


1 .Introductmn

Consxder the llnea.r tlme—lnva.na.nt system {F G, H } spec1ﬁed by
(11) IR L :z:..Fa:+Gu y—H:,,“‘

- - . - -

where z is an n—dlmensmnal sta.te vector, u is p—dlmensmnal 1nput vector a.nd..v. _
F,G and H-are real constant n X n,n'x p and p. X n matrices respectlvely The:

transfer functlon ma.trlx is the pXp ra.tlona.l matrix "

(12) Z(s) H(sI F) 1G

" . The rea.llza.tlon {F G H } is ca.lled mzmmal if the. transfer functlon matrlx Z(s) .

: ha.s no pole—zero ca.ncella.tlon Recall tha,t Qam ‘ G, F G; F "'IG'] and i
. f"».‘ Qob; = : . ; ’/

cha.ra.cterlze controlla.blllty a.nd observa.bxllty by fullness of the1r ra.nks, a.nd tha.t the

: linear.system {F,G, H} is mlnlma.l if and only if it is observa.ble a.nd controllable
e (Anderson and Vongpanitlerd [2, p. 98]). =

' Twolinear systems {F,G,H} and {F; G H} are ca.lled equwalent 1f there ex15ts
o a nonsmgular nxn. ma.trlx T sa.tlsfylng o o .

(La). F= T“FT 6= T‘G H HT

o In thls artlcle we prove the necessary and sufﬁ<:1ent condmons for controlla.bxllty,
- observa.bllxty and minimality by applying the Jorda.n ca.nomca.l form of matrices.

- We start from discussing an mterestmg useful exa.mple (Scherer a.nd Wendler [1]), . :

‘ ;WhJCh clears up the problem at once. 7

2 N umerlcal Example

: Con51der the lmea.r system (1 1) resultlng from an RLC network where : :

i,—2ao CYQ/C!] s 0] 0000 e S [ mae
SRR A —apoy 0 00 0 agag ]
@) F=1.0 . 0 jv;,—zao oofor 0 |,G=} a [,HT =] -

S0 0 0,,, ";s 00y ig] ST R

. (here and below Tis the SIgn of tra.nsposxtxon) a.nd ag,al,az,ag a.re posmve real *
o fnumbers The tra.nsfer functlon R eE . . : '

| i*(z.z);, -

R iR i

shows a pole-zero cancellation.
The matrix F has two different eigenvalues

. /\1 = —ay, /\2 =0
of multiplicities 4 and 1 respectively. We reduce F to the Jordan form:
J=T"FT.

The matrix F has block-diagonal form and we find the Jordan form of the blocks.
The first block B; takes the form of the Jordan box . .

MM
0 A

arlal =[]

Here e, is eigenvector: ‘Byey = Ajey, and e; is adjoint vector: Byey = Aiez + A
The vector e, is generating vector of invariant two-dimensional eigenspace:

€y = (B] - /\1[)(62/1\1).
Symmetrically the block. B, takes the same form as B with respect to the basis

2] e8]

with respect to the basis

Hence
1 0 0 0 0
a —o 0 0 0
E, = 0 ) E;, = 0 3 E;= 1 ) Ey= 0 3 Es=10
’ 0 0 s3] —Q2 v 0
0 0 0 0 1

a.re.bases of the invariant eigenspaces for F. The second eigenvalue A, = 0 has clearly

eigenvector Es, which at the same time is generating vector of one-dimensional -

eigenspace. So the matrix, reducing F to the Jordan form, is
T = [Ey, E3, E3, E4, Es), det T = oy, #0.

Calculating gives

1 0. 0 0 0
1 —l/al 0 0 0
; T'=1|0 01 0 0
i 0 0 1 —l/az 0
0 0 0 0 1
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The Jordan form of F is

—Qg —Qp 0 0 0
0 —-ap 0 0 0
0 —Qp —Qp 0
0 0 —op O
0 0 0 0

o oo

We‘must verify th¢ fullpess of rank of
an=[é,‘Jé,...,J4é], G:T_IG’
Qubs = [H,HJ,...,HJYT, H=HT.

In this case

é = T_lG = [001 07'001 01 CY3]T = [bly b23 b33 b4s bS]T-

Remark, that G = E,—l bE; (beé}iuse of T-YT = I). So the vector G has zero -

~ components with respect to the first and the second generating vectors in:the basis
of eigenvectors-and ajoint vectors.. Now.consider

fI =HT = [0 (11, 025 1] = [d11d27d37d4a d5]~

So H has zero components dy,ds : (H, E'l) =0,(H,E3)=0,1i.e, His 6rthogbhal to
E; and Ej (the first and the second elgenvectors)

Using simple relation
111° 1 &
01| " o1}

we get
by —oo(by+bz) ao?(by +2b;) —ao(by +3b2) ao’(by + 4by)
bz —aobz aozbz —a0362 a04b2
Qeon = | b3 —ao(bs+ bs) co®(b3+2bs) —oao3(bs -+ 3by) o?(bs + 4b4)
. b4 ——aob4 \ 002b4 —003b4 a04b4

b0 0 0 0

" Note, that the rows, corresponding to the generating vectors (with numbers 2,4,5),

are proportional to by, by, bs. So it’s necessary for the controllability, that the vector.

(G has nonzero components with respect to all generating vectors (in basis of eigen-
vectors and adjoint vectors). In the considered example this is not true: by = by = 0!
But if €ven by, b, were nonzeros, the second and the fourth rows, corresponding to
the different generating vectors with the same eigenvalues —ay, are proportional. So
the second necessary condition for the controllability is following: each A eigenvalie

of F' must have only one eigenvector. If A has multiplicity ¢ > 1, then it must have . i

on the diagonal of J the unique Jordan box (of order ¢). In the considered example
AL = —ap of the multiplicity four has two Jordan boxes of second order.
Now turn to observability. In the considered case

dy ds ds dy ds
—apdy  —ao(di +d3)  —aeds  —ao(ds -+ da) 0
Qobs = | aoldi  ao®(2d; +d2)  ao’ds  o?(2ds + di) 0
—aoadl' —003(3d1 + dz) ;aoad3 —003(3(13 + d4) 0
aoldy  a'(4dy +d2)  aoldy  ap'(4ds+ds) O

Now thé.columns corresponding to the eigenvectors (the first, the third and the fifth
columns) are proportional to dy, ds, ds. So for observability H must be ‘nonorthogonal
to all eigenvectors of F. But in the considered example it is wrong: ‘d; = d3 = 0!
But if even they were nonzeros, the first and the third columns, corresponding to the
different eigenvectors with the same eigenvalue —aq, are proportional. So the second
necessary condition of observability exactly the same as in the case of controlla.blllty
each eigenvalue of F' must have only one eigenvector. A

We used here the Jordan form with —ag # 0 on the second dlagonals of the Jor-
dan boxes. Let E;(c;) be the generating vector of the Jordan box of order ¢; with
¢; # 0 on the second diagonal and the corresponding generating vector of the ¢anon-
ical Jordan form is E;(1). The following relation is true: 'E;(1) = E; (c_.,)/(cq’—l).
So the conditions of nonorthogona.llty to all generating vectors hold with respect to
any Jordan form (any nonzero ¢;), in parcular with respect to the canomcal Jorda.n
form (Gantmacher (3, VI, §6.3, p.153]), when all ¢; = 1. R

3 Main Results

Before presenting theorems let us formulate three conditions, which gives a
possibility to say more short. We consider the linear system {F;G, H} as in (1.1).
Let F has the Jordan canonical form J with respect to the basis Ex,...; E,-and
let there are s Jordan boxes J;, j = 1,...,s. The Jordan box J; is in g; rowes of
J with the numbers g;,p; + 1,...;§. In pa.rtlcular Ji1 begins in the first row, ie.,
g1 = 1 and J, ends in the last row, i.e., §, = n. The basic vectors E;;, . Eg; are
connected by the relations: o ,
- FEu; = )\E,;,
FE#,'+1 = /\J'Enj+l + E#:"
FEu42 = AjEpj42 + Eyj41,

e , FEg = )\iEg; + Eg;1-
Thus Ey;, i=1, ...,5, are eigenvectors. The relations above imply
Eg = (F- ’\jI)Eéj’
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E¢;a = (F — \I)’Eg,
3
Euy = (F = NI)5™1E,.

Here I are the unit matrices of orders ¢; = ¢; — u; +1. So vectors E,j=1,..,s,
generate "Jordan chaines of vectors” (Gantmacher [3, VII, §7, p.188]) which are
bases of cyclic invariant subspases corresponding to J;. We call them generating
vectors. The union of "Jordan chaines” is the Jordan basis.

Condition 1. Each eigenvalue of F has only one eigenvector (or, equivalently,
each eigenvalue has only one generating vector: in the case of simple eigenvalue the
eigenvector is the generating vector of the one-dimensional eigenspace at the same
- time).

Condition 2. For each generating vector E;,j = 1,...,s, there is found at
least one column of the matrix G having nonzero component with respect to Es in
the Jordan basis of eigenvectors and adjoint vectors.

Condition 3. For every eigenvector E.,j=1,...,s, there is found at least one
(of p) row of the matrix H, nonorthogonal to E,,

Theorem of controllability. The system {F,G, H} is controllable if and only
if conditions 1 and 2 hold.

Theorem of observability. The system {F,G, H} is abservable if and only if
conditions 1 and 3 hold.

Theorem of minimality. The system {F,G, H} is minimal if and only if con-
ditions 1, 2 and 3 hold. .

The proof is presented for the controllability only. The theorem of observability
and the theorem of minimality are proved by analogy.

The proof of the theorem of controllability.
First we consider the case of p = 1. The general case reduces to the considered

one. This will be showed at the end. As above let us denote by b;,j = 1,...,n,

the components of G = T-1G, where T = [Ery.ey By, TFT =J We sxmply
calculate o R
det [G,GJ,...,GJ" ).

The Jordan canonical form J has s Jordan boxes Jiy 3=1,...,8 of orders ¢; =
§ — mu; -+ 1. But in the case of simple eigenvalues {; = u; and the Jordan boxes

degenerate to scalar A;. Respectively the vector.
G =[by, by, ..., 07,
is divided into s vectors G = [B1, ... Bs], where
B; = [by, by, 41,-- -5 bEJ]T.

As result we have that

- B, BJ, ... B!

2y o BypJit

(3.1 R
B, B,J, ... B,Jr!

We show, that if conditions 1 and 2 hold, then det Q. # 0. Let us clear up
the structure of matrix rows of Qeon. Let D = [di,da, ..., d;])7, dy # 0, and J be the
Jordan box of order q. Using well known formula (Gantmacher [3, VI, §7.1, p.155])

/\k kAR-1 Cz—.ll\k—q+l
Jeo | 0 X CP~2ak-at2 ’
0 o0 ...0 Ak
£
we get
(3.2) ' [D,DJ,...,DJ"| =
i dA+d; A+ Ol A 4 d, O3
dy 7" ‘+d30‘_,,\" 24 4d, ("’ ’,\

d2  diA+ds

dooy dyr X + d, g1 AT + d.,c;_, A9-2
d, dA . » d 11

did? + CIN L+ d,CITIA di A 4 dyCl_ A2 L d,CIT AT
A7 + d3CIA T + +d Cg:i A"+ d3Ch_ AT +d C,‘}:’,\"'H‘
dg_1 A + d,CI N . dg AV d (‘" DAt
d N7 . d, !
Turn to Qcon (see (31)) Tl;e tow of Qcom with number j is obtained from (3.2) by
replacing D by B;, J by Jj, A by Aj, ¢ by q; =& —pu;+1, [d,....d]
by [bujsbuj41,---,b]. By assumption d, # 0. We subtract from the rows with
numbers 1,...,¢9 — 1 on the right side of (3.2) the row with number ¢, multipled by
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difdy, i =1,...,q— 1, respectively. As result all terms of the first q — 1 rows lost
their first summands:
0 d . &ClL A2+, 44,000
0 ds . dsCy_ A%+

dyCL_ A2 4 d,CIT An-e
L d,CITIN L dCL W L d,CIT e

-

0 d, . d,C1_ \1-2 : d,C1_ A2
d, d) . d M1 : dyAn-1

Now we remove the first summands in all terms of the first ¢— 2 rows by subtracting
of them the (¢ — 1)-th row, multiplied by diy1/dy, i = 1,...,q — 2. After ¢ — 1
such manipulations [D, DJ,...,D.J"7!] is transformed to the column of matrices
(column-matrix below) [bg, RT (A1, q1), .. -, be, RT (s, ¢,)]T with

-1 —
C.Z_l An 9

00. 1 Cia
Cipan

00 . CIIx cr2x
dqRT(’\a q) =d,

o .

n—-2
n—lA

1 . plnt Ad . Ar-1

1. Clx=2 ¢yt | (!

We calculate det (Qcon). Above we produced a number of manipulations with
rows of (Q.on. The value of the determinant did not change. Now we alter (into
inverse) order of rows in all RT matrix elements of the column-matrix. Every
altering order of two neighbouring rows leads to changing the sign of the determinant.
Altering (into inverse) order of ¢ neighbouring rows of the matrix giﬂve)s the multiplier
(—=1)79=1/2 into the determinant value. Then we transpose the obtained column-
matrix into row-matrix with matrix elements bg; R(};, ¢;):

det (Qcon) = det[be, RT (M1, q1), ..., e, RT(As, q5)]F =

1 8
(33) = (=D bpdetR, @), RO g, Q= 53 as(a5 — 1)-
] i=1
Here
[ 1 0 ... 0 ]
A 1 0
A2 (673 NN 0
(3.4) R(Aq) =] o1 C.,‘_l.)\"‘z i I
U /5 S ot N ¢ )
q q
[ Am-1 o CL_ A cmpiasl

Put
1 1 1
A1) AM2) ... Aq)
(3.5) Sha)=| A1P M .. Me? |,

MA@ L Mg

with A(l) = A+1le, 1=1,...,q.
We calculate det[R(A1, q1), - - -, B{)\s, ¢5)], starting from

det[S(M1,q1), .-, S( X5 4s)] = WK1, K2y ..y Kn)-
Here
("u,'v Kujtlsee -y "6,‘) = (A3(1),25(2), - - -, Ai(g5)) = Ay,
Aj(l)=AJ'+‘IEJ‘, i=1,...,8 I=1,...,¢q.
Naturally, A;(z) — A;, when ¢; — 0. We can choose ¢; satisfying inequalities
€1p1 < €2, €242 < €3y...y €5-1G5-1 < €.

Then for sufficiently small ¢, all «; are distinct. And when ¢; going to zero one by
one, starting from ¢, all «; stay distinct. In general ¢; can go to zero in any order.
All k; stay distinct, if only we choose ¢; satisfying the proper chain of inequalities.

By well known Vandermonde determinant formula

W(AL Az, . A) = W(ky, K2y k) = [ (85 — Ka).
N 1<i<j<n

6

Let us sepa}ﬁte factors, containing A;(m) from any A;, m=1,...,¢;:

wio =TI i(m) = A1) = W(Ai(1), %(2), - -, Ai(gi) = W(4;),

1<I<m<q5

wj = II (N(m) = X(D); wj, = IT

1<i<s, | i<i<s,

(D) = As(m)-

I=1,...,giy, m=1,0q5 I=1,0qiy, m=1,q5

Remark, that w;, is the product of differences of A;(m) € Aj and A(I) € A; with
i < j, and wj, is the product of differences of A\;(m) € Aj and Ai(I) € A; with i > 5.
So we have

(36) W(A], ceey A,) = W(A,—)w,-,wj, W(Al, ceny Aj_l, Aj+1, ceey A,).
We need an information about symmetric polynomials of order k with [ variables

k1 k2 ky
3 EAE AR
ky k2. Aki=k .

0’:(1:1,.. . ,1:[) =

9




Lemma. Let Ni(I} be the number of terms in 0;,(1:1, ...,Zy), then
(3.7) Ni(l) = Cigioa = ()

The proof is shown by induction with respect to k. Formula (3.7) is true for k = 1:
1+ z2 + ...+ z; has [ terms and C’,l_l = . Let (3.7) is true for the polynomials of
order less or equal to (k —~ 1), show that then it’s true for the polynomials of order
k. It’s clear, that Ox(z1,...,z1) = Ok(z1,. .., x1-1) + £ifk—1(x1, .. ., 7). This implies

(3.8) Ne(D) = Ne(1 = 1) + Nea ().
For all m,! the following relations hold
(m+l-1)(m+1-2)...(m+1) (Mm+1-2)...(m+1)

Ottt C’"+’- - (I-D{l-2)...1 - (i=2)...1
_(m+l-1-(-1))m+1-2)...(m+1) _ _ -
o (-1 -2)...1 b2

We have, in particular, that

Cizl — Ci3iea = Oiila

Ciii- CI:+I 3= Cizi-a»

C:+2 - Cl:+1 = Cz+1,
CI:+1 - C,? = C,:.

After summing these relations we get
(3.9) Cirici =1+ Ch+ Cly + Cla + -+ G 2+

From the other hand (3.8) gives
Ne()= Ne(1-1) + Neoi(D=N(1=2)+ Neea(1 = 1) + Ny (D) = ...
= Ni(1) + Nx—1(2) + Ne=1(3) + ... + N (1)

The induction assumption and the trivial relation Ni¢(1) =1 imply
Ny =14CL+Cly+... + Ci3la.
This and (3.9) give Ni(I) = Ci;1_,. The proof of Lemma is finished.

We produce a number of manipulations with the columns of S(};,¢;). For the

sake of simplicity we do this with S(), q) (see (3.5)). We subtract the first column
from the rest ¢—1 columns and take out (,\(2) A(l)), ., (A(g) = \(1)) respectively:

WAL 5A) =

10

95
= H(’\J(I) - ’\J(l))det[s(’\lv ql)v B S(’\j—l ) qj—l), Sl(/\j, q,-), S(/\_H.], qi+1 ), . S(/\,, q,)],

=2

0 0

A1) 1 1
oo | RO BOWAM) . 6(M1)A@)
Sha =1 () BOMAR) - 6Ng)

=11 0.2(M1),M2)) . Ouy A1), A(9))
On the second step we subtract the second column of S*(A, q) from the last qg—2
columns and take out (A(3) — A(2)),...,(A(g) = A(2)) respectively.

Remark. Note, that
0221, 22) = 2} + ziz2 + 25, Oa(Tr,20m) = 2 + E1zy + 2.
This gives

02(1'1, l'm) - 92(1‘1, -‘L'z)

Ty — T2

=&+ T2+ T = Oy (21, 22, 7.0).
In general case
ak(zl7 '-1zlvzl+l) = ak(;tl, ey -Tl) + Il+10k~l(:tla "7"[1) + ...+ Ilk.'._]lol(xl‘ .y -Fl) + Ilk+17

Ok(z1, .y 21, ) = Ok(z1, .., 1) + Zmli-1(z1,.x) + ... + z,‘;;‘o,(a:,, e &) + .tfn.

This gives

0r(21, ., 21, Tm) — Ok(21, ..y 21, T1g1)

Tm — Ti41

= ok—l(zl’ (3] .'l'[) + (ml+l + zm)ok—'z(-'tl» oy Il)+

e F Ok2(Z141, £ )01 (T1, oy 21) + Ok_1(T141, Ton) = Omy (1, ey 20, Tig1s Ton).
After the second step of the manipulations we have

95

W(A,..., Ay =TT = A 1))H(A (1) = X(2))x

=2

Xdet[S(’\li ql), i} S(’\j—lv qj—l )a S (’\j’ qj)? S(’\,‘H-l ’ qj+l)v . S(’\.n (ls)].
where S?%()q) =

1 0 0 0
A(1) 1 0 0
A2(1) 61(A(1),M(2)) 1

1
¥(1)  BOILM)  HOAOARLAG) o G(A).AR). Q)
X1) 6us(A1,A2) s (M1 A@LAB)) o Gus(A(1): A2), A(9)

11




After ¢; — 1 steps we have

W(An-s A = TIOG0 = 30 LT = 4520 - THAAD = Aslgz-1))x
1=2 =3 I=q,

(310) ><det[S(/\la 111)’ .y S(/\j-lvqj—l)a Sql—l(’\ja qj)1 S(Aj+1’qj+l)1 3 S(/\s’ qs)]v

where  S771(),q) =

.1 0 0 0
A1) 1 0
/\2(1) 6:1(A (1), A(2)) 1 1
= A1) 0,a(M1), M) 04a(M(1), M2 AB) . 1
(1) O (M)AR) B2 A@YAB) o B(M1), A2, A(g)
|11 0aa(A1),A@) BucaB(1ADAB) e Bacg(A1), AR5 M)

Remark that in (3.10) we have

ﬁ(z\j(l) = A;i(1)) ﬁ(/\,-(l) = 2;(2))... (Ai(q;) ﬁ (A1) - Ailgi — 1)) = W(A)).
1_ o (=3 I=q,

By using (3.6) and (3 10) we find
det[‘S(’\l ) (h), ) S(’\j—l ) qj—l)a S9-1 (’\ja qj)7 S(’\i+1 ) qj+1)7 © S(An qs)] =

= wjlw_,-2W(A1,. "7Aj—1aAj+1"'-,As)-

- When ¢;j — 0 all /\ ( ), t=1,...,qj go to A;, and all 0k(AJ~(1),AJ-(2),...]Aj(l)) go
to Ne(DAk = Ci7i_ Ak (se e (3.7)). The row of $%=();,¢;) with number i + 1 takes

~ the form ‘
[A‘ CI/\' -1 sz\' =2, .,C;“lz\j,l,(),...,()]. v

This is exactly the row of R(AJ,qJ),WIth number 7 + 1 (see (3.4)).
wj = IT Ai(m)=x(0)) = I (=@

1<i<j, 1<i<j,
=150 Mm=1,..,qy 1=1,...,qi,

At last, when ¢; — 0,

wi= I AO-nem) - II ) =A)®
i<i<s, J<igs,
1=1,...,qi, Mm=1,.,q5 1=1,...,9i,s

12

As result we proved, that
det [S(’\lv‘h)v . S(A.j-*lvqj-l)v R( J»(]J), ( J+1’q1+1) Q(Au qs)] =

=TT %=A0P II )= A" W(Anreey Aot g o, A
1<i<;, : j<i<s' ‘

i=1,. i=1,.

a

We produce the same 111ampu]at10ns with all ‘3'(/\,, q), |=1,2,...,s, and by using
(3.3) we get the following; . : '

(B1) det(Qm_n)=(_1)ng;...bg-; IT (-t

o 1<i<j<s

It is clear now, that det(Q..n) # 0, if and only if beys. .., be, are nonzeros and A;,
corresponding to the different  Jordan boxes (including degenerate "scalar boxes”)
are distinct.

The controllability theorem is proved in the case, when the matrlx G has.

" the unique column.

Now we consider the case, when the matrix G has p columns and condition 2
holds: for each j = 1,2,...,s there is at least, one g; (column of G = (91,925 - - -+ gp])s
which has nonzero ¢;(£;) component with respect to the generating vector E¢ . (in the
Jordan basis of eigenvectors and adjoint vectors). First we show, that there are found
constants ¢y, ¢z, ...,¢p such that vector v = ¥%_, ¢jg; has nonzero components

with respect to all generating vectors: v(£;) #0, j =1,...,5. Let g; be first of
91,82 - --,9ps having nonzero component with respect to the first generating vector:
gil(fl) # 0, but gj(fl) =0, j<4. If gil(fj) 7éOﬂ J=12....s then v = Giy -

Otherwise let 7, is the number of first (among &;,...,&, ) zero component of i,
with respect to to the generating vectors: g,l(ql); 0 but g,(&) #0, & <.
By condition 2 there is found i; # 71, 1 < i, <p such that g;,(y) #0. ('onslder

vector ) ) .
1 . / 9-:

vy = g;, + = | mn |g; —

. 1 ;g‘l 2 (5'<711 lg"({J)llngax ng({])'
The component v;{m) # 0 surely. Moreover, the vector vy has 1 nonzero components
in all places ‘§;, where g; (&) #0 or gi,(&) 75 0. So the number of nonzero
components with respect to the generating vectors increases. The next step is fol-
lowing. If v1(§;) #0,for j =1,...,s, then v =;. ‘Otherwise let 12 is the number
of first (among ¢&y,...,& ) zero component of vy, -with respect to the generating
vectors: v1(52) = 0 but v(§;) # 0, & < 7. By condition 2 there is found
13 # 1, i3 £ iz, 1 < i3 < p such that g;,(1;) # 0. Consider vector

B 1 L fig oo
w=uty (gmlnn2 [v1 (& )'W) ’

1<)
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The component vy(n2) # 0. Moreover, the vector v, has nonzero components in all

places £;, where v(£;) # 0 or gi,(€;) # 0. So the number of nonzero components

with respect to the generating vectors increases again. And not more than in .s

steps we get v = v,, r < s, with v() #0, j =1,2,...,s5. And’ found v is
: 3

linear combination of the columns of the matrix G: v = v, = ¥ ¢;g;. We proved

5= -

above, that if condition 1 holds, then
4 P . P
det [Zc,yj, FY cigjy..., F™ Zngj] #0.
=1 7=1 j=1 .
This gives, that each n—dimentional vector can be presented as linear combination

of the vectors
& R ' n—1 4
201911 cmjgja Ty F chgj)

=t j=1 j=1

)

what gives at the same time that each n—dimentional vector can be presented as
linear combination of the vectors : :

~‘1gp7Fg1’ ngv Fn— -’Fn—lgp

In other words rank[G FG,. F""G] =n.’ The controllability theorerrl is

proved.
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Heoﬁxonumue H 10CTATOUHbIE ycnoauﬂ anmanbuocru mmemmx L
mmammecmx cHeTem . : : :

,[onasanbl HCOGXOIIHMHC 1 J10CTATOYHBIE YCOBHA anmanbuocrn IlHllCMHle
mmamnqecxux cuctem {F,G,H }. Oun chopmynupylotes B BHE ycnosuii na G.H,J

"(uopmaﬂbnyro XOpHaHOBY d)opmy marpuusl F ) 1 xopnatios ‘6a3nc cobCTBEHHBIX
Solm npucoeumrennbrx BCI\TOPOB B KOTOpOM F.umeer sy J. ﬂpoGnema NPOBEPKH
|-MUBUMATBHOCTH CBOANTCS K Kiaccireckoii npobneme . naxoxaeHns ‘coBCTBENHBIX

BeKTOpOB " renepupyroumx BCKTOPOB uuxmmecmx cchraeunblx mlBapuauTHbrx,
nonnpocrpancm ManHublF R T e S sy

Pa60Ta BHITIONIHEHA B J]aﬁoparopuu Bbl‘{HCﬂHTCﬂbHOH rexmu(u u asromaruaaumr
OHAH u. B Plucmryre npaKTqucxou MaTema'rm\u YunBepcuTera Kapncpye Fep-

e S

" Tlpenpunt OObEIHHEHHOrO HHCTHTYTA AIcPHBIX HeCaea0Batnii, TyGha, 1996 B
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Necessary and’ Sufficient Condmons for Mlmmalny

s of Lmear Dynamlc Systems “ SR

The necessary and sufflcrent condmons for mlmma]lty of lmear dynamrc‘

"systems {F,G,H } are presented They are formulated in terms of G. HJ (thc Jordan |-

canonical form of F) and the basis of elgenvectors and adjomt vectors,“in which

'F takes form J. The problem of mlmmallty verification reduces to the classic problem 1

of ﬁndmg eigenvalues, elgenvectors and generatmg vectors of cycllc mvarlant,» o
elgenspaces of the matrix F. ' . . : FE
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