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.. :.Thus ,:,.(C) is- givcn.by a·circuit-integralin par~-rnetric space 
and is independcnt·of how the circuit is traversed (provided of course 
that·this is 'sl~w enough for ~the adiabatic approximation t~ hold). 
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'~---·-·' I~ Introduction 

The gei>metric p}~~se can b~ qu~lified is' one of the m~1st ~ctively dcvel- - -
oped modern physic~! conceptions. The number of pubiications anS:lyzitig 
diff~rerit mathex'natical aspects lmd experimental c;tmsequences of its exis: 
tence, begiiming with· Berry's pioneer paper·, is impr~ssive {1]; Moreover, 

~ . _recent investig~tions {2] further improve_ the general picture Clrawn by Berry, _ 
Simon, H~~may, Aharonov ~nd Amindan et al. Nevertheless,.'it seems p.ec: -

'. . · .. , .. ··. . . '"" . . " 
essary to ·return and cmisider in greater detail the most-typical case ~hat·· 
represents the evolution of neutron spin accomp~nying the excursion of th~ · 
magne~C field, This-paper ~riginated.with' the- unsuccessful attempt to.· 
apply existirig statemimts of'the'geometric phase calculation in the case 
of essen'tially non-~diabatic spin (chil;ra<:teristic vector) evolution under,an 
. a r b i t r a r y and fin i t c excursion rate of the magrietic field (parametric__ 
vector). - · 

. The two references directly connecting with this question also .belong to ... · 
Berry [3], [4].' Unfortunately, the-sche~e .of adiabatic iteration' developed 
in [3] can not _be accepted as consistent ar1d applicable: ·Berry,'s second 
_consideration !·1]' of some years ago,. seenis to have been done because 
of dissatisfaction with the previous 8.n~lysis .. The argument whi~h co~ld .. 
initia:te a·new consideratiori arises naturally at the level of intuition: for an 
arbitrary excursion, a; complex generalization of the g~~metric phase seems 
inevitable. . · - .. ' · . _ . 

- It rnt1st be· stressed that th'e notion of a complex geomet~ic phase is not, 
·- new and was well developed by Garrison and Wright for d i s s'i p a t i v e 

- - . - ·' ' . . 
systems in · {5]. We will npf discuss this first consideration because it rep-
resents an:example'of,the standard way of generalizing. on the basis of 
non-Hermitian Hamiltonia~s whiCh; as~a consequ~nce,usuallyleads from 
real parameters (o their complex coimterparts.-~Ari.other c~nsiderationlead­
ing to the notion of the ~omplex geometric phase .was, developed by .Alber 
and Marsden· [6]-in.conn~ction with sol! ton~. , 
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Berry's second consideration appeals to Dykhne's calculation. connected 
with integration of the quantum amplitude throu"gh the introduction of the 
complex time plane [4]. Is the picture of a g eo metric amplitude drawn 
in this paper complete? Corresponding remarks can be found in Sec.VI. 

From the other side, an arbitrary excursi6n implies the possibiUty of · 
a non-adiabatic evolution of· the system. Is Aharonciv and Arianadan's 
consideration. of the non-adiabatic. case [7], founded on the . assumption. ~f 
unitarity, the most general one? As it will be shown below in Sec.IV, the · 
latter, particuhirly, does not cover the case presented in Sec.V, 

II. Adiabatic changes 

The·conclusions leading to the notion of adiabatic changes could be ini­
tiated with the following simple illustration.- Let us take a watch arrow'. The 
rod could be used as an axis in a manner which permits com par at i v e 1 y 
free turning of the arrow. 

Now, let us transport this construction along a plane, always keeping 
the rod vertical. We wou_ld see that the initial and final positions of the 
arrow, after an excursion along the closed lines, would have coincided if 
the speed of the traverse were slow enough. From the geometric p~i~t of 
view, this result points out that the par a 11 e 1 transport law.was fulfilled 
locally by· the arrow. .~ . . . · · • · · ' · 

' t ~ • f 

Definition 1. The changes in a pliysical system ar~ adiabatic if they ~e · 
caused by the parametric' vector traversing slowly enough that the Charac­
teristic vectors of the physical system move in accordance with the parailel 
transport law. 

Now, if we place our cor'tstruction on the surface of a cone, we observe the 
angle between the initial and final positions 'of the arrow even under th~ ex­
cursion with very slow speed. This is the so-called (a n)h o 16 no my effect, 
caused by the non-local difference between the cone surface and the plane. 

The value of this angle is equal to the cone angle and is obtained as a 
result of local conservation of the parallel transport law. One could easily 
generalize this result for a particular excursion on the sphere figured here as 
a sequence of parallel excursions along the corresponding tangential cones, 
and arrive at the famous s 0 l i d ; a n g l e l a w 

O:N = QN = (1 - cos 8){).1/J 
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for the excursion crossing the North pole, and 

as = fls = (1 +cos 8)6.¢>. 

for the excursion crossing the South pole. 
Furthermore, it can be easily shown that the solid angle law remains 

valid for the. excursion of the arrow having an arbitrary configuration on 
the sphere and under an arbitrary radial deformation. Consequently, we 
can confirm that the aN,and as are the ,t 0 p 010 g i.e a 1 i_n V a.r ian ts. 
In a quantum setting, consideration passes to the Hilbert space with the 
corresponding notions of horizontal and vertical 1 i f t s for the wave 
function:s [8]. 

Is this picture of the adiabatic changes conserved in the case of quantum 
evolutions of the neutron spin in amagnetic field? Is there 8: real differ­
ence between the terms "topological" and "geometrical" (phase), which are 
usually identified in the frame of holonomy analysis? 

The Cartesian representation of the Hamiltonian of a neutron spin ina 
magnetic field is 

( 
Z X -iY ) 

X+iY :-Z 

But this representation 18 not convenient for the consideration below .. The 
natural map for investig~ting of the h~lonomy- effects is a spherical one. 
Pa~ticulariy, it is e~id~nt from the mit~ral ad hoc separation of the. ~~i·~ 
ables for a slow excursion: H, responsible for accounting for the dynamic 
phase, and the angular variables if>and 8, .which, in principle, can generate 
holonomic phenomena. So, let us' rewrit~ and her~~ter ~se the,Hamilto~ian 
in spherical representation 

H· (cosO. sinBe-•~·) 
. sin8e'~ -cos 8 . · 

Two corresponding two solution'~ of Pauli's equati~n . 

. i1i~ = -2/lii;w 

for opposite projections of the spiri can be obtained easily and lo~k as 
follows 

·· · ·( cos§..· e-i4> ) · -~ 2 
w~(8, if>) = e-:"' 2 • . . ' (1) 

sm§.. 
2 

-·~ :4. 

I 

( 

. 8 
ll' 0 (8 "') -~ - sm - . e-i4> ) 

- ' 'P = ea 2 2 : -

cos§_ , 
2 

(2) 

where 8 and if> are the respective polar and azimutal angles of the quantiza­
tion axis (H) in the chosen coordinate frame, W£ = 2llliH Jn is the frequency 
of the Larmor precession, and ll is the magnetic momentum of the neutron, 
H = ji:lj. The following must additionaly. be stressed: these often cited 
and dedicated solutions describe the neutron spin evolution in an arbitrar­
ily oriented and homogeneous magnetic field. However, the problem of 
neutron spin evolution in a magnetic field is unique. After passing from 
the .stationary problem (1), (2), one also has an'exactly-solvable problem 
for the case of a precessing magnetic field with the correspondii:ig(time­
dependent) Schrodinger equation [14]. Moreover, as will be shown in Sec.V, 
we can point to an alternative to the precession mode that completes the 
picture of neutron spin evolution, naturally and which also has an exact 
solution. 

For the conclusions below, in addition to the definition of adiabatic 
changes, the following .two notions need to be determined: 

Definition 2. The weak non-adiabatic ,changes in a physical system 
are those caused by the vecto~-para.meter's'tr~v~rsing ·with finite rate, but 
which conserve the parallel transport law for the characteristic vectors of 
the physical system. 

Definition 3. The strong non-adiabatic changes in the physical sys­
tem are those which are accompanied by with violations of the characteristic 
vector parallel tr~nsport law and can be caused by infinitely slow traverses 
of the external vector-parameter. 

(? 
u 

Let us go to a more detailed consideration. 
. . . 

.. 
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·III. Precession 

By a precessing (or rotating) field configuration, we mean the following 
specific time-dependence of the magnetic field components: 

Hx = H sin8cos(wt + ~), 

Hy = H sin8sin(w.t + ~), 
-~' 

Hz= Hcos8, 

(3) 

where w is the angular rate corresponding to a rotation around the z ~is 
carrying the strength H and polar angle 8 constants: 

The solutions of Pauli's equation for the precessing field case are well 
known [14] and can be written as follows 

w(t) = c+w+(t) + c_w_(t), IC+I2 + IC-12 = 1, (4) 

'~<+(!) ~ ,-<(ACwj</' ( (5) 

(6) 

where 
'0 

A= j(w- W£ cos 8)2 + wl sin2 8. 

(As was mentioned by D.A. Korneev, Rabi's problem of spin resonance 
·turning corresponds to the replacement w -+ -w, i.e., rotation in a back . 
direction.) 

It must be stressed that W ± are orthogonal: 

(w+, w_) = o. 

:r'he spinors in the expressions above, under the substitutions 

8 _· {A+W£COS8-w 
cos2-v 2A ' 

(7) ; 
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«P '== wt+ ~. 

can be rewritten in a form similar to (1), (2)~ 

. _ · ( cos !!e-i
41 

) 
W+(t) = e"'+llJ+(t) = e-i(A-w)t/2 . 

2 
. ·, 

. . e sm 2 -

. _ ( -sin !!e-i
41 

) 
w_(t):::;; eta-w_(t) = ei(A+w)t/2 . . 2 e . 

cos 2 , . 

(8) 

(9) 

(10) 

These are the states with the following definite 'projection on the z axis: 

1 
(w±,SzW±) = ± 2cos8. (11) 

The Aharonov-Anandan approach, as was shown particularly in [11], 
points out that the ph?Ses of the exponents before the spinors in (9), (10) 
can be expressed in a ~~prisi~g manner through e and <1>, too: 

A- w : W£ cos(8- 8) (1 +cos 8).6-«P ( 
2

) 
a+ = ---t = - t + , 1 

2 . . 2.. '. .. 2 
_ A+w _-WLcos(8_:_8) ·(i-.cds8).6.«P' ''( ) 

a_ -
2 

t - . 
2 

. . t + 
2 

, . 13 

wher~ ~«P == <1>- ~ ( = wt). As a result, we a~rive at the f~~ms slioV/'ingth~t 
the vahies of the dynami~ phases . . . . . .. 

/h = =FwL cos(8 ...:..·e) 
2 t 

deviate by the Aharonov-An{indan phases: 

(1 ±cos8).6.«P 
'2 

(14) 

(15) 

The Aharonov-Anandan phases are equal-and can be'obtained in the 
considered cas~ directly from the known spinor parts, 'also; through inte-
gration over the corresponding holonomy connections. ' ' 

l 

. ... _· t - . a - ... 
'Y± =a±-/h = .i j (IJ!±, or W±)dr . 

0 
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These changes vanish when there is no precession (w = 0) and equal the 
Berry phases in the adiabatic mode (w--+ 0) 

(1 ±cos 8).6.<1> 
2 

(17) 

For the components of the observable polarization vector, in the preces­
sion case after the cyclic evolution (t = 21rjw), and with the non-essential 
simplified assumptions 

(C+, C_) = (1/v'2J/v'2), t/> = 0, 

the following expressions can be obtained 

. P, =sine sin( a_- a+), 

Py =cos( a_- a+), 

Pz = - cos e sin( a_ - a+) , 

where 
21l"WL cos(8- e) + n(e) 

a_ -a+= w 

and 
n(e) = 21r(1- cos e) 

is the solid angle traversed by the magnetic field. 

(18) 

(19) 

(20) 

These expressions show that if we subtract the Larmor (local) preces­
sion, the polarization of the neutron evaluates as a classic vector parallel 
transport under the field precession with a finite angular nite w: the solid 
angle law is conserved. So, in agreement· with Definition 2, the neutron 

. spin evolutions under magnetic field precession can be qualified as weak 
non-adiabatic changes. 

IV. General setting 

The consideration of spin evolution in a precessing field (in Sec.III) was 
to ill~strate the holonomic phenomena of Berry and Aharonov-Anandan 
on the level of an exactly solvable problem. But, is it enough to know 
the precessing field case for the solving the problem announced in Sec.l : 
calculation of the geometric phase for an arbitrary (and with a finite rate) 
line of the excursion of a magnetic field on Poincare's sphere? The first 
consideration connected with this problem, as was mentioned, is dealt with 

8 

~ 

in [3]. It is not an abstraction: one arrives at the setting of this question 
from the analysis ofcexperim~nts, as well [12]. · 

By the way, the conclusions that. arise relating to the basic assumption 
of Aharonov-Anandan approach: 

Conclusion 1. To be exact, from the cyclicity on the level of vector-
parameter 

.R(r) = R(O) 

the corresponding quantum cyclic analog does not follow: 

, ll!(T) = eio(Tlw(O) 

but instead, '"" 

~('f)= L Cm(O)eiom(T)'llm(O). . (21) 
m 

So, the classic cycle does not directly mean the corresponding quantum 
cycle. 

Conclusion 2. M?reover, for an arbitrary,moment of timet, the ex-
pression 

eio(tllJ!(t) 

can not be accepted as the general. forrrt for the quantum system under 
non-adiabatic evolution. So, the Aharonov-Anandan time integration [7] 
is valid when the general form 

w(t) = L Cm(O)eiom(t)wm(t) (22) 
,m 

is reduced, as in the case of precession, to the separate evolutions of the 
partial (with fixed quantum number) basic states. 

Let us consid~r the ge~eral setting. Dirac's standard s~bstitution 
c::::J 

w(t) = L Cm(t)Wm(t), 
m 

for the Schrodinger equation (the corresponding ll!(t) spectrum is assumed 
to be non-degenerate) gives a system of first-degree linear equations: 

Cn = L CmA,;{,;. 
h m 

Having the aim of understanding the case of neutron spin evolutions in . 
detail, we shall limit our consideration to a two-level systems analysis. As C) . . . 
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a consequence, we obtain well-known, standard expressions,i.e, a system 
of two first-degree linear equations 

- iCI = A(t)CI(t) + B(t)C2 (t), 

- iC2 = C(t)CI(t) + D(t)C2(t). 

A, B, C, D are equal 

( ) ·c . ) cw~, .Hwi) c ) ·c . ) A t = t Ill~, WI - 1i . , B t = 1 ;v~, ll12 , 

( ) ·c . ) c ) ·c·' . ) (w2, .Hw2) c t = z ll12, WI , D t = 1 ll12, ll12 - 1i , 

(23) 

(24) 

(25) 

(26) 

where i(lllm, ~n) are the so-called coefficients of the holonomy connection 
induced by Wn(q,R(t)). As is known, we can separate the equations for CI 
and C2 by passing to second-degree differential equations. They are easy 
to obtain: 

nci- ( B + i(A + D)B )ci + (i(BA- BA) + B2C )ci = o, 

nc2- ( n + i(C-+ n)n )c2'+ (icnc- nc) + D2A )c2 = o. 
At last, with the exponential substitutions 

C. = ei"'• = eih',+P.) = ei(J' g,dT-J' w,dT) , 5 = 1, 2 , 

(27) 

(28) 

the above equations can be rewritten in the following conventional form, 

p.C. + q.C. + r.c. = 0, s= 1,2, (29) 

which leads to the following first-degree quadratic equation for g: 

p.(g. + ig;) + (q.- 2ip.w.)g.- (p.w.- ip.w. 2 + q.w. + ir.) = 0 · (30) 

In essence, these are the most general equations determining the geo-
"'j metric phases for two-level systems. 

Further steps leading to the solution of these equations (or equations (27), 
(28)), depend on the behavior of the holonomic coefficients and the expres­
sions above combined from the latter. In a better case, they can be reduced 
to ones from the known list of common first (or second)~degree differential 
equations [13] .. 

Nevertheless, it is possible to simplify the above problem with the fol­
lowing conclusions: evidently the wave function Ill can.be represented in a 
general form some what different from (22): t._; 

Ill= eiu(eizwi + e-izw2), (31) 

10 <:? 

0 

l 

l 
! 
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eliminating of the so-called global phase u.· The usefulness of this form 
becomes evident after it~ substitution into (23); (24): we arrive to the 
following system of the first-degree equations·: 

2ii =A-D+ Be-2iz- Ce2iz, 

2iit =A+ D + Be-2iz '+ Ce2iz 

(32) 

(33) 

that are generally transcendent, but with a separate equation for one of the 
unknown phases, z. 

If we constrain our consideration, however, to observables ,which do not 
contai~ time derivatives (like the polarization vector), an easi~r scheme for 
the conclusions is possible: for the specified class of observables, it is not 
necessary to know the global phase eiu and, really, ~e ~an: consider and try . 
to find only the following partial solution 

Ill = eizwi + e-izlll2, 

or equivalent one 

_Ill= sin(z)~I + ~os(z)~2· (34) 

In Sec.V, we explore the representation (34) in the problem which, of course, 
can be viewed as an aiternative one to the precessionproblem .considered 
in Sec.III. 

V. Nutation 

Let us assume that the time-dependence of the magnetic fiellcompo-
nents has the following ~nusual form . 

H:r: = H sin(wt + 8) cos c/J, . . 

Hy = H sin(wt + 8) sin r{l, (35) 

Hz = H cos(wt + 8), 
~ ........ 

where 8 is the l.nitial (axial) polar angle and ifJ is the azimutal angle fixed 
during the magnetic field changes. 

Naturally, (35) associates directly with the motion· on sphere as an al­
ternative to precession, i.e, n u .t a t i o n. As a consequence, we accept 
and use this terminology in our consideration . 

Is it possible to solve Schrodinger's equation for neutron spin evolution 
with the time-depen:dence given in (35)? Are there principal differences 
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between neutron spin evolutions in a nutating field and t.he well-known 
case ?f the precessing field? . Here it will be shown that this problem is 
solvable exactly and the mentioned difference is ~ssential. 

The substitution of (35) into Schri:idinger's equation 

a ~-
in at w = lttJHaw 

. gives us the following 

( 
tfr1 

) iwL ( cos(wt) sin(wt)e-i~ ) ( 'I/J
1 

) 

. tfr2 · = -2 sin(wt)ei~ - cos(wt) '1/12 · · ' 

(36) 

where w is the ch~~cteristic 'frequency of the nutation. For simplicity, we 
ass~me 9 = 0. . ·. · 

Let us try to find the solution in the following form: 

( ~: ) ~ a(t)">+ b(t)"'' ~ 
(37) 

( 

cos(~)e-.i~ ·) . ( - sin(~)e-i~ ) . 2 ~ " 2 ~ a(t) e- 2 + b(t) e 2 

sin(~) cos(~) 

As a result, we obtain 

cos 2 e . ~ w -sm 2 e ~ 

( 

(wt) -i~ ) ( · (wt) -i~ ) 
a(t) e- 2 + a(t)- . .. e- 2 + 

sin(~) ·· 2 ~os(~) 

. . -sm 2 e . ~ w -s .. m 2 e ~ 

( 

· (wt) -i~ ) (·. · • (wt) -i~ ) 
+b(t) · e 2 - b(t)- e 2 = 0, 

cos(~) 2 cos(~) 

or 

• •T• W ,T, -iWLt b• ,T, bW •T• iwLt 0 
a-.,1 + a2"'2e + 01.'2- 2"'Ie = (38) 

Further, using the parameterization announced in Sec.IV: 

a(t) == sinz(t)' b(t) = cosz(t),' 

we obtain the following: 

12 

.z(~osz~l- sinz'll2) = ~(cosz~1 eiwLt- sinz'l12e-iwLt) 

After multiplying on the (cos z*'lli - sin z* w;), we have: 

i cosh (2Im(z)) = ~(cosh (2Im(z)) cos(wLt) + i cos(2Re(z)) sin(wLt)), . 
2 . ) 

or 
dRe(z) = ~cos(wLr), 
~ 2 

dlm(z) _ ~ cos(2Re(z)) . ( ) 
. dt - 2 cosh(2Im(z)) sm WLT • 

Let us consider the integration of Re(z): 

Re(z) = ~2 r cos(wLr)dr =·~sin(wLt). 
lo 2wL 

This result can be written in another useful form, too: 

. · .· wt 1 1 .. . 

Re(z)' = 2- 2 fo (1- cos (wL:))d(wr). 

(39) 

(40) 

(41) 

(42) 

(43) 

This expression equals tpe solid angle drawn by the unit vector in the 
direction of the nutation around an instantaneous position of the polar­
ization .vector. projection on the local azimutal ("horizontal") plane. As 
we will see below; the real part of z describes the quantum corrections to 
the classical parallel transport law in the meridian plane ("vertical" drift). 
Integration of the ima:~~nary _P,art gives the following: 

Im(z) = ~ arcsinh .. {' cos(2Re(z))sin (wLr)dr .(44) 
2 lo 

or 

Im(z) = 4 arcsinh l cos(:L'sin(wLt)) sin(wL~)dr . (45) 

Tlie latter represents an integral which can be expressed due to incom-
plete~ cylindrical functions (9]: ' . . ' . 

1 i{J 1 {J 
f..,(i(3,z) =-: { ez•ht-vtdt=.- { euinB-vBd(} 

1n lo 1r lo ' 
or Weber functions 

6 

B.,(P,z) = -~· f{Jsin(v9-zsin9)d9. 
1r lo 

13 
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As a result, we obtain 

Im(z) = ~ arcsinh[ 41:L · 

( -€( iwLt,-~) + t*( iwLt,-~) - t( iwLt, ;J + E*( iwLt, ,.%) ) ] = ( 46) 

= ~ arcsinh[ 2':: ( Bt(wLt,-;J + B1 (wLt,.~))]. 

Let us consider the expressions fot'the components of ~he polarization 
vector P. Under two simplified assumptions: <P = 0 and t = 27r /wL, it is 
easy to obtain the following remarkable expressions 

Px = • /~lT / "sin(2Re(z)- 27r :J 
Py = tanh(2Im(z)) 

Pz = . /~lT / "cos(2Re(z)- 27r :J. 

(47) 

(48) 

(49) 

So, the variable weight in (39)Js a principal valuein our conclusions. It 
is generated by the imaginary part of the geometric phase and can not be 
ignored (calibrated) because it carries information about the spin evolution. 

r It is important. that the quanf'um phases in the arguments above do not 
vanish for. the elementary cyclic nutation: the excursion of the magnetic 
field along the one of the meridians during the first half of the period, 1r fw, 
and in the opposite direction for the second half of the period. 

Conclusion 3 (Theorem). The lines on Poincare's sphere for a mag­
netic field can be iterated by the consequence of two alternative types of 
traverse: precession and nutation. Corresponding evolutions for tQ~pplar­
ization vector differ essentially: weak non-adiabatic·changes in the case of 
precession arid strong non-adiabatic changes in the case of nutation. 

:--; 
Let us try to apply this approach to the more complex problem discussed 

by Berry in [4]. . 
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VI. ·Twisted Landau:..Zener problem 

This problem corresponds to the foliowing magnetic field configuration: 

Hx = ~cos(cl>(t)), 

Hy = Llsin(cl>(t)), 

· Hz= At. 

(50) 

The question arising in connection with this problem is the following: 
if the con.~ideration of the problem correct, an easy correspondence rule 
must be realized. This problem, for A -+ 0, ought to transform into the 
precession problem the discussed above. However, the expression for the 
geci~etric :P.hase obtained in [4] has a singularity in this lirni~: · · · 

B6.2 r9 = -1r-:A2sgn(A)-+ oo, 

where B = ~/2, = con.st. This circumst~ce points out that the qu~i­
~lassical conclusions founded on the representation 

iill./A • 
r 9 = -2Im drci>cosO 

• 0 . . ,. 

can not be accepted as satisfactory and must be improved. 
Let us search for the solution in the following form: 

( 
t/Jt ) . . , .. ·( cos(¥)e-iw(t) ) . , 

. = smz(t) •.· ··. · e•<I1++'Y+)+. t/J2 . . (~) . . . 
. . Sill 2 

cosz(t) ( -.sin(¥)e-iw(t)) . 
cos(¥) · e•(/1-+'Y-), 

where 
1 rt 

f3± = =f2 Jo WL(r)cos(O(r)- 8(r))dr, 

1 rt 
I± = 2 Jo (1 ±cos 8( r ))del>, 

and 
wL(t) = 2f'H(t)fn, H(t) =..; ~2 + A2t2, 

O(t) =arctan(!), 

15· 

(51) 

(52) 

(53) 

(54) 

(55) 



cos e(t) _ 
2 -

A(t) + WL(t) cos e :..._ w(t) 
2A(t) 

w(t) = d<I>(t) . 
dt 

A(t) is determined as in Sec.III. 

(56) 

(57) 

Steps similar to the ones in Sec.V. give us the following expressions: 

1 it Re(z) =- cos(~a(r))de, 
. 2 0 ·' 

(58) 

Im(z)= ~arcsinh ft cos(2Re(z))sin(~a(r))d0, 
2 ~ . (59) 

.. where ~a= a_- a+= (3_- !h +1- -I+· 
These values vanish when A - 0, ci> - 0 and, as a result, we obtain 

the proper limit: the stat~ corre~ponding to the evolution in the precessir~g 
field. 

The most general expressions (58) and (59) do not reduce to known 
incomplete functions, but they can be simplified and reduced simplified 

·:and can be reduced to the latter in two important limiting mo'des: the 
plane accelerated mode .·' · ' ' 

. A-O,ci>#O 

and the untwisted mode or axial lift 

<I>(t) =canst . . . 
This problem, of course, deser~es a more detailed description, but we are 
constrained here, it seems, by the most essential remarks above. 
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Summary 

So, generally, the picture of quantum evolution differs from the (quasi) 
classical parallel transport. Particularly, as we have seen, the picture of 
neutron spin evolution naturally contains the nutation mode, and account­
ing for the nutation mode in the geometric phase iterative calculation in 
the general case, .i.e., for the arbitrary configuration of the magnetic field 
traversed by a finite rate, can not be ignored. Conceptually, we have had to 
accept, for logical completeness, that Berry's anzats (the existence of the 
holonomy connectionf must be arranged over the amplitudes and constants 
of normalization, too. As a consequence, we summarized that the general 
consideration ought to be non-unitary. Generally, in a quantum setting, 
the term "topological phase'~ is incorrect: the precise notion is definitely 
"geometric phase." · 

Acknowledgments 

The author is grateful to V.I. Bodnarchuk and D.A; Korneev for the 
discussions which stimulated the writing of this paper. It is also a pleasure 
to acknowledge V.L. Akseno'v, A.M. B~lagurov, V.V. Zhuravlev and E.l. 
Kornilov for suggestions during my work in the Condensed Matter Division. 
At l~t,. the author wishes to thank Ann Schaeffer for carefully drafting the 
text. 

Separately, the author acknowledges his collegues: L.G. Mardoyan, G.S. 
Pogosya~, A.N. Sissakian and V.M. Ter-Antonyan.for their sci,¥Ptific col­
laboration during the long years. 

· .. : .. This work was supported by. Soros 's ISF Personal Grant and by a Rissian . 
Fund of Fundamental Investigations Grarit No. 96-02-19769. 

0 :> 

0 

0. 

,!7 



References 

[1] Berry M.V., Proc.Roy.Soc.Lond. A 392, 45-57 (1984) 

[2] Mukunda N., Si~on R., Ann.Phys., 228, 205 (1993) (ref. therein) 

[3] Berry M.V., Proc.Roy.Soc.Lond. A 414, 31-46 (1987) 

[4] Berry M.V., Proc.Roy.Soc.Lond. A 430, 405~411 (1990) 

[5] Garrison J.C., Wright E.M., Phys. Lett. A 128, 177-181 (1988) 

[6] Alber M.S., J.E. Marsden, Fields lust. Comm., 3, 1-26 (1994) 

[7] Aharonov Y., Anandan J., Phys.Rev.Lett. 58, 1593-1596 (1987) 

[8] Bohm A., Boya L.J., Kendrick B., Phys.Rev. A 43(3), 1206-1210 
(1991) 

[9] Whittaker E.T., Watson G.N., A Course of Modern Analysis, Cam-
bridge, 1927 · c. 

[10] Agrest M.M., Maksimov M.Z., Theory of Incomplete Cylindric Func­
tions and its Applications, Moscow, Atomizdat (1965) (in Russian) 

[11] Bodnarchuk V.I., Davtyan L.S, Korneev D.A., Uspekhi Fiz. Nauk, 
166(2), 185-194 (1996) 

[12] Korneev D.A., Bodnarchuk V.I., Davtyan L.S., Physica B 213/214 
993-995 (1995) 

[13] KaiJlke E. Differentialgleichungen. Losungsmethoden und Losungen. 
6, Verbesserte, Auflage, Leipzig (1959) 

J14] Landau ~.D. and Lifshiz E.M., Quantum Mechanics, 3rd ed.(Pergamon 
Press, Oxford, 1977) 

) 

JlaBTBH Jl.C .. 
feoMeTpH~ lU{Ha6aTH'JeCKHX H3MeHeHHH. 06IUHH a 

C ue.hb!OH36e:lKaHH!f HeO.O.H03Ha'IHOCTH B Bocnp 
npe.O.CTaB.JieHa ,KOHUenUHB lU{Ha6aTH'IeCKHX H3MeHeJ 
noHBTJfB.· KopoTico onHcaHa 3BOJJIOUHB HeHTpoHa 
none,-npe.o.cTaBJIBIOIUaB HC:ropH!O om1poca . .Ua.riee, 1 

cf>aJbl; _ o6c)':liC.II.aeTCB _ o6maB · nocTafiOBKa 3Ma'IH- o6 
KO~¢cf>HUHeHTOB JlwpaKa. . . . . . 

-HaH.IJ.eHa TO'IHO peruaeMIDl MO.II.eJib HyTaUHH, 
3HpO~aHO AnB ~-biSIB.TieHHB rQJIOHOMHOH CTpyK~ypbi 3 
_:lKeHHB MB rem.feTpH'IecK:oit cf>aJ!>I HeTpHBHaJibHbiM , 
HJoecTHoro cnyqaB n~eueccHpyromerp noJIB._· Eo.~ 
HMeeT MHHMYJO 'laCTb, KOTOpaB .II.OllOJIHBeT KapTH 
OHHOM pe:lKHMe; 0pe.II.JIO:lKeHHbl~ .II.Jl~ HyrauHH no.o.x 
paccMaTpHsaeMoH paHee, T.~. Ja,naqJ-t JlaH.o.ay-3el1 

Pa6(na BblllOJIHeHa. o,J1a6opaTOpHH HeHTpol 
.mum:. • · . · •. .. _· 

. ·'_~-,·- ' . ' -' .......__ -- ' .. /·. 
np~npHHT 06J.eJIHHeHHOro HHCTifl)':'a llilepHbiX H 

/~. \ .. 

Davtya~ L.S. . . . . 
·Geometry of Adiabatic Changes. General Analysis 

. ( . . .. -- ~ -' . . 

The concept of adiabatic changes and related. no 
account that is more corred,and free from a~bigt 
spin in a precessing magnetic field, which· represer 
question, is described briefly: Further, the general se 
evolution ~oefflcients is discussed from· thee geome1 

An exactly-solvable model of :the nutations i! 
of the solutions are analyzed to reveal. the holon 
The corresponding_~ expression for the geometr 
. from the corresponding expression in the well-kno· 
In.addition, this geometric phase has an imaginary 1 

. of spin evolution in ·a nutation mode. The approac 
to revise the- known t..visted Landim-Zener proble1 

·The ·investigation has-been performed· at· the 
.-. \ \ . 
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