


lhus' 7,‘(C) is glvcn by a’ cucult mtegral in paramctnc s'pacc )
and is mdcpeudent of how the circuit is traversed (provided of course -

that this is slow cnough for the adlabatlc approxlmahon to hold)

":_ L o : - . «] MV Be”y

B The geometrlc phase can l)e qua.hﬁed as one of the xnost actlvely devel- : L
~oped’ modern physxcal conccptlons The ‘number of pubhcatlons analymng

different mathematlcal aspects and experlmental consequences of its-exis- -

o tence, begmnlng with Berry’s ploneer paper, is impressive [1].. Moreover, L
 recent 1nvest1gat10ns (2] further improve the general picture drawn by Berry,
-Slmon Hannay, Aharonov and Anandan et al. Nevertheless ‘it seems nec- SO
~ essary to return’ and c011s1der in greater detall ‘the most typlcal case: that -:_'

- represents the evolutlon of neutron spin accompanymg the excursion of the S

: ’:.magnetlc ﬁeld This™ paper orlgmated with" the unsuccessful attempt to:
“apply” ex1st1ng statements of ‘the geometric phase calculatlon in the’ ca.se"
. of essentially non—adlabatlc spin (characterlstlc vector) evolution under, an b e
“arbitr ar y. and fi ni te excursxon rate of the ma.gnetlc ﬁeld (parametrlc B

'.‘vector) \*: S b o $ i

" “The two references dlrectly connectlng thh th1s questlon a.lso belong to: .-
Berry [3] 4] Unfortunately, the scheme of adiabatic 1teratlon developed
in  [3] can not be accepted as con51stent and apphcable ‘Berry’s second’ '
. Vconslderatlon 14]) of ‘some’ years ago,” seems to have. been done because. -
“of dlssatlsfactlon with the p1ev1ous a.nalysxs . The argument whxch could o,
'~1n1t1ate anew consideration arises naturally at the level of intuition: for an o

_ arbltrary excursxon a complex generallz,atlon of the geometrlc phase ‘seéms B
) 1nev1table : . . , , - ‘ )

It must be: stressed that the notion of a complex geometrlc phase is not '
> new and-v was well developed by Garnson and Wright for dissipative =

- systems in "[5]." We will not’ CllSCUSS th1s first consxderatlon because ‘it rep-

- resents an. example of the: standard way of generallzmg on the basxs of

_ non- Hermltlan Hamxltonlans whlch as.a consequence, usually leads from
real parameters to their complex counterparts Another cons1derat10n lead-

ing to the notion of the complex geometric phase was, developed by. Alber ’

and, Marsden [6]1n connectlon W1th sohtons R

Berry’s second consideration appeals to Dykhne’s calculation connected
with integration of the quantum amplitude through the introduction of the:
complex time plane [4]. Is the pictureof a geom et ric amplitude drawn

“in this paper complete? Corresponding remarks can be found in Sec.VI.

. From the other side, an arbitrary excurs1on ‘implies the possibility of -
a non-adiabatic evolution of‘the system. Is Aharonov and ‘Arianadan’s
consideration of the non-adiabatic case [7], founded on the assumption of
unitarity, the most general one?- As it will be- shown' below in. Sec IV the :
latter, partlcularly, does not cover the case presented in Sec V s

IL. Adiabatic changés"

 The conclusions leading to the notion of ad1abat1c changes could be ini-
tiated with the following simple illustration. Let us take a watch arrow. The
rod could be used as an axis in a manner whlch permitscom Lp arativel y
free turning of the arrow. " Sy
Now, let us transport this constructlon along a plane always keeplng
the rod vertical. We would see that the initial and final positions of the
arrow, after an excursion along the closed lines, would have coincided if
the speed of the traverse were slow enough From the’ geometrlc pomt of
view, this result pomts out that thepara 1 1 el transport law was fulﬁlled'
locally by the arrow. RO :

[P RCEIN e RSTO pveens oy u.f“

Deﬂmtlon 1. The changes ina physxcal system are ‘adiabatic if they are -
caused by the parametric vector traversing slowly enough ‘that’ the charac-
teristic vectors of the physical system move in accordance w1th the para.llel
transport law. : )

Now, if we place our construction on the surface of a cone, we observe the
angle between the initial and final positions of the arrow even under the ex-
cursion with very slow speed. This is the so-called (an)holonomy effect,
caused by the non-local difference between the cone surface and the plane.

The value of this angle is equa.l to the cone angle and is obtained as a
result of local conservation of the parallel transport law .One could easily
generalize this result for a particular excursion on the sphere ﬁgured here as
a sequence of parallel excursions along the corresponding ta.ngentlal cones,
and arrive at the famous SOlld angle law."

ay = QN =(1- COSG)Aqf)k

T L.:T:-yr
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for the excursion crossmg the North pole and

Cag = Qs = (1+ cos 9)A¢
for the excursion crossmg the South pole 4
.. Furthermore, it can.be easily shown that the solid angle law remains
" valid for. the excursion of the arrow having.an arbitrary conﬁguratlon on
“the sphere ‘and under an arbitrary radial deformation. Consequently, we
canconﬁrmthatthe ay and as arethe topolog1ca1 1nvar1ants
. In"a quantum setting, consideration passes to the Hilbert space ‘with the
correspondlng notions of horizontal and vertlcal lifts for the wave
functions [8]. e d el A »‘

Is this picture of the adiabatic changes conserved in the case of quantum
evolutions of the neutron spin in a magnetic field? Is there a real differ-
ence between the terms “topological” and “geometrical” (phase), which are
'usually identified in the frame of holonomy analysis?

The Cartesian representatlon of the Hamiltonian of a neutron spin in.a

4magnet1c field is R . )
N e
s \xwiv—z)

But this representatlon is not convement for the con31deratlon below rl‘he
natural map for 1nvest1gat1ng of the holonomy effects is a spher1cal one.
Partlcularly, it is evident from the natural - ad hoc separatlon of the vari-
ables for a slow excursion: H, responsible for accounting for the dynamic
phase, and the angular variables ¢ and 6, which, in pr1nc1ple can generate

holonomlc phenomena So let us rewr: ite and hereafter use the Harmltoman :

in spher1cal representatlon

[ cosf sinfe=®\ o
7. . )
-\ sinfe’® —cosf S

Twocorrespondmg two solutlons of Pauli’s equationf o
Cind = —2yﬁ§\y

for opposite pro_]ectlons of the sp1n can be obta.xned easﬂy and look as

follows S ‘ S
B - - . COS%"C-’¢ (. -

wnEH="F o m

—sin%-e"“’: EENTE N

v(6,)=F [ 1. @

cosg '

where 6 and ¢ are the respectlve polar and azimutal angles of the quantlza-
tion axis (H) in the chosen coordinate frame, wy, = 2|p|H/% is the frequency
of the Larmor precession, and y is the magnetic momentum of the neutron,

= IH |. The following must additionaly. be stressed: these often cited

. and dedicated solutions describe the neutron spin evolution in an arbitrar-

ily oriented and homogeneous magnetic field. However, the problem of
neutron spin evolution in a magnetic field is unique.. After passing from .
the stationary problem (1), (2), one also‘has an’exactly-solvable problem
for the case of a precessing magnetic field with the corresponding’ (time-
dependent) Schrédinger equation [14]. ‘Moreover, as will be shown in Sec.V,
we can point to an alternative to the precession mode that completes the*
picture of neutron spm evolution, naturally and wh1ch also has an exact
solution. : o

For the conclusions below; in addltlon to the definition of adlabatlc
changes, the following two notions need to be determlned

Deﬁnltlon 2. The weak non- adlabatlc changes in a physical system
are those caused by the vector—para.xneter s traversing ‘with finite rate, but
which conserve the parallel transport law for the characterlstlc vectors of
the physical system.

Definition 3. The strong non-adiabatic changes in the physical sys-
tem are those which are accompanied by with violations of the characteristic
vector parallel transport law and can be caused by mﬁmtely slow traverses
of the external vector-parameter. -

Let us go to a more detailed consideration. *



~II1. Precession

By a precessing (or rotating) field configuration, we mean the following
specific time-dependence of the magnetic field components:

H = Hsinﬂ.ces(h':'t + ¢),
H,=H sithin(wt vé), G
‘H, = H cos 0

where w is the angular rate correspondxng to a rotatron around the z axis
carrying the strength H and polar angle 6 constants::

-~The solutions of Pauli’s equation for the precessing field case are well:
known [14] and can be.written as follows ’

W(t) = CrT, () + C_U_(2), [C4lP 4 [C-F = 1, ()

[A+wy cosf—w e—i(wt+¢) .

e : [PICN 2428 Rk ’ ’
W) =TT ‘ ; - (9)
R ‘ . A—wy cosftw :

Lo, L : . _ /A—w; cos 8+w e—i(wt+¢) S
I i BTN € ’
; T_(t) = ei(Atwit/2 C , «(6)

Atwy cosb-w
ZA

RV
A =/(w — wp cos )2 +w}sinf.
- (As was mentioned by D.A. Korneev, Rabi’s problem of spin resonance
- turning corresponds to the replacement w — —w, i.e.,'rotation in a back

- direction.)
It must be stressed that ¥, are orthogonal:

where

(‘I’+, ‘I’_) = 0.
The spinors in the expressions above, under the substitutions

o A+wpcosf—w

= = 7':
COS2 [ ()

2A

can be rewrltten in a form srmlla.r to (1) (2) o B
. o [ cosGeT®
Ty(t) = ey (t) = eriheo , - (9
. U s )

e
€OoS 5 v,

L L _.sz ™'
U_(t) = e P_(t) = A+elf2 . (10)

These are the states with the following definite projection on the 2 axié:
1
(Fas@)=dzes0. ()

The Aharonov-Anandan approach, as was shown particula.rly in [11},
points out that the phases of the exponents before the spinors in (9), (10)
can be expressed in a suprising manner through © and @, too:

oy = _A —-wt .:'f_.wl’ cos(f — G)) f (1 + cos G))A@ 5 , (12)

2 2 2
.= A -;-,wt WL cos(20 G)) (1 = co; G))A‘IJ (13)

where AD=0-¢ (= wt) As a result we arrive at the forms showmg that
the values of the dynamlc phases

ﬂ 8 ':Fchos(G @)
= F—pb=t

5. R Loy h(14)
deviate by the Aharonov-Anandan phases: . A
1+.cos© A(P we iR .‘t‘,t BT RRE L RS S
(_7_)__ | (15)

~The Aharonov-Anandan phases are equal and can be’ obta.med m the
consxdered case directly from' the known spinor pa.rts, “also, through mte-
gratxon over the correspondmg holonomy connectlons S :




- These changes vanish when there is no precession (w = 0) and equal the
Berry phases in the adiabatic mode (w — 0)

(1 :I:cozse)AlI’ . ) an

For the cemponents of the observable polarization vector, in the preces-
sion case after the cyclic evolution (t = 27 /w), and with the non-essential
simplified assumptions

(Cr,CL) = (IVB,IVE), $ =0,

the following expressions can be obtained

. P, =sinOsin(a_ —ay), (18)
P, = cos(a_ — ay), _ (19)
P, = —cosOsin(a_ —ay), - (20)
‘where . 0-0 '
s L Sy = Jﬂgﬁi__l+g@)
¥ w
and

Q(@) =27(1 —cos©)

is the solid angle traversed by the magnetic field.

‘These expressions show that if we subtract the Larmor (local) preces-
sion, the polarization of the neutron evaluates as a classic vector parallel
tra.nsport under the field precession with a ﬁmte a.ngula.r rate w: the solid

angle law is conserved. So, in agreement with Deﬁmtlon 2, the neutron

. spin evolutions under magnetic field precess1on can be qua.llﬁed as weak
non-adiabatic changes.

IV. General settin’g\u

. The consideration of spin evolution in a precessing field (in Sec.III) was
to 111ustrate the holonomic phenomena of Berry and Aharonov-Anandan
on the level of an exactly solvable problem. ‘But, is it.enough to know
the precessing field case for the solving the problem announced in Sec.I :
- calculation of the geometric phase for an arbitrary (and with a finite rate)
line of the excursion of a magnetic field on Poincare’s sphere? The first
» couside;ation connected with this problem, as was mentioned, is dealt with

l\._/’

in (3]. It is not -an abstraction: one arrives at the setting of thls questxon '

from the analysis of: expenments as well [12]. N En e

By the way, the conclusions that arise relatmg to the basic a.ssumptlon »

e

of Aharonov—Anandan approach

Conclusion 1. To be exact from the cychc1ty on the level of vector-
parameter

3

R(T) = R(0)

the correspondmg quantum cyclic analog does not follow

wmswmwm,

but ihstead, ' ’ T
| (1) = Z Cal0)eo DT, 0. 1)

So, the classic cycle does not directly mean the correspondmg quantum
cycle :

Conclusxon 2. Moreover for an arbitrary. moment of t1me t, the ex-
pression '

em(t)ql(t) - ,'.‘ ‘,f“: i

can not be accepted as the general form for the quantum system under
non-adiabatic evolution. So, the Aharonov-Anandan tlme mtegratlon [7]
is valid when the general form . SESRREE s

%

wm = Z Cm'<o>e‘°m(‘>wm'<t>* ' (@)

is reduced, as'in the case of precession, to the separate evolutlons of the

partial (with fixed quantum number) basic states.

" Let us consider the general settihg. Dirac’s standard-suhstitution
e Y . .

Yoo

’.S.’v i - . o ‘I"(t)—zcm(t)\l“m(t)i

for the Schrodmger equatlon (the correspondmg \I!(t) spectrum is assumed
to be non—degenerate) glves a system of first-degree linear equations:

Cu= zxrAm’”

SRRV

Havmg the aim of undcrstandmg the case of neutron spin evolutions in’"

detail, we shall 11m1t our consxdelutxon to a two—level systems a.na.lysxs As



" a consequence, we obtain well-known, standard expresslons d.e, a system
of two first-degree linear equations ;

~iCy = A®)Ci(t) + B)Co(t), @

—iCy = C(t)Cy(t) + D(£)Ca(8). (24)

A, B,C,D are equal o R
At) = (s, ) - (i?—) BO=i(e,b), ()
C(t) = i(¥,,¥,), D(t) = i(xp,, @,) ~ (—‘I’ﬂﬁ (26)

h b
where (U, ¥ ») are the so-called coefﬁcxents of the holonomy connection
induced by ¥, (g, R(t)) As is known, we can separate the equations for C,
and C; by passing to second-degree differential equations. They are easy
to obtain:

BEG, — (B +i(A+ D)B) ¢+ (i(BA — BA)+ B’C) C=0, (27)
D&, — (D +i(C + B)D) G+ (i(DC ~DC) + DZA) C=0. (28)
At last, with the exponential substitutions

C — e = ilntfs) _ e'(f gedr— f wadr) , 8= 1 2,

the above equatlons can be rewritten in the followmg conventlonal form,
_ p:Cs +¢,C, +r,C, --0 s=1,2, (29)
wh1ch leads to the following first-degree quadratlc equatlon for g:
(g Fig?) + (g — 2zp,w,)y, (Potds — ipsw,” + gutw, +ir) =0 (30)

In essence, these are the most general equations deterrmmng the geo-
metric phases for two-level systems. -

Further steps leading to the solution of these equatlons (or equations (27),
) (28)), depend on the behavior of the holonomic coefficients and the exprés-
sions above combined from the latter. In a better case, they can be reduced
to ones from the known list of common ﬁrst (or second) -degree dlﬁ'erentlal
equatlons (18] »

Nevertheless, it is possible to simplify the above problem with the fol-
lowing conclusmns -evidently the wave function ¥ can.be represented in a

general form some what different from (22): = b
= ew(eu‘l’l + C—u‘l’z), . ’ ' ‘ (31) B
7 {,,-‘

10 -
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eliminating of the" so-called global phase u."The usefulness. of this form
becomes evident after its substitution into (23), (24) we arrive to the
followmg system of the ﬁrst degree equatlons ‘

2zz = A —-D+ Be_z" Cez" S (32) -
%i = A+ D+ Be % 4 Ce¥* - - (33)

that are generally transcendent, but with a separate equation for one of the
unknown phases, z.

If we constrain our con51deratxon however, to observables whlch do not
contain time derlvatlves (like the polarization vector), an easier scheme for
the conclusions is possible: for the specified class of observables, it is not .

'necessary to know the global phase e and, really, we can consxder and try :

to find only the followmg partxa.l solution
U = e, + e™27,,
or equivalent one ‘
= sin(z)¥, + cos(z)‘Ilz ' (34)

In Sec. V, we explore the representatlon (34) in the problem which, of course,
can be viewed as an alternative one to the precession problem cons1dered

in Sec.IIL
V. Nutation
Let us assume that the tlme—dependence of the rnagnetxc ﬁeld compo-
nents has the followmg unusual form ,
H,; = Hsin(wt + B)Icos é, _ V
. H,=Hsin(wt+8)sing, - = (35)
H, = Hcos(w‘t +6), ‘

where 6 is the initial (axial) polar angle and ¢ is the azimutal angle fixed
during the magnetic field changes

Naturally, (35) associates directly with the motion on spheré as an al-
ternative to precession, i.e, nutation. Asa consequence, we accept
and use this termmology in our consideration.

Is it possible to solve Schrodinger’s equatlon for neutron spin evolution
with the time-dependence glven in (35)? Are there pnnc1pa.l differences -

11



‘between neutron spin evolutions in a nutating field and the well-known
g,,,‘ca.se of the precessing field? .Here it .will be shown that this problem is
solvable exactly and the mentloned dlfference is essentxa.l.

The substitution of (35) into Schrédinger’s equation

iﬁ%\l} = |u|HGT

. gives us the following -

¢2 ) 2 sm(wt)e —’cos(wt)‘ ¢2 . AN

; where w is the chara.cterlstlc frequency of the nuta.tlon For 31mp11c1ty, we

assume 6 = 0.
Let us try to find the solution in the followmg form

(- v ) = a(t)¥; + b(t)\Iig =
¢2 ‘ . ) ] |

B R e (37)
cos(“")e‘.’“’ i - —sin(L)e Y\ .
a(t) ) e~ 1 b(t) ( i F
sin(%) - cos(%) -
As a result, we obtain
cos(%)e'® wop t —sin(%)e*® ot
a0 ) e ( ) ey
sin(4) C 2 cos(“’?) ; :
o[ TEE [=sin()e g
RO} B —b()—( e =,
cos(%4) : cos(4)-
or
a\Ill+a-2—\Il e’"‘"-‘+b‘112—b Pttt =0 1 (38)

Further, using the pa.ra.meterxzatlon announced in Sec Iv:
a(t) = sinz(t) , b{t) = cosx(t),
- “we obtain the following: ‘

12

é(‘coszw‘l —'sinzwg) = %(cos 2U, et — 's;inz\p;e--‘wu) .
After multiplying on the (cos 2*P7 —sin z'\Il;)', we have:

2 cosh (ZIm(z)) == (cosh (2Im(z)) cos(th) +1 cos(2Re(z)) sxn(th))

3 (39)
or dR ( )

elz w

L R O
dIm(z) w-cos (2Re(2)) - o L
@ T 2 cosh(2Im(z)) (“’”) o (1)
Let us consider the integration of Re(2):.
w ft LW

Re(z) = 5/0«cos (wLT)dT = 2w-——-Lsm (wrt). (42)

This result can be written'in'another useful form, too:

Re(z) —-— - —/ (1 — cos (wL‘r))d(wT) - (43)

This expression equals- the solid a.ngle drawn by the unit vector in the

.direction. of the nutation around an instantaneous'position of:the polar-
.ization vector projection on the local azimutal (“horizontal”) plane. -As

we will see below, the real part of z describes the quantum corrections to

the classical parallel transport law in the meridian plane (“vertical”-drift).

Integration of the imaginary part gives the following: ..

Im(z) = 3 arcsinh"/ cos(2Re(z)) sin (wp)dr 0 0 (44)
0 : . O :

S S t W, Sy
Im(2) = > arcsmh/ cos (;— sin (th)) sin (w7 )dr. (45)
L

The latter represents an mtegral whlch can be expressed due to i incom-
plete cylindrical functlons [9): ‘

Sogt

B 1 8 .
. — : zaht—ytdt — _/ zsinf—v8
i8,2) = 2 [T e = [T et

or Weber functions

§ FEINIED U LS L
3 B.(B,z) = ﬂ_/o 51n(ue-051n9)d0.
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As a result, we obtain

Im(z) =2 arcsmh[

4iwy

(—e(iwl,t, —f;) + € (iwpt, — &) — e(iwet, WL) + € (wrt, 2= )] = (46)
=3 arcsmh[ W (Bl(wl,t ——-) + By(wit, = w )]

Let us consider the expressions for the components of the polarization

vector P. Under two simplified assumptions: ¢ = 0 and ¢t = 27/wy, it is
easy to obtain the following remarkable expressions -

1 . w k
PI = M sm(ZRe(z) - 27‘(;) . (47)
P, = tanh(2Im(z)) . (48)

1

Pz = .(-:_6;}).(2[—771(2)—)- COS(ZRG(Z)g—r 27'{':-—;) T (49)

So, the variable weight in (39) is a principal value in our conclusions. It
is generated by the imaginary part of the geometric phase and can not be
1gnored (calibrated) because it carries information about the spin evolution.

¢ It is important that the quanfim phases in the arguments above do not
vamsh for the elementary cyclic nutation: -the excursion of the magnetic
- field along the one of the meridians during the first half of the period, = /w
and-in the opposite dlrectlon for the second half of: the perlod :

Conclusion 3 (Theorem). The lmes on Porncare s sphere for a mag-
netic field can be iterated by the consequence of two alternative types of
traverse precession and nutation. Correspondmg evolutions for thé pelar-
ization vector differ essentially: weak non-adiabatic’ changes in the case of
precession and strong non-adiabatic changes in the case of nutation.

© Let us try to apply this approach to the more complex problem discussed
~ by Berry in [4]. ‘

14 s

VI. Twisted Landau-Zener problern.

This problem corresponds to the folioyving magnetic field configuration:
H, = Acos(3(t)), e R

H,=Asin(3(), o ‘5‘(50)‘.
L Ho=AL

The question arlsmg in connection with this problem is the following:
if the consideration of the problem correct; an easy correspondence rule
must be realized. This problem, for A = 0, ought to transform 1nto the
precession problem the discussed above. - However, the expressmn for the ;

"geometrlc phase obtamed in [4] has a singularity in thxs hmxt

2

BA
; Pg = A2 Sgn(A) - w’

where B <I>/2 const This circumstance pomts out that the quasx—
classical conclusions founded on the representatxon (et e

p =—2Im/ drécose , S

can not be accepted as satisfactory and must be 1mproved
Let us search for the solution in the followmg form:,

() =m0 ( e ) R
1;[)2 : ) Sln(—L)-) R '
| (51)

- s1n(9m)e_‘°(') ) N
cos z(t) ( N ) '(ﬁ—+1—) S
: ‘ co_s(—%-)-) ‘
where ‘
By = F3 / wr(7) cos(6(r) — O(r))dr, (52)
Yi= —/ (1% cos O(T))d‘I) (53)
and 1 .
wr(t) =2pH(t)/h, H(t) = VA2 + A%2, (54)
6(t) = a.rcta.n(jt) 7 (55) |
| 15-



o) [A®)+twr(eosb-w(®)
COs ) = \J 2A(t) ’ (56)
do(t e
(t) = J. (57)
A(t) is determined as in Sec. 1L
- Steps similar to the ones in Sec.V, give us the following expressions:

Re(z) = + > tgos(Aa(T))d@, (58)

Im(z) == arcsmh/ cos(2Re(z)) sin (Aa(r))d@ : (59)

‘ where Aa =a_ —a; = p. —ﬂ.,_ + - —7+
" These ‘values vanish when 4 — 0, $ - 0 and, as a result we obtaln
the proper limit: the state correspondlng to the evolution in the precessmg
field.

The most general expressions (58) and (59) do not reduce to known
incomplete functions, but they can be simplified and reduced 51mpllﬁed
“and can be reduced 'to the latter in two unportant hmltmg modes the

plane accelerated mode "

A—)O @750

) a.nd the untwisted mode or axial hft
) @(t): constv.l' .
" This problem, of course, deserves a more detailed description, but we are
constrained here, it seems, by the most essential remarks above.

16

' Summary

So, generally, the plcture of qua.nturn evolut1on differs from the (qua31) -
classical parallel transport. Particularly, as we have seen,the plcture of
neutron spin evolution naturally contains the nutation mode, and account- -
ing: for the nutation mode in the geometric phase iterative calculation in

- the general case, 1.e., for the arbltrary configuration of the magnetic field
. traversed by a finite rate, can not be ignored. Conceptually, we have had to

accept, for loglca.l completeness that Berry’s anzats (the existence of the
holonomy connectlon) must be arranged over the amplitudes and constants .
of normalization, too. As a consequence, we summarlzed that the general
consideration ought to be non-unitary.” Generally, i 1n a qua.ntum setting,
the term “topological phase is mcorrect the prec1se IlOthIl is deﬁnxtely

e geometnc phase.”
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