(·.I) -
t+c-t 0 .s+S-s 0 -'t-t+! 0 s-s+li -

= id,-, 1, 1,,111 - 6cR.'1(s. I)+ O(P} + 0(62;) + 0(1>;2) + 0(<"). (4.1) 
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Tl(·,t) f1(·,t+ t) 

1J(J + 5,1) 
1J(~+5,t+t) 

L 
1J(.!1, t + t) ____ ,__ ___ ,(,, ·) 

Figure 2: Geometrical interpretation of the curvnture 

Proof. In a field {e,-(s,t), (s.t) E J x J') of bases in r.- 1(r1(J,J')) the 

matrix of the linear map standing in the l.h.s. of 1-l.l) is 

H(t, t + e; ~(s, · ))H(s, s + 15; ~I·, t + e))Hit + e, t; ~I-'+ 15. ·I )His+ 15, s; r1l·, t)). 

Substituting here (2.5) and using the expressions 

f) 
r,1,H.-1(t) = r,1,,.1(tl + 15 

8
/""- 1(tJ + 0(15'1. 

r,1 .• t+<1(s) = r,1.,tJ(s) + e %/,<-.tJ(s) + O(e 2
), 

we find this matrix to be 

n+& (!rry(·,tj(S)- %/ry(T,-j(t)- rry(·,tj(S)fry(T,·j(t) + fry(,,-j(t)fry(·,t)(sJ)+ 

+ 0(15') + 0(82e) + 0(8e 2
) + 0(<3

). 

Taking into account (2.10), we get this expression as 

n- 5e: [IR"(s,t)Jj] + 0(6') + 0(15 2e) + 0115<'1 + Ole3
), (4.2) 

which is simply the matrix form of (4.1). • 
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Proposition 4.1 shows that up to third order terms the result of the above
described transportation of a vector A E 1r- 1 (~(s,t)) is 

A- 8e(R"(s,t))(A). (4.3) 

Another corollary of (4.1) is the (equivalent to the definition ofthe cur
vature) equality 

""'"( t) - 1· [ 1 (L"(,,·I L"1-H'I L"1'+'.-J L"(·,t) "d ) l /"\., s, - - Jill T t+E--t 0 :~+5-J 0 t-t+E 0 :~-:~+5 - z 11"-l (1J(:~,t)) . 
6-0 vc ,_o 

( 4.4) 

5 Bianchi-type identities 

The curvature operator (2.8) is simply a commutator of two derivations along 

paths. As we shall see below, the torsion (2.7) is also a skewsymmetric 

expression. All this allows one to apply the developed in [.5] method for 

obtaining Jacobi-type identities. This can be done as follows. 

Let us take an arbitrary map r' : Jk -+ B, with J' := J x · · · x J, 
where J appears k times, k E N, and B being the base of the vector bundle 

(E,1r,B). Lets:= (s 1
, ••. ,s') E J'. We define the C1 paths r,: J-+ B by 

r,(cr) := r'(s)i,,=a'" E J and the maps (families of paths) Tab: J x J-+ B 

by r,b(cr1,cr,) := r'(s)i ,_ ,_ , "'•"' E J, which depend implicitly on s. 
s -O"J ,s -0"2 

Hereafter a, b, c, d = 1, ... , k. We write +a for the tangent to Ta vector field 

in the case when (E,1r,B) = (T(M),1r,M) for some manifold M. 

Proposition 5.1 The following pmperties of antisymmeh·y are valid: 

R'"'(sa,Bb) + R''"(sb,s,) = 0, (5.1) 

T'"' + T''" = 0 or T'"'(s., Sb) + T''"(sb, sa)= 0. (5.2) 

Remark. These equalities are analogues of the usual skewsymmetry of 

curvature and torsion tensors in the tensor analysis [1]. 

Proof. The two-point Jacobi-type identity is ((Aab)[a,b]) <a.b> = 0 (see [5, 

eq. (5.1 )]), where Aab are elements of an Abelian group, (Aab)[a,b] := A.b- Aba 

and (Aab)<a,b> := Aab + Ab~· Substituting here Aab = V'" o V'• in the case of 
a vector bundle ( E, 11", B) and Aab = V'" (;,) in the case of the tangent to a 

manifold M bundle (T(M), "• M) and using (2.8) and (2.12) (or (2.7)), one 

gets respectively (5.1) and (5.2). • 
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Proposition 5.2 The following identifies are valid: 

{Dr,, 0 R71'~(s~;, sc)- nr-0'\S~;. Sc) 0 D'Ta} <a.h.c> :;:::: 0 or 

{1)'o (R'"(s,,s,))}<o.b.c> = 0, 

{(R'''(s,s,))(+c)}<,,bc> = {V'" (T'''i}<d·>. 

(o.3J 

(o)A) 

where< ... > means summation oYer the cyclic permutations of the corre

sponding indices. 
Ren1ark. These identities are c.ncdogons. re:-;pect.iYC'ly. of the second and 

first Bianchi identities in tensor a.naly::-:is :i. 2]. This is cle;u from the fact 

tha.t due to t.he ant.isymmet.ries (:J.l) and (.).2) thc c_n·lizatiun oYer t.h<~ indices 

a, b ~nd c, i.e. the operation< ... >, in (0.1) nnd (-1.·!) may be replaced 

\Vith a.ntisymrnetrization over the indices o, b ancl c. (E.g. if Aabc· = -Aa,·b 

a.nd (Aa.l>c)[a,b,c] := (Aabc + Aoca + Aca6)lb.c], tlwn 2(A,l&c-)<uk> = (A~I>J{abd") 
Proof. The (3-point) generalized .Jacobi identit.Y (see [.). eq. (.5.2)J) is 

((Aabc)
1 

(b ,1) = 0, with Aabc being elements 'Jf an .--\.belian group, 
0

' ,c, <a,b.c> 

(Aa&c)[a,[b,cJJ := (Aaoc- A&ca)[b.cJ and (Aa~>c)<a.b.<> := Aa'•c· + A.,!ca + Acab· 
\Ve put Aabc = 1)-ra o J)ro o Dr~ in the \·ector bundie rase and Aabc = 

(JYa o '[J1"h) (+c) in the tangent bundle case. In this way, after some simple 

algebra (see (2.8). (2.7) and (2.1)-(2.3)). we get respectiYcl)'- ('1.3) and (5.4)." 

The 4-poiut generalized Jacobi-type identity 

{ (Aobd)(o.[b,[c,dJJI + (Aodcb)(o.jd,[cb)j)} <d .. > "0 0 

with (Aabcd)[a,[b,[c,dllJ := (Aakd- Abcda)to.[c.<iJJ and (Aa:._-J)<,,.L . .J> := Aabcd + 
Abcdo. + Acdab + Adabc also produces an interesting iclentity ill our case. In facL 

putting A abed = J)ra o pr~> o ])"'-~ o 'fFd in the \"ect.or hund1e case. one can easily 

prove after some simple calculations 

Proposition 5.3 The identity 

{R"''(s,,s,)(R'•')}<,,b,c.d> = 0. (5 .. )) 

where Rrcd is the curvature vector jifld on rk(J, ... , J) i." ua!id. 

Remark. This result generalizes eq. (6 .. )) of [.5] in the classical tensor 

case. 
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The last result also follows from the evident chain identity 

0 {1(_'Tab(Sa, Sb) 0 1(_1"cd(Sc, SJ)- 1(_Tab(Sa, S&) 0 nr<d(Sc• SJ )} <a.b,c,d> :::::: 

= {JZ'Tab(Sa, 8&) 0 'R. 7
'd(Sc,Sd)- 1(_T<d(Sc, SJ) 0 nrab(Sa, Sb)} <a.b,c.d> ;;;::; 

_ {(R'''(s,sb)(R'''))(T,d(scosd))}<,.b.c.d> = 

({R'"'(s,s,)(R''')}<,,b,,,d,) (T'(s)). 

Note that in the tangent. bundle case the substitution 

A,;,,= (V'" o V'• o V'') (i'd) leads to the trivial identity 0 = 0. 

6 Conclusion 

In this paper we have examined some natural propertie:--; of the cun·ature 

(resp. the torsion) of linear transports along paths in ,-c<·tor bundles (resp. 

in the tangent bundle to a manifold). Tlwsr- propert-ies i-ll"t' similar to the 

ones in the theory of linear connect-ions. The ci\usc for this similarity is 

that in the case of the parallel transport assignC'd to a linear connection 

our results reproduce the corresponding ones in t.he classind tensor analysis. 

The reduction to the known classical results can easily be pron'd by applying 

the used in [3] method for introduction of curvature and torsion of a linear 

connection by means of its parallel transport.. 

In connection with this, below is presented the generalization of the the~ 

orem that a linear connection is flat iff the assigned t.o it. parallel t-ransport. 

is independent of the path (curve) along which it. arts and dC'pends only on 

the initial and final points of the transportation. 

Theorem 6.1 An £-transport in ( E, r., B) is fiat on U ~ B if and only 

if in U it is independent of the path (lying in U) along which it acts and 

depends only on its initial and final points, i.e. thF set {L~_,} forms a fiat 

£-transport in U ~ B iff L';_, for/: J---+ (T depends only on thr points ')(s) 

and 1(t), but not on the path I itself 

Remark. In this theorem we implicitly suppose' C to lw linearly con

nected, i.e. its every two points can be connect-ed b~· a path lying entirely 

in U. Otherwise the theorem may not be true. 

Proof Let the L-transport L be fiat, i.e. R''(.s, t) = 0 for 'I : J x J'---+ 
U ~ B. By [3, theorem 3.1] there is a field of bases {';) on F in which 
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the matrix of Lis unit, i.e. JJ(t,s;;·) = ll. ~,~:.! -----7 r· ln tllf':';(' bases for 

u E ?r-
1 (J(s)L vv·e have L;_1u = Hj(l,s:-y)w' (t: 1 L.uJ = u' (t: 1-.(tJ 1 \'.,·hicb 

evidently depends on the points i(,c;) and J(t) but not on the pi1th ''/itself. 

Conversely, let for ; : J ---t U the transport L:_ 1 depends only on the 

points ;(s) and 'y(t) and not on the path ; connecting them. For fixed 

xo E U and basis {e?} in JT- 1 (x) "·e define on I' the field of bases {e;} by 

ei 1x := L~-be?, where .B is any path in U joining :r 0 and J' E [ '. <tnd such 

that f3(a) := xo and f3(b) := x. By assumption {c; lxl depends only on x but 

not on f3. Using that L;_, depends only on ;(s) and ')(1), \\·c haYe 

L';_, ( e; 101, 1) = L~-b ( c, lo1) = 

= L0 
b (Le> e,

0
.) = L~'-oe? = c, l"(bl = Ci 1-,(tP 

a- c-a 

where a is any path in U such that o(a) = 1(s). o(b) =;(!).and o(c) = l'o· 

As L;_ 1 (ei l...,(s)) = Hf(t,.s;At)tj 1-,(t)' we see that in {ti} the matrix of Lis 

H(t,s;-r) = ll, which, again by [3, theorem 3.1]. implies the flatness of L 

in U. 10 

In conclusion we have to note that all of the results oft he present paper 

remain true in the complex ca.<.;e. For this purpose one has simply to replace 

in it the word 'real' with 'complex' and the symbols R and dim with C a.nd 

dime respectively. 
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