


1 Introduction

Reversible dynamical systems (RDS) are qualitatively very similar to Hamiltonian systems
[1]-[9]. In particular, the existence of the Kolmogorov-Arnold—Moser tori in reversible
non-Hamiltonian flows [1]-{6], and non-symplectic mappings [4]-[7], has been proved.
Reversible dynamical systems are of great importance in physics, which is a consequence
of the time-reversible invariance of many physical laws (see surveys [9]).

. One of examples of RDS is the system of nonlinear functional {difference) equations
[12] of the static model of the dispersion approach [11]. “This system is defined by a
reversible mapping that is the composition of two involutions: the standard Cremona
transformation [10] and the crossing-symmetry mapping. Dynamical systems {DS) of this
type, distinguished only by the crossing-symmetry matrix A and defined by—_the quadratic
Cremona mappings;have been investigated in papers [13] -[{22]. Interest in ihtegrating
these DS is related, besides the physical one, with a problem of integrating general Cre-
mona mappings which, according to the M. Noether theorem, can be constructed from
different quadratic Cremona mappings [10]. 'Moreover, such DS do not belong to the
Quispel 18-parametric family of integrable mappings [9], [23], and were not considered
in the survey on integrable maps [24]. The problem of integrating these two-dimensional
DS with the second-order matrix A was solved long ago in [14], [15], but only recently
3-dimensional DS with the third-order matrices A(1,1) and A®*w~Lo% haye been inte-
grated in [17] and {18]. A general approach to integrating such n-dimensional DS was
developed in [19].> This paper is devoted to the problem of integrating dynamical system
with c}oesing-symmetry matrix A(l, 1), describing the scattering of two particles with

spins equal [ and 1 within in the framework of the static model.

2 The general formulation of the prbblem. Struc-

ture of the general solution

Definition 1 Let X be an arbitrary set. A one-to-one mapping 7': X — X is said to be
reversible if there exists another mapping G : X — X for which 7-! = GoT'o@G and G is
an involution: G? = id {6], [8], [9].
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These conditions imply that TG is also aninvolution and T = (ToG)oG is the composition
of two involutions: Conversely, the composition of any two involutions is reversible with
respect to each of them. '

Consider the following two involutions of the complex plane C: the linear one
Ap: C —C, A :iue —u,

and the affine one
' L:CoC, hL:iwml-w

These involutions do not commute, Their compositions A;of; and I0A; define a couple

of two reciprocal reversible dynamical systems on C.
- -On the other hand, consider the following two invohmons of the space C*: the linear

one, defined by the crossing symmetry mvolutwe matrix A A(l 1)

2A—1)1+1 1 243
1- Lﬁ%%)rl -1 o
i dzn A=) -diy l-mn @ (1)
’ I A+3)
| o) rt - dte
with det A = —1, and the nonlilgeir one
N - - . l l l
I: 03 _'Csa I(zl)231 23)= (Z—l, -z;) .Z:)
v(the latter being the standard Cremona transformation). These involutions do not com-
mute either. Their compositions AoJ and oA define a couple of two reciprocal reversible
~"dynamical systems on C3. Let us remark that the parameter [ € N though one can
consider I € R.
We look for a meromorphic mapping C — C* which realizes the equivalence of these
" two couples of reversible dynamical systems. In other words,” we seek a meromorphic

mapping S : C — C? satisfying the following system of functional equations (FE):

S(-w) = AS(w), @)

S(w + 1) = foAS(w), - ’ (3)

where w € C. This system describes a scattering of two particles with spins equal ! and
1 within the framework of the static model.

Taking the liberty of speech, we will sometimes call the system of FE (2)-(3) a dy-
namical system (DS). '

One can say that the involutions 4 and [ of C? are representations of the involutions
A; and I, of C, respectively. Meromorphic mappings S : C — C? satisfying FE (2)-(3)
realize these representations.

Each meromorphic mappmg S : C — C? defines some curve in C°. The system of
FE (2)-(3) completely determines this curve up to the grdup of automorphisms. One can
easily verify-that every transformation of the form

S(w) — § (w + A(w)) exp (e ~ 1/2)), (4)
where
Alw+1)=  Bw), Al-w) = - -p(w),
Taw+1l) = ~a(w), a(~w) = —a(w),
is an automorphism of the solution space for DS (2)-(3) (£ defining an inner automorphism

of the curve). Obviously, there should also exist an automorphism which depends on

another arbitrary function in w with a period equal to 1.

As A? = id, the matrix 4 is of a simple structure (1 e., diagonalizable):
A= BA®B™!,  A®=diag(A%, ,\;, ,\g), A=-1, A5,=1, (5)
Bu'j = ﬂ?)) A/JO) = ’\;“U)u 1,] = ]$2v 3, (6) .

where B is the fundamental matrix for A in the basis of eigenvectors u(") of the matrix 4
(28], which are the following:

O = (a4 1,22, 40 = 221 arvs (@0 A=) o= 0.
| @

.According to the general approach [19}, introduce the funcuons z2:C— C3 j:CP =
C,n:C*—=C,

z2(w) = B7'S(w), (8)
i(z) = ABz, (9)
3
n(z) = [[i2)
=1
Define the mapping ¢ : C* — C*:

@z 7= P(2) = ¢(2)/x(2), (10)
where ¢ : C* — C3 is.the mapping |

#(2) = 7(z) B~ (15 (2)) . )



The DS (2)—(3) can be rewritten as: -

H-w) = As(w), (12)
ww1) = Pla(w))/(z(w)). )

Remark 1 Note that the mapping (10) is a birational Cremona transformation in C®.
Transformations of the form (10) with different denominators 7(z) (but the same numer-
ator ¢(z)) induce the same projective Cremona transformation in CP? [10}:
Biinih=d:da: s
According to (5) ~ (9) and taking into account that 4° =

td, we have

A=BTAB, )=o) ). (14

.2.1 Partial automorphic forms

Let m = (my, m3, m;) € Z3 be a multiindex, m; € Z,, |m| = m; + my + m,, where Z,

is a set of nonnegative integral numbers.

Definition 2 A polynomial P : C3 — C is said to be invariant if P(Q(z)) = 0 whenever
P(z) =o0. -

Theorem 1 [19], For any invariant irreducible homogeneous polynomial P(z) of degree

k there exists a multiindex m with |m| = k such that P(z) satisfies the following system

.of FE:

P(#(2)).=eP(z)i™(2), 1™ =31 i755,
P (A%2) = vP(z), v =%l (16)

e =1, (15)-

We will denote any solution of these equations by Po(z) provided that it is an meducnble
homogeneous polynomial of degree |rm].

As the matrix A (1) has the only eigenvalue equal to —1, we can assume that v = +1
because for v = —1 any solution P of FE (15)-(16) will be reducible:

P(z) = 221 P(z), deg P = jm] ~2n - 1. |

Following {19], we shall call polynomials ‘P,,(z) the partial automorphic forms (PAF)

for the DS (2)—(3) of weight m = (my, my, my).

Definition 3' PAF P,(z) is said to be an automorphic form (AF) of weight g if
P (2(2)) = Pu(2)J(2)
where J denotes the Jacobian of the mapping & (10).

One can easily verify that the Jacobian J of the mapping & (10) is equa.l to 7-2(2).
Indeed,

J = —det (B"l.fBA“) = —det (A0) = w'z(z),
where J = diag (1/3(2), 1/72(2), 1/7%(2).

A mapping ® has a polynomial AF of weight ¢ if and only if it possesses a PAF of
weight m = {g,¢,¢}. It has a rational AF of weight g if there exists a rational function
of the PAF that satisfies equations (15)-(16) with m; = m; =m;s =g. '

According to [17], the DS (2)-(3) with the croesing-symmetry matrix A(1, 1), ({ = 1)
has an AF of weight one (recall that it has three PAF) and is equivalent to an APM but
it is non-algebraically integrable, i.e., it possesses a first non-algebraic integral. From this
it follows that the DS (2)-(3) with matrix (1) isn’t also algebraic mtegrable The one has
the PAF (z1/z3 = z, 23/23 = y): -

P(m.ﬂ)(z) = Z3%2— 21 = ts(y - 2%),

— the solution of (15) with ¢ = -

2.2 Fundamental points and prihcipal lines of a quadratic Cre-
“mona mapping
Let # = z(w + 1), then according to (14), (lg), (9) we have.
7'(2) = Ii(z).

Consider some specm.l points and lines on the projective plane CP? of homogeneous
coordinates z known from the theory of quadratxc Cremona transformations. Introduce
six principal lines (P-lines) Ji, J} (k = 1,2, 3) of the direct mapping @ specified by (10)

and the inverse one &~';

t

Jh={z: j(z)=0}, Ji={= (k=1,2,3),

: ji(z) =0}
and six points of pairwise intersections of these lines {0y, 0;, Os} and {0}, 03, 03}

o=V  Oi=L(\



They are called funda.iﬁental points (F-poixits) [10] of the direct mapping (13) and the
inverse one. Here {ikn} is a permutation of {123}.
Under the direct mapping {13) and its inverse
' A*g(A%3)
‘ n(Asz) ’
the images of the F-points O;, O} and those of the P-lines J;, J! are

z(_w) =

®:0iJl, @:J4i—0, @0 J, @10

Thus, the F-points and P-lines {O;; J;} and {0, J!} are the only elements of the
mapping (13) where the one-to-one correspondence is violated.

* Notice that the mappings & and ¥~! realize blowing up and contraction (see the
Codaira theorem [27], Ch. 1, §4) and also the concept of o-process of blowing up of
singularities in the theory of ordinary differential equations [26], §2.

“The F- and P-elements have the form

h={e: i) =uPn =0}, Ki={o: i) =sPn =0},

2 .- 4 ' 2 4
O = (21-1’(2 —‘1)2’])’ 0’—(413+4l—]’—4l’+4l—-1’])’

2 4 ' Aapy.
o= (-wrp@igl) %=ro. o

Remark 2 Similarly to [21],' [17], the multiindex m = (my, m, ms) has the meaning of
multiplicities m; of the algebraic invariant curve P,,(z) = 0 at the F-points O; (see (15),
(16)), and, consequently, at the points O/, according to the symmetry of (16).

2.3 Structure of the genéral solution

Lét_ us proceed from homdgeneous projective coordinates z(w) € C° to the coordinates
((z1(w), za(w), z3(w)), - == ;zj (=12, :(w) = (ma(w); z2(w)) € c. (18)

Then instead of (12}, (13) we obtain ’

zi(-w) = Afzi(w) (=1,2), z(~w) = zn(w), (19)

dilz23, 25) def

::.'(1{{ +1) = ds(eanzs)

Mz) (=12, nw+)=d(emmn), (20

where ¢; and @, are defined by (5)-(11) and are (below and in the sequel, we set z; = z,

2 =y)
bi(z1) = z+432% 42 +:1 - ]:y {2+ 3)4(21 - l)y,’ (21)
bo) = -y ey - DAL, (22)
bz 1) = i+4=+4[2+:l+5 _ 4!’+;l—9=,_ 4l°+;l—7=y
_@+3@-) 5 (23)
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The following theorem on the structure of the general solution of the FE (19)-(20) is
valid. -

Theorem 2 The general solution of FE (]9)—‘(20) has the form:

_ 2(F(w+ 1)+ Flw - 1)) 7
) = )@ (Fw+ - Fw-1) +iFw s DFw =)’
_ 1 420 -1+ Flw+ 1) - Flw-1))
w) = g 2(0— 1) — (2l ~ 3)(F(w + 1) — F(w — 1)) + 4F(w + L) F(w - 1)’

where the meromorphic function F{w) is a solution of the functional equations (F” =
Flw+2),F = F(w+1), F = F(w))

21— 122+ 3) + ({ - 1)(22+ = 5)F — 2(41 —1)F? 4+ 2FF — (2l - 1)FF?
- ((-1)2B+{-53)—2F —4(l- 1)F - (2l - 1)F?

FII ,

(25)
F(-w) = - F(w). (26)

Proof. Introduce the quadratic Cremona mapping casting the functions z{w), y{w)

to uy(w), up(w):

4 4 :
V= @y e = -
Uy = ————g——, Uy = ——————. (27)
Y- g% vt g5z

The inverse mapping is single-valued and has the form:

2 uy — U3 ) 4 u; + ug

= y= (20— 1) uy +uy — 2ujuy

= , (28)
20— 1u; + ug — 2uyug

Using (27), (28) an:d (21)-(23) one can obtain a simpler expression for the system (20):

(4120 + Dy + 4wy = (2 = 1Prug) (2 — w) et 1) = 4~ 1)
42 - +8(1—Nug—(2A—-1)2 - T 2A-1

ul(w+]) =

Uy,

(29)



where in the right-hand side we have set v, =u,(w}, u; = uz(w). According to (19) and
(27) we have: ) )
u(w) = ug(—w). (30)

Subemutmg (30) into the second eq. of (29) and assuming
2l - 1)
= —_— F 2
wlw) = G = g Flo = 1/2), (31)

we get (26). Eqs. (28), (30) and (31) imply (24). Substltutmg (30), (31) into the first eq.
-of (29) we obtain equation (25) for F(zﬂ)

This equation ha.s a particular solution F(w) = w correspondmg to particular rational
solution for S(w) in [16] .

3 Integration of the equation for the function F(w)

Let F{w—1) = u(w), F(w) = v(w) and consider the mapping T corresponding to equation
(25) for F(w) (U = (3,7) = (u(w +1),v(w+1)), U = (y,v))
(), fi =v, (32)
20— 122+ 3)+ (I - l)(2P +1—5)u-—2(4 - l)u + 2uv — (20 — l)uv

' ({—1) (202 +1=5)—2v—4(-1)u— (2l - 1)?

The mapping T is reversible since it can be repreaented in the form 7' = RoW where R

T:0

g =,

and W are involutions:

R:U' = RU), u=-uy,
oo 2(0— 1221+ 3) — (I — 1)(22 + | — 5)v — 2(4/ ~ 1)u? 4 2uv + (20 - l)uu
- (1 - 1022 + -5} + 20+ 4({ - 1)v — (2[ - 1)u? ;
W:U=WU), v=-v, v=-—u : (33)

, Besides the parabolic fixed point d; : ‘u = v = oo, the mapping (32) has two symmetrical
) h);'perbolic fixed points ’

. /2I+3 : l
dy: u=v=(l—1) T cdiru=v=—(l~-1) 2+3 (34)

R =dy, Rids)=ds, Wid)=ds, W(d)=dn (35)
The eigenvalues A1, Az of the linear part of the mapping (32) at the fixed point d; (34)
and /\3, A¢ at d; are the roots of fundamental polynomial P¢(A) of algebraic number A:

2/(2+3)(2L~ 1) £ /3(2l + 3)(2L - 1) +1
V2I+3)(2-1)+1 .

Az = (+ for Ay As =A% Ag= A5

- @)

o2 S e

.

Notice that the numbers ); are called conjugate algebraic numbers (see [29]). The eigenval-
ues A1, Az of the mapping (32) at d; for [ € N belong to Siegel’s domain (0 < A3 <1< A).
The same holds for the eigenvalues z\3; Aqe

’

Theorem 3 The set of eigenvalues Ay, A; at the fixed point d; and the set 1\3, A4 at the
fixed point ds (36) are not resonant, i.e.-

A= ATIAP £0 for j=1,2 and - |m|=m +mp> 2, m €2y,
A= ATAT #£0 for j=3,4 and |m|=m1+m222,m.'EZ+./

Proof. We have to prove that algebraic numbers x; = 1 — /\;'""1)\3"‘ and x; ‘="
1= AT A7%"1 are not equal to gero for any integers m; and my, |m} > 2. Consider the
number x1. As A, A2’ € Q(VIL, V), Ny = (20 +3)(2( — 1), N; = 32l + 3)(2L - 1) + 1,
a quadratic extension of the rational number field [29] (see §17), then x; belongs o
Q(VN1,vN;) and has relative degree < 4. The equality x; = 0 implies x; € Q(vVI}).
Since A2 = Ry + Ry\/IN;, where Ry, B2 € Q(v/N1), then, obviously, X1 € Q(vM,) if and
onlyif my=m;—1. Letmg=m;—1 Then x; =1—((N, +1 - ZVND/(Nl —1))™,

“It is clear that for |m| = 2m2+1 2 2 (m; > 1) one has x; ¢ Q and, consequently,

x1 # 0. Analogously, one can prove that x; # 0. It is obvious that also the set A3, A, is

non-resonant at the fixed point ds. v -
The problem of linearization of the ma.ppmg (32) will be solved on the basis of the

fo]lowmg Siegel theorem. ‘

Definition 4 A set (A, ..

SA)ecC is of the multiplicativektype (C,v), if the following
inequality: : :

A =A™ 2 Cmf™,  (Im] =mi+ ..+ ma, AT = AT AT7) (37)

is satisfied for all j € (1,2,...,n),m; € Z4,|m| >2 (C > 0,v>0).

Theorem 4 (C.L. Siegel for n = 1, E. Zehnder’s generalization for n >'1 [30] )

If the set {)\} of eigenvalues of the linear part of 8 mapping, holomorphic near a fixed
point, is of the multiplicative type (C,v) for some C > 0,v > 0, then the mapping is
bxholomorphlcally equivalent to 11.5 linear part in some nelghborhood of the fixed pomt

The following theorem on sets {A} of the multiplicative type (C, v} is valid [18]).



Theorem 5 (see [18].) A set (Ay,...,A,) € CVis of the multiplicative type (C,v), if
this set is multiplicatively non-resonant and numbers A; € A, where A is an algebraic
number field.

This theorem is an corollary of the Feldman theorem [25] (see chapter 10, §4.10) about
the evaluation of linear forms of the logarithms of algebraic numbers.

Now we can make a general proposition about the solutions of equations (25)-(26) for
the function F(w), defining the general solution (24) of the initial FE (20).

_ Theorem 6 The function Fg(w), as a function of a one-parametric family of solutions
of the system (25)-(26), is a holomorphic, in certain fmlte neighborhoods of the ongm in

C?, functlon of variables 2,, 23 or z3, z4:

zi(w) = 5(w) exp ( (w + B(w) — -;—) In /\.') , 1<i<y4, (38)
where ); are determined by (36) while arbitrary functions §(w) and B(w) (cf. (4)) have
the following properties: .

S(—w) = §(w), Slw+1)= §w), ) (39)
Bew)= -Aw),  Alw1)= Alw)

The family F3(w) is defined by the Taylor expansion in 2, 7,
F(w) = kazk) ke Z‘ZH fu= fkl,ki) = z{qz:’ (40)
[ . :
with the coefficients f determined by the‘recurrent relation
k-1
{ 2 fim [( (31 = 1)fo + )W 4 (2 = 1)fo —~ D™ — 21— AB=
Imj=1 ) ‘

I}
+(4l = D)I) fon - (21 =1)/203™ = X™) me—xf:]}

fil=1

[(@r=1)fo+1- 1)~ Al)(Ah“A'z)]—l, : (41)

where A = Mk £ = (1-1) 12, foa and fi0 are axbltrary, and the sum is taken over
all permissible va.luee. The coefficients fi of the Taylor expansion of F in z;, 2y satisfy

the same recurrent relation with );, A; replaced by \;, A, and they are

ﬂ) = "(l ) 2l+:: fO,l = —/\sfo.n fl,o = —/\4f1,0, fk = “fk/'\h-
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Each local solution of the family Fj(w) (the germ), defined by (38)-(41), can be ex-
tended up to the global one by using Fs(w), Fs(w - 1) and iterations of equation (25) and
lies on the invariant manifold T's

Ls:  w+ D (w+1) = 20 (w)2 (w) = S(w), (42)
where B \ : |
"= —2In /\2 * _ 2In /\1
Inh~Inh P o —In .

Proof.  According to Theorems 3 and 5, the set (A1; Az) from (36) of the eigenvalues of
the mapping T (32) at the hyperbolic fixed point d, given by (34) is of the mulhphcahve
type (C,v). Therefore, Theorem 4 guarantees the existence of a blho]omorphxc mapping
U=G(2), U = (4v), z = (21, 2;), G(0) = dj, which transforms a neighborhood of the
origin in C? to a neighborhood of the point d; and reduces the mapping T to the normal
form at d;

CGTITG : (21, 7) — (M2, Maza).

On the other hand, the biholomorphic mapping WG, where W is involution (33), trans-
forms a neighborhood of the ofigin in C? to a neighborhood of the point d; (34) and
reduces the mapping T to the normal form at ds:

GTIWTWG : (23, 24) = (M3, Msz).

Indeed, since involution W reverses mapping T, the mappings G~'TG and G-'WTWQ
are inverse to each other.
Set (z3,2:) = ¢ and

G(2) = (q1(2) ga2(2)),  WG(C) = (~g2(¢), ~9:(Q)) -
Hf some functions zi(w), 1 € i < 4, satisfy FE
zi{w+ 1) = Azi{w), ] (43)

the functions F(w) = g, (2(w)) or F(w) = —g, (¢(w)) satisfy FE (25). Moreover, one will
have g, (2(w)) = F(w — 1) or —g; ({(w)) = F(w — 1), respectively.
Now we should determine the relations between z(w) and ¢(w) which make F (w)

. satisfy FE (26), ie., make F(w) odd. Let F(w) = 92(2(w)) be close to 1/vZ. Then, we

haxe F(—w) = -9 (<(1 — w)). The equality F(—w) = ~F(w) is therefore ensured by
(1 — w) = z(w). ‘ (44)

11



if .
z(w) = §(wyexp((w+a)ln k),  1<i<4, (45)

then (43) is equivalent to &;(w + 1) = §i(w) and (44) is equivalent to ¢(w) = Az(-w),
where A = diag();, A2), Le., ‘

Siral—w) = Abi(w)exp((cs + aisg)n N),  i=1,2.
For o; = —1/2 (1 < i < 4) we have
S-w)=6i(w),  fi(-w) = &), )
Edqs. (43), (45) result in the existence of the invariant mavifold T's {cf. (42))

Is: HF=44=808w), Zg=4q=80) (47)

where 7 = z(w + 1), exponents v;, %2 are determined by (42) and are invariant relative to -

the change Ay, Az — As, M. Substituting (45), (46) into (47) we have

(WP () = Pw), & (~w)P(-w) = F(w). (8)
From (48) we have ) A7 [ Be) \™ o
(ac) (355) = “
Since 6;(w + 1) = 6;(w), then supposing
%%:exp(ﬂi(w)ln/\;), i=1,2, (50)
we obtain from (49)
' expl(—B1 (w) + Ba(w)) In M In Ml = 1. (51)
From (49)-(51) it follows that - |
Ai(w) = fa(w) = 26(w), (52)

where B(w) is odd function with‘period equal to 1 (cf. (39)). From (50), (52) we have ‘
§i(w) = 6(w) exp(Bw)ln X)), 8(-w) = b(w)

and we obtain (38) and (39). ‘ o
Finally, let ‘
F(w) = ga(a(w)) = Y fu ((w))*
k

12

for F(w) close to 1/v/Z and .
Fw) = -0l = ¥ fu @)
& )

for F(w) close to —1/v/2. Substituting these expansions into (25), we derive the desired
recurrent relations on f; and f;. The arbitrariness in the choice of f, 10 and fo; corresponds
to the ambiguity in the choice of the normalizing mapping G. q

Let us consider eq. (25) at l = —3/2. It has the form

11_5F+14Fa+2FF'+4FF’3 : ,
P = —=pFrorvam (53)
and admit a reduction of the order of (53)
. , o
B(F", F)=8(F F)+1, &, F)=EEr B -1 -5/2

Fr+F
It follows from (54) that ®(F’, F) = w + f(w) and we have the equation of lower order
for the function F'(w) (we omit below (w))

(w +7/2)F(w) + 5/2

Flo+ ) = Sy —w+sn (55)
General solution of (55) has the form
_Jw-r |
F(w)—wm, f(-w) = f(w), (56)

Where/the function f{w) has the form

flw) = (w? - 1/4Z£w2 -9/4) (p(w +2l/2) _p(w —21/2) + 1(w +21/v2));

p(w) = 5(B(w) + ¥(~w)) + 5 (2w +1/2)+ ¥(-w +1/2),
where ' » )
r(-w)=(w), Aw+1/2)=—(w).

The function ¥(z) def £ InT(2) is a solution of functional equation

et 1) - 9() = 2.
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