


1 Introduction

The properties of curvature and torsion tensors of a linear connection and
the satisfied by them Bianchi identities are well-known [t, 2]. Looking over
the given in [3] definitions and properties of the curvature and torsion of
linear transports along paths, one can expect to find out similar results in
this more general case too. To their derivation is devoted this paper. Sect. 2
reviews some definitions and results from (4, 3] and also contains new ones
needed for our investigation. Sect. 3 proposes a geometrical interpretation
of the torsion of a linear transport along paths on the basis of the question
of the existence of an ‘infinitesimal’ paraliclogram. Sect. 4 deals with the
geometrical meaning of the curvature of a linear transport along paths. It is
shown that the curvature governs the main change of a vector after a suitable
transportation along a ‘small’ (infinitesimal) close path. Sect. 5 gives the
derivation of the generalizations of the Bianchi identities in the case of linear
transports along paths. This is done by using the developed in [5] method
for obtaining many-point generalizations of the Jacobi identity. Sect. 6 closes
the paper with some concluding remarks, including a criterion for flatness of
a linear transport along paths.

9 Some preliminary definitions and results

Below are summarized some needed for this investigation definitions and
results for linear transports along paths in vector bundles and their curvature
and torsion.

Let (E,w,B) be a real' vector bundle with base B, total space E and
projection = : E — B. The fibres x~!z), * € B are supposed to be iso-
morphic real vector spaces. Let v: J — B, with J being a real interval, be
an arbitrary path in B. According to {4, definition 2.5] a linear transport
(L-transport) in (E, 7, B} 1s a map L:v~ LY, where the L-transport along
yis LY i (s,8) = L], 85t € J. Here L, 77 (5(8)) x~1{7(t)) is the
L-transport along 7 from s to t. It satisfies the equations:

L’:—vt(Au + ,Ul‘U) = AL:—vtu + #L:-ntvﬁ /\n“' € R’ U, v € ﬂ-—l(q'(s)), (21)
L’ty—w‘ o L;Y—vt = L’:—*T? T',S,t € J»
L] = idamiaa)

with idy being the identity map of the set U,

1A]] of the results of this work are valid mutatis mutandis in the complex case tao.



Propositions 2.1 and 2.3 of [4] state that the general structure of L]_, is

L, =(FV 7 o FY, st €, (2.4)

s—i

where the map FY : #7'(y(s)) = V is a linear isomorphism on a vector
space V. The map F7 is defined up to a left composition with a linear
isomorphism D7 : V -3 V., with ¥ being a vector space. i.c. up to the change
FYy— Do F).

Let {ei(s)} be a basis in #~}(¥(s)). Here and below the indices ,j,k, ...
run from 1 to dim(x~1(2}) = const =: n. The matrix of the L-transport
L (see [4, p. B]), H{t,s;v) = [H}(i..s:’y)] = HYs.1:7v), is defined by
L7 .e5(s) = H;(i,s;'y)eg(t), where hereafter summation over repeated in-
dic_es is assumed. The matrix of the coefficients of L [4. p. 13] is I'W(s) =
[I‘}(s;’y}] = OH(s,8;v)/0t |,_,. Therefore for a C? L-transport, we have

Hi1(8+€,s;7) =H(s.s4+¢9) =

2 Il (s )
=13l () + % (r?.(s}r‘.,(s) T 8;—)) LO(2),  (25)

with 1 being the unit matrix. Here we have used

82 H (s.tiv) ] aT. 1
___(.s__ﬂlm =T ()T (s) + ats)

Bl is
BEH(,sy) | ~ 3 4l () (26)
e N Polslsle) = 55

These equations follow from the fact that the general form of the matrix H is
H{t,s;7) = F7Y(t;v)F(s:y) for some nondegenerate matrix function F [4].

Let 5 : J x J* — A, J, with J' being R-intervals. be a C? map on
the real differentiable manifold A7 with a tangent bundle {T{Al), =, M). Let
n(-y1) + s =3 g(s,1) and 7{s,-) : ¢ = p(s.1), (5,¢) € J x J'. Here by #'(-, 1)
and "(s,-) we denote the tangent to n{-,¢) and n(s, -}. respectively, vector
fields.

By [3, definition 2.1} the torsion (operator) of a ! L-transport L in
(T(M),m,M)is a map

Ting=TM:JxJ = T(AM)
such that
T(s,t) := D" (- 1) — DJ'(s, ) € Ty D), (2.7)

where D7 is the associated with L differentiation along paths (4], defined by

. ‘ g . |
Do (Do) (1(5)) = | e (Damsols + )]
“e=o

Je

for a C* section 7.
Analogously [3], for 7 : J x J' —= B the curvature (operator) of an
T-transport L in the vector bundle (E, =, B) is a map

Rig R s, 1) = R s, 1) Sec’(E, 7, B) = Sec(E,r. B)

such that
R"(s.t) = Dt o Dﬂ(s‘-) 5 LICR I ol (2.8)

In terms of the coefficient matrix T’ the components of torsion and cur-
vature are respectively 3]

(T7(s,0)) = Dilsin(-.2)) (" (s.)) = T (tp(s)) (9(s.0)) (2.9)
[ ; d a
l(R”(sz])j] = galnealty - L atals) +
+ Doy (80 et = Dais s {6 (s)- (2.10}
Below we shall need the following definitions:

Definition 2.1 The torsion veclor field (operator) of an L-transport in the
tangent to a manifold bundle s a section T € Sec | (T(M ), 7, M3l 50m
defined by

T?n(s,8)):=T"(s,1). (2.11)
Defining (D70)(v(s)) = DY, from (2.7) we get
T(n(s, 1)) = (D*9"(,1) = D"'(s, ) (n(si 1)) . (212)

Definition 2.2 The curvature vector field (operaior) of an L-transport s @
C? section R" € Sec” ((E‘?T,B)]W(JJ,)) defined by
R'(n(s,t)) = R"(s,1). (2.13)

Definition 2.3 An L-transport along paths is celled flat (=curvature free)
on a set U C B if its curvature operator vanishes on [r. It is called flat if it
is flat on B, i.e. in the case I/ = B.
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Figure 1: Geometrical interpretation of the torsion

3 Geometrical interpretation of the torsion

Let n:J x J' = M be a C! map into the manifold M, (s,1) € J x J', and
§,¢ € R be such that (s + 6,1 + &) € J x J'. Below we consider § and ¢ as
‘small’ (infinitesimal) parameters with respect to which expansions like (2.5)
will be used. '

Consider the following two paths from (s, 1) to n(s+8,1+¢) (see figure 1):
the first, through 5(s + §,1), being a product of (:,¢) : [s,s + 6] = M and
n(s+6,-): [t,t +¢&] = M, and the second one, through 7(s,t + ¢}, being a
product of n(s,-) : [t,t+¢] = M and n(-,t +¢) : [s,s + 6] = M. (Here é and
¢ are considered as positive, but this is inessential.)

Up to O(6%) and Ofe?) the vectors A := ép'{s.1} and B := en(s,1) are
the displacement vectors [6] (linear elements [1]), respectively. of (s + §,1)
and 7(s,t + €) with respect to n(s,t).

Using (2.5) and keeping only the first order in ¢ and 6 terms in it, we get
the following component relation:

(60, B) = (L%, 4)" = (B=A) 8¢ (T (s, )Y +O(8c7)+0(8%). (3.1)

According to [7, ch. V. sect. 1] this result has the following interpre-
tation. Afier the ‘Letransporiation’ of twe lincar elements A and B along
cach other we get, up to second order terms. a pentagon with a closure vee-
tor —6cT™(s.1). This implies the existence of an infinitesimal parallelogram
only in the torsion free case.

Using again (2.5) and keeping only first order terms. after some algebra.
we find

(Ln(s-t-é.-) o Ln(.,:) B Ln("HE) 5 L?(_s;'j__,fi)' -

toatqe sems ST s—s+é
[(L?‘:;LB) - (L’;‘_"il.s :-a) ] — o {T s 1)) +
+ 018 + O(8%) + 0(6:7) + O (3.2)

Note that il 77 is a family of L-paths. ie. L}’fiiﬂ]’(@,. 1) = n’(sy.1) and
L:’l(f:t),ln”(s.f]) = '(s.ta), for all s.sp.80 € Jand . fr € J'. the expression
in the square brackets in {3.2) is simply (B —4)

So, the torsion describes the first order correction to the difference of
two (infinitesimal) displacement vectors when they are (L-Jtransported in
the above-described way.

¢

4 Geometrical interpretation of the curvature

Let (E,x,B) be a vector bundle. 5 : J x J' = I3 be a C'map. and L be
a O? L-transport along paths in {E.7. B). Let (s.1) € J x J and &.¢ € R,
6, > 0 (this condition is insignificant for the final result) be such that
(s+ét+eyedx J.

Consider the paths on figure 2. The result of an L-transport of a vector
from n(s,t) to n{s + 4,1) along r;(-,i)l[s“s}, then from jis + &.f) to s +
&t + ¢) along n(s + 6,')1{!!t+_,], then from n(s + 8.7 + 2) to n{s.f + <) along
N0t &), ppg 204y at Jast, from n{s,t + ) to n(s.1) along n(s. My 4e 18
expressed by

Proposition 4.3 For any C?% L-transport. we have

{s.) (-t+e) +38,- W)
L?-;-sz—t o Lz+6-: ¢ L?-(:t+e) o L

= idymr (o) — 9ERT(5.1) + O(8%) + O(8%:) + O{a?) + O(%). (4.1)
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Figure 2: Geometrical interpretation of the curvature

Proof. In a field {ei(s, 1), (s.t) € J x J'} of bases in =~'(y(J, J")) the
matrix of the linear map standing in the Lh.s. of (4.1} is

H(t,t+en(s, ) H(s,s+86n(-, i+ e))H{i+ e tinls +6.-) ) H(s + &, 5;(-, )}

Substituting here (2.5} and using the expressions

d
Fn(‘,+5..)(t) = Fn(s‘.)(i) + 551}(5‘.)“) + 0(62)

g
F,,(._“;.E)(S) = Fﬂ(..g)(s) + e«é—gl‘,,(‘,t)(s) + 0(62 ),

we find this matrix to be

d a

1+de (at a0 (8) = Tt () = Doy ($)lagen(t) + rn(Sr)(t}Fn{'.t)(s))'{'
+ O(8%) + O(6%) + O(8e%) + O(£°).

Taking into account {2.10), we get this expression as

1 - 6e [(R7(s,0))}] + O() + O(6%) + 016:%) + O(e¥),  (4.2)

which is simply the matrix form of (4.1). &

Proposition 4.1 shows that up to third order terms the result of the above-
described transportation of a vector A € w7 (n(s,t)) is

LA = e (R(s, 13} (A). (4.3)

Another corollary of (4.1) is the (equivalent to the definition of the cur-
vature) equality

1 5, £ s+94, s .
R s, t) = — llm [5_ (L?+c—-:°ng.5ti,) L:'L;:E)OL:LZLS - Zdﬂ‘i(ﬂ(a-f}})] .

e-—oO

(4.4)

5 Bianchi-type identities

~ The curvature operator (2.8) is simply a commutator of two derivations along

paths. As we shall see below, the torsion (2.7) is also a skewsymmetric
expression. All this allows one to apply the developed in [5] method for
obtaining Jacobi-type identities. Thls can be done as follows.

Let us take an arbitrary map 75 : J& — B, with J* := J x -+ x J,
where J appears k times, k € N, and B being the base of the vector bundle
(E,n,B). Let s := (s}, ...,s%) € J*. We define the C* paths 7, : J — B by
To(o) 1= T“(S)}sa:a o € J and the maps (families of paths) 73 : J x J =+ B
by Tas(o1,02) 1= TF(s )Ln_a] gy T102 € J, which depend implicitly on s.
Hereafter a,b,¢,d = 1,...,k. We write 7, for the tangent to 7, vector field
in the case when (E,‘JT,B) (T(M), =, M) for some manifold M.

Proposition 5.1 The following properties of antisymmetry arve velid:

R (84, 8) + R™(50,8.) = 0, (5.1)
Treb £ T = 0 or T (sq,8) + T (sp8a) = 0. . (5.2)

Remark. These equalities are analogues of the usual skewsymmetry of
curvature and torsion tensors in the tensor analysis [1].

Proof. The two-point Jacobi-type identity is {(Aas)an) cops =0 (see 5,
eq. (5.1)]), where A,; are elements of an Abelian group, (Aa)e, = Acs— Apa’
and (Aab)caps = A+ Ao Substituting here Ay = D™ 0o D™ in the case of
a vector bundle (E,r, B) and A, = 'DT"( ) in the case of the tangent to a
manifold M bundle (T(M) x, M) and using (2.8) and (2.12) {or {2.7}), one
gets respectively (5.1} and (5.2). m



Proposition 5.2 The following identifics are valid:

{D™o e (5, Sc) — R7{sy.5.) 0 DTH}(G.b.C) =0or

i (5.3)

1D (Rmc(sbas\:})}@_b_¢> = 0.

{R™ (0,0} ()} capes FADAT ™M conos - (5.4)
where < ... > means summation over the ¢yclic permutations of the corre-

sponding indices.

Remark. These identities are anzlogons. respectively. of the sccond and
first Bianchi identities in tensor analysis {7. 2]. This is clear from the fact
that due Lo the antisvmmetries (5.1 and {3.2] the cvclization over the indices
a, band ¢, ie the operation < ... =, in {5.3) and {3.4} may be replaced
with antisymmetrization over the indices a. b and e. (E.g. i dape = —Ag
and (Aabc)[u‘b‘c] = (Aabc + Ao + Accb}{g_d . then 2(-’1nlbf)<(,i,c> = (Anb:){,,;,d‘;-)

Proof. The (3-point} generalized Jacobi identity {see {3. eq. (5.2)]) is

((Aabc}[a![g,'cl]) cabes = 0, with Ag being elements of an Abelian group,

(Aa?)c)[a‘Ib,c]] = (‘4abc - Abca)[b_c} and (Aubc)<n‘g,d-> = Az:{:-: + fj’bcu -+ "L:ab-

We put Age = D™ 0 D% o D™ in the vector bundle case and Az =
(D™ 0 D™)(%,) in the tangent bundle case. In this way, after some simple
algebra (see (2.8). (2.7) and {2.1)-(2.3)). we get respectively (5.3) and (5.1). &

The 4-poinut generalized Jacobi-type identity

{ ool + (st jagey) ey =0

with (Aade)[a,[b,[c‘d]]] = (Agpeq — A bfdf_l){b.[c.rij] and‘ (,»‘ia{,‘.deJ Gody O Agped +
Abeda + Acdab + Agase also produces an interesting identity in our case. In fact,
putting Awses = D™ 0 Do D™ o D™ in the vector bundle case. one can easily
prove after some simple calculations

Proposition 5.3 The identily

{R7(sa, s} (BT} copoas = 0 (5.

(3
13
—_—

where R is the curvaiure vector field on T5(J,. .. J) is valid.

Remark, This result generalizes eq. (6.5) of [3] in the classical tensor
case.

The last result also follows from the evident chain identity

{R7* (34, 55) © R74(5¢,84) = R™*(se,88) 0 R™( 500 80)} cqpcas =
{R7 (84, 86) © R7¥ (8¢, 84} — R (50, 82) 0 R7*( 34,
{(Rfab(sau Sb) (Rde)) (TCU’(SCVSCI))}(a.b.c‘d) =

({R™ 50y 50) (B} ooy ogn) 174 ()

0

r

I

) cabeas =

il

Note that in the tangent bundle case the substitution
Agped = (D 0 D™ 0 D) (74) leads to the trivial identity 0 = 0.

6 Conclusion

In this paper we have examined some natural properties of the curvature
(resp. the torsion) of linear transports along paths in vector bundles (resp.
in the tangent bundle to a manifold). These properties are similar to the
ones in the theory of linear connections. The cause for this similarity is
that in the case of the parallel transport assigned to a linear connection
our results reproduce the corresponding ones in the classical tensor analysis.
The reduction to the known ciassical resuits can easily be proved by applying
the used in [3] method for introduction of curvature and torsion of a linear
connection by means of its parailel transport.

In connection with this, below is presented the generalization of the the-
orem that a linear connection is flat iff the assigned to it paralle]l transport
is independent of the path (curve) along which it acts and depends only on
the initial and final points of the transportation.

Theorem 6.1 An L-transport in (E,x,B) is flat on U C B if and only
if in U it is independent of the path (lying in U) along which it acls and
depends only on its initial and final points, i.e. the set {L;_,} forms a flat
L-transport in U C B iff L_, fory:J — U depends only on the points y(s)
and (1), but not on the path 7y itself.

Remark. In this theorem we implicitly suppose {7 to be linearly con-
nected, i.e. its every two points can be connected by a path lving entively
in IJ. Otherwise the theorem may not be true,

Proof. Let the L-transport L be flat, i.e. RN s ) =0fornp:J xJ —
U ¢ B. By [3, theorem 3.1} there is a field of bases {¢;} on U/ in which



the matrix of L is unit, i.e. H{t, sy} = 1. v :.J = [ In these bases for
u € 77 (7y(s)), we have L]_u = Hit, syl (61 iw(!)) = (c; |"‘(1})’ which
evidently depends on the points y(s} and +(f) but not on the path ~ itself.

Conversely, et for v : J — U the transport L_, depends only on the
points v(s) and +{t) and not on the path ¥ connecting them. For fixed
ro € U and basis {€?} in =7 '(z) we define on 17 the field of hases {&} by
e |, = L?_,&?, where 3 is any path in I/ joining g and » ¢ {7, and such
that 4(a) 1= 7o and 8(b) := z. By assumption {e: 1.} depends only on @ but
not on 3. Using that L]_, depends only on 7(s) and (). we hiave

Ly, (65 Iﬂ,)) = Loy (ei |a(a))

o S o}
= o (LY €d) e_p€; =€, L«:b] =t Ly(f)’

a—b c—a i

where o is any path in U such that a{a) = 1(s). a(b} = ~(#). and alc} = 2o.
As L], (e,— I,T(s)) = H](t,s17)e; |,y we see that o {¢;} the matrix of L is
H(t,s;7) = 1, which, again by [3, theorem 3.1]. implies the flatness of L
inlU. @

In conclusion we have to note that all of the results of the present paper
remain true in the complex case. For this purpose one has simply to replace
‘0 it the word ‘real’ with “complex’ and the symbols R and dim with C and
dimg respectively.
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