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L.Investigation of D-dimensional (D = 1,2,3) solitons, which are nonanalytic in
coupling constants localized particle-like solutions to Lorentz-invariant field equations,
is the fruitful approach to exploring nonperturbative effects within the nonlinear models
of the field theory in quasiclassical approximation (see, e.g., [1-6]). Moreover, stable -
3-dimensional particle-like solutions in Lorentz-invariant nonlinear field models can be
regarded as classical images of extended quantum particles with nonzero masses, which
can be presently considered to be “structureless” (e.g., electron, y- and 7- leptons,
W- and Z-bozons). It is important to note that in general case the existence of D-
dimensional (D > 2) solitons within models comprising N interacting fields (N > 2) is
not forbidden by the Derrick no-go theorem [7] and its generalizations (3], and one can
succeed in finding stable D-dimensional solitons, if the fields considered have different
transformation laws under the Lorentz transformations. ‘ '

In the present paper we investigate localized solutions of the gauged 3-component
sigma model (“the A3M model”) proposed in [8]. This model is Lorentz- and gauge-
invariant, it describes the minimal interaction of the 3-component unit isovector field
$a(z), 848. = 1, @ = 1,2, 3, characterized by the easy-axis anisotropy in internal space
{named for brevity “the A3-field” [8,9]) with the Maxwell field A,(z) in (D + 1)-
dimensional space-timé (D = 1,2,...). The Lagrangian of the A3M model possesses
both U(1) local symmetry and Z(2) symmetry; the latter is spontaneously broken both
on vacuum and soliton solutions. Below we present basic equations of the A3M model
in D-dimensional space and investigate its soliton solutions for D = 2.

2. The gauge-invariant Lagrangian density of the A3M model reads:

L=0%(D,s_-D*sy + 6,,.9.36“.93 —V(s4) — Fz,,, (1)
4 [

D, = au +igA,, Du= 0, —igA,,
8y =81 +1sy, S_ =8 —1is,

Fu = 0,4, —0,A,, V(s.)=p*(1-3s3),

where 8%, 7%, are constants, [p?] = LO-D), [8% = L~(*D), g is a coupling constant,
[¢*] = LP-3) v = 0,1,..., D, and summation over repeated indices g, v is meant. It
is straightforward to rewrite this Lagrangian density in the equivalent form

L= 02(8,84)° — V(sa) — ZF‘?” + 2gn° A, (520%s1 — $10%32) + ¢*n*(s? + s3) A A%, (2)
The A3M model can be regarded as a gauge-invariant analog of the classical Heisenberg
antiferromagnet model with the easy-axis anlsotropy, the Lagrangian density of the
latter is

L=0%0,8.)" = V(sa), Sasa=1, a=1,23. (3)

Making rescaling ¢, — g~'9~z,,, A, — n ! A,, we obtain the Euler-Lagrange equations
of the A3M model in dimensionless form. These equations, governing evolution of the
fields s,(z), Au(z), in (D + 1)-dimensional space-time, take the simplest form if the
Lorentz gauge, d,A* = 0, is chosen:
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0;,6‘13,- + [6usaa“s, +2A.5" + p(sg - .'3)‘ +'AuA”(S? + sg — &1 — 820))si

—24,(850"s1 ~ 6::032) = 0, @
Ju=s20us1 — s10use, (5)
8,0"A, + 25, +2(s} +53)A, =0, : (6)

wmv=01,.,D =123

(w(e1 denote p = B*¢*p~*). Equation (4) can be rewritten using variables s3 = s s
and s3: = '

0,035 + [0,500"50 + 2A,5" + st — A APsY sy — 2iA, 0" =0, (1)

0,033 + [0,340" 34 + 2A4,5* — p(1 — 53) + A A*(1 — s3)]s3 = 0. 8

It is instructive to present the equations of the A3M model in terms of angular variables
0, on the unit sphere S?,

sy =sinfcos¢, s;=sinfsing, s3= cos 0. - (9)

Then the Lagrangian density (2) takes the form (in rescaled z,., A,):’

G AL = 9,000 + sin? 00,80 — 24,048 + A, A" — p] -%F},. (10)

and the Euler-Lagrange equations become:

1. ‘ y
0,0"0 + 5 sin20 [p ~ 0ud0"¢ +24,0"¢ — A,4%] =0, (11)
B, [sin® (04 — A%) =0, (12)
8,9"A, +2j, +2A4,5in*0 =0, j, = —sin® 09,4, (13)

Note that Eqgs. (11)-(13) can be satisfied if

#(z) = $(x) —wt, Ao=w=const, Ax(z)= Ar(x), 0(z)=0(x), k=1,..,D,
o (14
where Aj, 8 are subject to equations which do not contain w (k,m=1,..,D, summatior)l
over repeated k): A -

1
936 — 5sin20 [p+ (Bt — AW)*] =0, (15)
B [sin?0(@d - Ad)] =0, (16)
82 A + 2507 8(0n 6 — Am) = 0. , o

3. Below we shall study localized solutions to Eqs. (15)-(17) for D = 2 using the
"hedgehog” ansatz for the unit isovector field s;(x), i =1,2,3,

sy = cosmysinf(r), sz =sinmxsin 0(r), s3=cosf(r), (18)
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where m is an integer number, and the "vortex® ansatz for the Maxwell field Au{x),
; v ;
Ap=0, A=A, =-ma(r)5, A= A, =ma(r)= (19)
' T T

As a result we obtain equations for 8(r) and a(r) 8l

d*¢ 1d8 « [m¥a—1)?
—_— o — 5] —_— =0 20
dr2+rdr schosG[ ) +p , ‘ (20)
da  lda 2 :
= —a)si =0. . 2
o7 " T dr +2(1 —a)sin“d =0 (21)
with boundary conditions
8(0) =, B(c0)=0 (22)
S oal0) =0, af)=1 (23)

Note that field configurations si(x) given by Egs.(18),(22) correspond to maps from
2mp 1O §? with integer homotopic indices (“winding numbers”){1.6.10]. and we shall
refer to solutions of the problem (20)-(23) as topological solitons with the “topological

- charges” Q; =m. :

Using series expansion of §(r) and a(r) at v — 0, we find from Eqs. (20) and (21)

for m =1
0(r) = = — Cir + o(r), (24)
a(r) = P} (E} - %C?rz) +o(rh). (25)
and for m = 2
0(r) = © — Cor® + o(r?), (26)
afr) = (B} — 75C3r*) + ofr°). (27)

Equations (24),(26) and (26),(27) are useful when searching for solutions of the problem
(20)-(23) with m =1 and m = 2, respectively, by the shooting method.

We have found numerically the profile functions 8(r) and a(r) of solitons withm =1
for p =0.01, 0.03, 0.05 (Fig.1), p =0.1 and 0.15 (Fig.2). Distributions of the energy

density N 2
9 2y — 1)? 2 A\
H(r) = (g.) + sin%0 [p ; ’"—("7—”—] P (ld“) . (28)

2 \rdr

and the magnetic field, —B(r) = (da/dr)/r, are plotted in Figs. 3 and 4, respectively.
Note that for small p, p < 0.05 the asymptotic value of a(r), a(oc) = 1, is reached
at smaller values of 7, than the asymptotic value of 8(r), B(cx) is (see Fig.l); the
reverse situation is observed for p > 0.1 (Fig.2). For all p considered the characteristic
width of the localized solutions a(r),8(r) is rather large. It is important however that
distributions of physical quantities (energy density, magnetic field) of the solitons are
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soliton energy, E
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Fig.5 The dependence of the 2D A3M soliton energy £ on log(p).
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localized within much smaller regions (see Figs. 3,4). One can easily find that the

“magnetic flux of the 2D topological solitons in the A3M model is quantized,

2x ‘ !
o= / BdS = / Apdzy = — / a(o0)dp = —2rm = —27Q, (29)
(1]

The dependence of the seliton energy E = 2rx [ H(r)rdr on the p value is depicted _ -

in Fig.5; it is natural to conjecture that the dependence E(log p) is exactly linear. It is
important to note that E(p) < 8 for p < po = 0.3 (recall that 8x is the energy value
of the Belavin-Polyakov localized solutions'in D = 2 isotropic Heisenberg ferromagnet
{11]). It means that at least for p < po the particle-like solutions (17)-(21) of the A3M
model describe spatially localized bound states of the A3- and the Maxwell fields, and
hence it is natural to conjecture these 2D solitons to be stable for p'< po (indeed, to
deqtroy them it is necessary to supply an amount of energy exceedmg the appropriate

““mass defect”).

4. One can .consider the 2D A3M solitons as strings with ﬁmte radia embedded
into 3D space. Such strings-solitons can be used when elaborating cosmological models
of evolution of the early Universe and its present large-scale structure (for review see, .

-e.g., [12]). From mathematical point of view these solitons are well suited for computer °

simulation of interaction of extended cosmic strings, indeed, to investigate the interac-
tion of M strings within the A3M model initial data for the evolutionary PDE problem
could be set as a sum of M solitons well separated from each other. Recall'that such -

“the physically natural prescription cannot be -used for computer simulation of inter-

actions of the Abrikosov-Nielsen-Olesen strings-vortices(13] within the abelian Higgs

- model[14], which are widely discussed (along with their non-abelian generahzatlons) in

cosmological models[12].
Further computer studies of the 2D solitons thhm the A3M ‘model are in progress,
in' particular, investigation of the boundary value ploblem (19)-(22) for various m and .

. p- Next, we are starting computer studies of dynamical processes in which the 2D A3M"

topologlca.l solitons take part, using evolutionary PDEs of the model presented above.
From the viewpoint of particle physics the most important line of soliton studies
within the A3M model is certainly the search for stable 3D solitons. Our preliminary
analysis shows that existence of stationary 3D A3M solitons with nonzero integer val-
ues of the topological charge of the A3-field (the Hopf index, see, e.g., [1a,15]) is not
forbidden and, moreover, it is quite likely; however, serious mathematical difficulties

.- should be overcome first in order to make appropriate computer mveshgatlom 1e]1ab]e
. and successful.
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