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. Field equations of the 3-component -U(l) gauged sigma nmd~I (~dhe' A3M 
model>>) with spontaneously broken Z(2) symmefry :,are presented for. (D +I)­
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with the unit topological charge are found numerically; these topological solitons 
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I.Investigation of fl-dimensional (fl = 1, 2, 3) solitons, which are nonanalytic in 
coupling constants localized particle-like solutions to Lorentz-invariant field equations, 
is the fruitful approach to exploring nonperturbative effects within the nonlinear models 
of the field theory in quasiclassical approximation (see, e.g., [1-6]). Moreover, stable• 
3-dimensional particle-like solutions in Lorentz-invariant nonlinear field models can be 
regarded as classical images of extended quantum particles with nonzero masses, which 
can be presently considered to be "structureless" (e.g., electron, µ- and T- leptons, 
W- and Z-bozons). It is important to note that in general case the existence of fl­
dimensional (fl~ 2) solitons within models comprising N interacting fields (N ~ 2) is 
not forbidden by the Derrick no-go theorem (7) and its generalizations (3), and one can 
succeed in finding stable fl-dimensional solitons, if the fields considered have different 
transformation laws under the Lorentz transformations. 

In the present paper we investigate localized solutions of the gauged 3-component 
sigma model ("the A3M model") proposed in [8). This model is Lorentz- and gauge­
invariant, it describes the minimal interaction of the 3-component unit isovector field 
s0 (x), s0 s0 = l, a= 1, 2, 3, characterized by the easy-axis anisotropy in internal space 
(named for brevity "the A3-field" (8,91) with the Maxwell field Aµ(x) in (fl+ !)­
dimensional space-time ( fl = l, 2, ... ). The Lagrangian of the A3M model possesses 
both U(l) local symmetry and Z(2) symmetry; the latter is spontaneously broken both 
on vacuum and soliton solutions. Below we present basic equations of the A3M model 
in fl-dimensional space and investigate its soliton solutions for fl = 2. 

2. The gauge-invariant Lagrangian density of the A31\I model reads: 

r, = ,,, 2 (t\,s_'D"s+ + oµs~o"s 3 ) - V(s.)- iFJv, (1) 

'Dµ = {}" + igAµ, 'Dµ = oµ - igAµ, 

Fµv = oµAv - ovAµ, V(s.) = p2(1 - s5), 

where (i2, r,2, are constants, [772] = L(l-D), [/32] = L-(l+D), g is a coupling constant, 
[g2] = L(D-3), µ, v = O, 1, ... , fl, and summation over repeated indicesµ, vis meant. It 
is straightforward to rewrite this Lagrangian density in the equivalent form 

The A3M model can be regarded as a gauge-invariant analog of the classical Heisenberg 
antiferromagnet model with the easy-axis anisotropy; the Lagrangian density of the 
latter is 

(3) 

Making rescaling Xµ-+ g-171-1xµ, Aµ -+·77-1 A,., we obtain the Euler-Lagrange equations 
of the A3M model in dimensionless form. These equations, governing evolution of the 
fields s 0 (x), Aµ(x), in (fl+ !)-dimensional space-time, take the simplest form if the 
Lorentz gauge, OµA" = 0, is chosen: 



Oµ.Oµ.S; + [8µ.saoµ.sa + 2Aµ.jl' + p(s; - 8;3)_ + A,.A"(si + 8~ - 81; - 82;)}8; 

-2A,.(82;8"s1 - 81/J"s2) = 0, 

j,. = s28,.s1 - s18,.s2, 

8,.{Y' A,,+ 2j,, + 2(si +s~)A,, = 0, 

µ,v = 0,1, ... ,D, i = 1,2,3 

( 4) 

(5) 

(6) 

(we denote p = /329-277-4). Equation (4) can be rewritten using variables S± = 81 ± i82 
and .i3 : 

8,.8" S± + [8µ.s~8" Sa + 2A,.j" + ps; - A,.Aµ. 8;]s± - 2iA,.8" S± = 0, (7) 

8,.8"sa + [8,.sa8"sa + 2Ai,j" - p(l - s;) + A,.A"(l - 8;)]sa = 0. (8) 

It is instructive to present the equations of the A3M model in terms.of angular variables 
0, </> on the unit sphere 82, 

s1 = sin0cos</>, 82 = sinOsin</>, 83 = cos 0. 

Then the Lagrangian density (2) takes the form (in rescaled x,., A~): 

9-2,,,-4c = 8,.08"0 + sin2 0 [8µ</)8"</> - 2A,.8"</> + AµA 1
' - p] - ,iF;,,. _ 

and the Euler-Lagrange equations become: 

1 . . 
8µ.8"0 + 2 sin 20 [p- 8,.</>8"</J + 2A,.8"</J - A1,Aµ.] = 0, 

8µ [sin2 0(8"</>- A")] = 0, 

8µ.8" A,, + 2j,, + 2A,, sin2 0 = 0, j,, = - sin2 08,,</>, 

Note that Eqs. (11)-(13) can be satisfied if 

(9) 

(JO) 

(11} 

(12} 

(13} 

</>(x) = <f>(x) - wt, A0 = w = canst, A.1,(x) = Ak(x), O(x) = O(x), k = 1, ... , D, 
(14) 

where Ak~ 0 are subject to equations which do not contain w (k, m = l, ... , D, summation 
over repeated k): · ' 

8z0 - ~ sin 20 [P + (8k<P - Ak)2] = 0, 

8k [sin2 0(8k</>-A.1,)] = 0, 

8iAm + 2sin2 0(8m</>- Am)= 0. 

(15) 

(16) 

(17) 

3. Below we shall study localized solutions to Eqs. (15)-(17} for D = 2 using the 
"hedgehog" ansatz for the unit isovector field s;(x), i = l, 2, 3, 

s1 = cosmxsin0(r), s2 = sinmxsinO(r), 8 3 = cosO(r), (18) 

2. 

1 ... 
'1 

·:\, 

.. 

• Y X 2. 2 2 
smx=;, cosx=;, r =X +y, 

where m is an integer number, and the "vortex" ansatz for the Maxwell field A,.(x), 

Ao=D, 
y 

A1 =Ax= -mo(r)2 , . r 

X 
A2 = Ay = mo(r) 2 r 

As a result we obtain equations for O(r) and o(r) [8], 

d20 1 dO . • [m2(o - 1)
2 

] 
dr2 + ; dr - sm O cos O r2 + p = O, 

with boundary conditions 

d2o _!do + 2(1 _ o)sin20 = 0. 
dr2 r dr 

0(0)=1r, O(oo)=O 

o(0) = 0, o(oo) = l. 

(19) 

(20) · 

(21) 

(22) 

(23) 

Note that field configurations s;(x) given by Egs.( 18) ,(22) correspond to maps from 
R~omp to 8 2 with integer homotopic indices ("winding numbers")(l.6.10]. and we shall 
refer to solutions of the problem (20)-(23) as topological solitons \\'ith the "topological 

charges" Qi = m. 
Using series expansion of O(r) and o(r) at r-> 0, we find from Eqs. (20) and (21) 

form= 1 

and form= 2 

O(r) = 7r - Cir+ o(r), 

1 
o(r) = r2 (Ei - -Cfr2

) + o(r
4

). 
4 

O(r) = 'Tr - C2r
2 + o(r2

), 

( ) 
2 2 1 2 4) 6) or =r(E2 -

12
C2r +o(r. 

(24) 

(2-5) 

(26) 

(27) 

Equations (24),(26) and (26),(27) are useful when searching for solutions of the problem 
(20)-(23) with m = 1 and m = 2, respectively, by the shooting method. 

We have found numerically the profile functions O(r) and a(r) of solitons with m = 1 
for p =0.01, 0.03, 0.05 (Fig.I), p =0.1 and 0.15 (Fig.2). Distributions of the energy 
&~~ . 

(
d0)

2 
[ m

2
(o - 1)21 711

.
2 (1 do )

2 

, 
1-l(r) = dr + sin20 p + r2 + 2 ;:-;,; (21:i) 

and the magnetic field, -B(r) = (do/dr)/r, are plotted in Figs. 3 and .J. respectively. 
Note that for small p, p ::; 0.05 the asymptotic value of a(r), o(oo) = 1, is reached 
at smaller values of r, than the asymptotic value of 0(r), O(oo) is (sC'e Fig.l); the 
reverse situation is observed for p ~ 0.1 (Fig.2). For all p considNed t.he characteristic 
width of the localized solutions a(r), 0(r) is rather large. It is important however that 
distributions of physical quantities (energy density, magnetic field) of the solitons are 
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Fig.I Soliton profile functions a(r) and 0(r) for p = 0.01, 0.03 and 0.05. 
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Fig.2 Soliton profile functions a(r) and 0(r) for p = 0.10 and 0.15. 
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Fig.3 Energy density of the 2D A3M solitons vs radius for various p. 
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Fig.4 Magnetic field of the 2D A3M solitons vs radius for various p. 
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Fig.5 The dependence of the 2D A3M soliton energy Eon log(p). 

6 

localized within _much smaller regions (see Figs. 3,4). One can easily find that the 
magnetic flux of the 2D topological solitons in the A3M model is quantized, 

<P = j BdS = j Akdxk = - l" o(oo)dcp = -2~m = -2rrQ1 (29) 

The dependence of the soliton energy E = 2rr J 1t( r )rdr on the p value is depicted 
in Fig.5; it is natural to conjecture that the dependence E(logp) is exactly linear. It is 
important to note that E(p) < Srr for p < Po :::::J 0.3 (recall that Srr is the energy value 
of the Belavin-Polyakov localized solutions 'in D = 2 isotropic Heisenberg ferromagnet 
(11 ]). It means that at lea.st for p < Po the particle-like solutions ( 17)-(21) of the A3M 
model describe spatially localized bound states of the A3- and the Maxwell fields, and 
hence it is natural to conjecture these 2D s6litons to be stable for p < Po (indeed,io 
destroy them it is necessary to supply an amount of energy exceeding the appropriate 
"mass· defect"). 

4. One can consider the 2D A3M solitons as strings with finite radia embedded 
into 3D space. Such strings-solitons can be used when elaborating cosmological models 
of evolution of the early Universe and its present large-sea.le structure (for review see, 

. e.g., (12]). From mathematical point of view these solitons are well suited for computer · 
· simulation of interaction of extended cosmic strings, indeed, to investigate the interac­
tion of M strings within the A3M model initial data for the evolutionary PDE problem 
could be set as a sum of M solitons well separated from each otlwr. Recall that such 
the physically natural prescription cannot be used for computer simulation of inter­
actions of the Abrikosov-Nielsen-Olesen strings-vortices[13] within the abelian Higgs 
model[14], which are widely discussed (along with their non-abelian generalizations) in 
cosmological models[12]. · 

Further computer studies of the 2D solit.ons within _the A3M model are in progress, 
in particular, investigation of the boundary value problem (19)-(22) for various m and 
p. Next, we are starting computer studies of dynamical processes in which the 2D A31\'1 
topological solito~s take part, using evolutionary PDEs of the model presented above. 

·From the viewpoint of particle physics the most important line of soliton studies 
within the A3M model is certainly the search for stable 3D solitons. Our preliminary 
analysis shows that existence of stationary 3D A3M solitons with nonzero integer val­
ues of the topological charge of the A3-field (the Hopf index, see, e.g., [la,15]) is not 
forbidden and, moreover, it is quite likely; however, serious mathematical difficulties 
should·be overcome first in order to make appropriate computer investigations reliable · 
and successful. 
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