


1.. INTRODUCTION
The paper i5 a: oontmuatxon of the author’s work [1] devoted to studymg a structure of the
T-matrix, scattering matrices and resolvent of three-body Hamiltonian continued analytlcally
on unphysical sheets, of the energy Riemann surface. s

- A central result of the paper [1] consists in construction of: the exphcxt representa.tlons for
the, continuation of three~body T-matrix on unphysical.sheets in, terms. of:this matrix itself.
taken on the physical one; as well as.the scattering matrices. There were.outlined only schemes
to'prove.the representations above in:Ref. [1}. Main goal of the present work is to. present a
full proof. With the representations for: T-matrix we base also analogous representations for
analytical continuation of the scattering matrices and resolvent. (seg Ref. [1]). ‘

As in [1] we suppose that interaction potentials are pairwise.ones which decrease 1n the
coordinate space not slower than exponentially.- All the analysis ig carried out on the base of
the momentum space Faddeev. integral equations [2];:[3] for components of the,T-matrix. At
that we find analytical continuation of the Faddeev equations as on neighboring. unphysical
sheets as.on remote ones belonging to a certain part of the total:three-body,Riemann susface.
A full description. of the part under. con51deratlon see in Ref. (1], The representations for the
components of T—matrlx on unphysmal sheets arise as a.result-of explicit solving.the F: addeev
equations continued in terms of the physical sheet..

Note that a continuation of the s-wave Faddeev equations on unphys1cal sheets nelghborlng
with physical one, was made prev1ously inthe work [4] (see also Ref. [5]) in the case of separable
pair potentlals ’

" In the paper, we discuss also a practical meaning of the representatlons obtained." Ac-
cording to the representations [see Eqs. (4.34), (5.1) and (6.1)], the nontrivial singularities’ of
the T-matrix as well as the scattering matrices and resolvent are determined, after the con-
tinuation of them on unphysical sheets by singularities. of the operators.inverse to truncated
scattering matrices on the physical sheet. Thus, the three-body resonances" (i.e. . the poles
of the resolvent as well the T~ and scattering matrices) are actually.those values-of energy
for .which the scattering' matrices, truncated in accordance with the index (number) of the
unphysical sheet under consideration, have zero eigenvalue. These properties of three-body
scattering matrices are quite analogous to'the familiar properties of the scattering matrices
in problems of two particles and multichannel scattering problems with binary channels (see
e.g., Refs. [6]-[8] or [5], [9], [10)). For computations of three-body resonances as zeros of the
truncated scattering matrices above, one can apply in particular, the differential formulation
of the scatterlng problem [3], [11] going on the complex plane of energy (physical sheet).

The paper is organized as follows.

In Sec. 2 we remember main notations of Ref. [1] The ana.lytical continuation of-the
Faddeev equations on unphysical sheets is carried out in Sec. 3: Sec. 4 is devoted to deriving
the explicit representations for the Faddeev components of the three-body T-matrix continued
on unphysical sheets. The analogous representations are constructed in Sec. 5 for the scattering
matrices and in Sec. 6, for the resolvent. In Sec. 7 we formulate an algorithm to calculate the .
three-body resonances on the base of the Faddeev differential equations in configuration space.

2. NOTATIONS o ‘
Throuhout ‘the paper we follow strictly by the conventions and‘notations adopted in Ref. [1].
Therefore we restrict ourselves here only to presenting for tliem a brief simmary. Note at once
that at using formulae of the paper.[1] (it will take place rather often) we supply their number
in Ref. [1] with the reference “[1]".
For the description of the system of three particles concerned in the momentum repre-
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sentation, we use the standard sets of reduced relative momenta ([1].2.1) k., ps, a=1,2,3,

which are usually combined into six-vectors P = {k,,p,}. Transition from the pair {ko, pc,},

to another one, {kg, ps}, corresponds to the rotation transform in R, k, = capks + sa5ps,
Pa = —Sapkp + cappp With coefficients cop, sop [3] depending on the partlcle masses only.

The -Hamiltonian H “of the system is given by (Hf)(P) = P*f(P) + 32 _,(vaf)(P),
P? = K2+ p2, f € Ho = L3(R®), where v,, @ = 1,2, 3, are pair potentials assumed for the
sake of deﬁnlteness to be local. This means that the kernel of each- va depends only on the
difference of varlables ks and K., va(ka, k) = va(ka — K.).

We deal with two- variants of the potentials vs. In the first one, v,(k) are holomorphic
functions of variable k € C3 satlsfylng the estimate ([1].2.2). In the second variant, the
potentials vs(k) are holomorphic in k in the strip Wap = {k : k € C?, [Imk| < 2b} only
and obey at k € Wy the estimate {[1}:2.3). In the both variants vc,( k) = vo(k), and this
guarantees self-adjointness of the Hamiltonian H.

In the paper, the exposition is given for example of the second variant of potentials.
Respectrve statements for the first one may be obtained from the statements of this work if to
put in them; b = +oo.

By h, we denote the Hamiltonians of the pair subsystems-a, o = 1,2, 3. Elgenvalues
Aaj € oa(ha) of hay As; <0, j = 1,2,...;n4, 1y < 00, are enumerated taklng into account
their multiplicity: number of times to meet an elgenvalue in the numeration equals to jts
multiplicity. Maximal of these numbers is denoted by Amax, Amax = max /\a’] <.0. The notation

) o

Ve ](k ) is used for respective eigenfunctions.

We understand by o4(H) and o.(H) respectively the discrete and continuous components
of the spectrum o(H) of the Hamiltonian H. Note that ga(H) = (Amin, +00) with A
m1n A

min =

The notation Hy is adopted for the kinetic energy operator (Hof)(P) = P*f(P). By

Ro(2) and R(z) we denote the resolvents. of Hy and H, respectively: Ro(z) (Ho — z1)"!.and
R(z) = (H — 2I)™" with I, the identity operator in 'Ho

Let Mop(2) = bapva — vaR(2)vg, o, = 1,2,3, be the components [2], [3] of the 1‘-matr1x
T(z) =V —VR(z)V where V = v 4 v; + vs. The Faddeev equations [2], (3] for operators M,z
read in matrix form as
(2.1) : M(z) = t(z) - t(z)Ry (z)TM(z)
where Ro(z) = diag{Ro(z), Ro(z), Ro(z)} and by T we understand the 3 x 3-matrix with
elements Top = 1 — 8ap. Besides we use the notations t(z) = diag{t,(z), ts(2), tg(z)} Here,
the operators ta(z), a =1,2,3, have the kérnels.t,(P, P',z) = to(ka, Ky z — p2)6(pa — pu)
where to(k, K, z) stand for the respective pair T—matrlces ta(z) These M t,Rg and T are

considered as operators in the Hilbert space Gy = 69 L,(RS).
The resolvent R(z) of H is expressed by the matrlx M(2) as {3]

(22) ' R(z) = Ro(2) — Ro(2)QM(2)2' Ro(2) -
where Q, 0 :.Go — Ho, denotes operator deﬁned as the matrix-row @ = (1, 1, 1). At the

same time (Ot = Q* = !1 1, )t
Everywhere by /\, z€C, A€R, we understand the main branch of the’ function
(z = M)Y2 Usually, by g we denote the unit vector in the direction g € RV, ¢ = q/|q|, and

by S¥-! the unit sphere in RN, §e€ S¥-1. The inner product in R¥ is denoted by (s
Notation (-, -} is used for inner products in Hilbert spaces.

Let H? = Lz(R?) and H = & & 1. Notation ¥, is.used for operator actmg from
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H? to Hy as (Paf)(P) = 272 Yai(ka) fi(pa). By ¥ we understand the matrix-diagonal
operator combined of ¥, as ¥ = diag{¥y, ¥3, ¥3}, and acting from H; = 69 HE) to Go.

The operators $, and ¢ are obtained of ¥, and ¥ by the replacement of functrons Yo, (ka)
with form~factors ¢ ;j(ka) = (Va¥a,;)(ka)y a =1,2,3, 7 =1,2,. ,

By O(CV) we denote the Fourier transform of the space C(‘,"’(RN).

The operator Jo;(2z), a =1,2,3, j = 1,2,..,n,, realizes the restriction of functions
f(pa)s Pa € R?, on the energy shell Aa; + |pa|® = E at z = E4i0, E > A, and then if
possible, continues them analytically into a domain of complex values of energy z. On O(C?),
this operator acts as (Ja,;(2)f)(Pa) = F(3/Z — Xa,jPa). Notation Jl'j(z) is used for the operator
“transposed” with respect to J, ;(z) (see. Ref. [1 .

The operator Jo(2) is defined on O(C*) analogously toJa,i(2) by (Jo(z)f)( P) = f(v/zP).
The notation Ji(z) is used for respective “transposed” operator [1}. .

The operators Jo,; and J ; are comblned in the diagonal matrices J(")(z) = diag{Ja1(2),

1Jamna(2)} and Jt(z) = dlag{.l 1(2), - 3% .. (2)}. In their turn, we construct of the lat-
ter the operators Jy(z) = d1ag{J(1)(z) J(2)(z) JO(z)} and Ji(2) = diag{JM(z), J@O(z),
.1(3“( )} Besides the listed ones, we use in the work, the block— —diagonal operator 3x3-matrices
Jo(z) = diag{Jo(2),Jo(z),Jo(2)} and I}(z) = d1ag{.ll(z) Ji(2),J8(2)} as well as operators
3(z) = diag{Jo(2), J1(2)} and Jt(z) = diag{J}(2),J 1(2)}. )

Along with Ho, Go. and ‘H; described above, we consider the Hilbert spaces Ho = Lo(S5%),

G 69 ’Hg and 'H1 = EB H) ‘where H® =

fia _»

8 Hl@d); Fled) = T,(S?). The identity

operators in Ho, Go, Ha and o ® H, are denoted by Iy, 1o, Jy and 1, respectively.
The operator--valued function T(z), T(2): Ho® Hy — 'Hg @ 'Hl, of the varlable z c

C\o(H ) is defined by

‘ aM(z)at nM(z)Tq:
(23) T(Z) ( o m(l()z)nf TV +TM(:)T)¥ )

w1th V= d1ag{v1, va, v3} The truncated three—body scattering matrices are expressed by 7(2)
as . .

2.4) Si(z) = i+ (L7LAYz) and SH(z) =1+ (ALFL)(z)
where 7(z) = (JTJl)(zl, : T(z): Hq ® '_H; - Ho® ,Hl' .The multi-index

(25) l : (107 l1,17 eeey ll,m ’ l2,17 very l2,n21 l3,17 Nt} 13,713) oo

has the components lo =0'or lo = *1 and lp; =0 or lo; =1, a=1,2,3, j="1,2,.,n
Notations L and L are used for the diagonal matrices corresponding to the multi-index I: 'L =
diag{Lo, L}, L =diag{|Lol,L1},  Lo=loand Ly = diag{li1, -, limy, bty ves lamas 33, oo
l3,,}. By A(z) we understand the diagonal matrix—function A(z) = diag{Ao(2), Aa,i(2),
a=1,2,3, j=1,2,..,n,} with the elements Ao(z) = —miz? and Aa j(z) = —7iy/z = Aa.
The notation H}}? is used for the domain in variable 2 € C where (LTL’)(z) is a holo-
morphic operator-valued function. The matrices”Si(z) and 51(z) as well as the products
(LUJ()M)(Z), (LlJl\Il‘TM)(z) and (MJlLo)(z), (MT\IlJlLl)(z) are holomorphlc functions
of z on domains I (hol)' = T1Bel, A description of the domains I, and TI* see in Ref. [1],

Sec 4.
We consider only a part of the total three—body Riemann surface This pa.rt is denoted

by R. Sheets II; C R are generated by branching in the two-body, 2 = A, ;, @ = 1,2,3, j=



1,2,...,n4, and three-body, z = 0, thresholds. When enumerating the sheets, the multi-index
l given by (2.5) is used. At lp = 0 its components l,;, @ = 1,2,3, j = 1,2,....n,, can
get arbitrary value among two numbers 0 and 1. In this case, II; represents a copy of the
complex plane C cut along the ray {Amin,+00). If lp = %1 then the rest of components lajy
a=1,2,3, j=1,2,...,n,,of  are assumed be equal to 1.. There is accepted that at [y = +1
the sheet II; coincides with the upper half-plane C* = {z € C: Imz > 0} and at I, = —1,
with the lower one, C~ = {z € C : Imz < 0}. We suppose additionally that the sheets

3
II; with lp = %1 are cut along the rays constituting together the set Z., = U VA Here,

(o) {z: 2=2p1<p < 00,2 € o',(f,)} is a totality of the rays beginning in the
resonance points ol&) of subsystem & and going to infinity along the directions 2, = 2,/|z,],
z € o8, A more detailed description of the surface R and in particular, the way of sticking
the sheets II; see in Sec. 5 of Ref. [1}. .

If all the components of the multi-index ! are zero, lp = l,; = 0, o = 1,2,3, j =
1,2,...,nq, the sheet II; is called the physical one, Ilo. The unphysical sheets II; with l, = 0 are
called the two-body ones since these sheets may be reached from I, rounding the two- body
thresholds z*= A, ; only, with no rounding the breakup threshold z = 0. The sheets II; at
lo = *1.are called the three-body ones. : ‘

a=1

3. ANALYTICAL CONTINUATION OF FADDEEV EQUATIONS FOR
COMPONENTS OF T-MATRIX ON UNPHYSICAL SHEETS

Goal of the present section consists in continuation on unphysical sheets of the surface R,
of the absolute terms and kernels of the Faddeev equations (2.1) and their iterations. The
continuation is realized in a sense of generalized functions (distributions) over-O(C®). Results
of the continuation are represented in terms related with the physical sheet only.

By L@, L) = L)1), we denote the diagonal matrices formed of the components
lo1; lo2y -0 lan, of the multi-index { of the sheet II; C R: * L{*)) = diag {ln, lozy - loma }-
At that L,(l) = diag{L®"), L® LB} and L(l) = diag{Lo, L} ¢ Lo = . Analogously,
AL)(z) = diag{Aa,1(2), Aaz2s s Aona(2)} and A;(z) = diag{A1)(2), A®)(z), A®)(z)}. Thus
- A(z) = diag{Ao(z), A1(2)}. ' . .

By sa,l(z) we understand the operator defined in Hg as

(3.1) Sag(2) = Jo+ Jo(2)ta(2)I4(2) Ae(2) Lo, - 2 € I,

It follows from Eq. (3.1) that s,; = jo at lo = 0. If [ = £1 then according to Egs. ([1].4.42)-
[1].4.44), the operator s,,(z) is defined for 2 € P, C*, P, = {z: Rez > —b* + (Imz)?/ (46%)},
and acts on f € Hp as ) . ;

3.2) (Sad(2)/)(P) =/dlhc'sl,,(lhca,,IAcl',l,zcos2 w) f(cos wakl,, sin wepa)

52 .

Ikca,f)a, € §%. For all this, P = {coswyka, sinw,pa}. By s, we denote the scattering matrix
([1].2.16) for the pair subsystem a. As a matter of fact, s, represents.the scattering matrix
5o rewritten in the three-body momentum space. . :

It follows immediately from Eq. (3.2) that if z € P,(1C* \ Z{2 then there exists the
bounded inverse operator s} (2), : ’

where wq, ks, po stand for coordinates [?] of the point P on the hypersphere §°, w, € [0,7/2],

(s"(*)f)(l") = /dl}’s;I(IAc B zcos? wa)f(coswal};,sinwaﬁa) with s;‘(lAc, ic',C), the kernel of

ad\*” oy gy
52
the inverse pair scaltering matrix s3'(¢). i . ) .
The operator s }(z) becomes unbounded one at the boundary points z situated on rims

of the cuts (the “resonance” rays) included in z8).

THEOREM 1. The absolute terms to(P, P, z) and kernels (taRo)(P, P', z) of the Faddeev equa-
tions (2.1) admit the analytical conlinuation in a sense of distributions over.O(CS) both on
two- body and three-body shects Y1, of the Riemann surface R. The conlinuation on the she'et
ll[, = (lo,ll,l,---, 11‘"”[2_1,..., 12'"2,13_1,...,13_53), lo = 0, lg',‘ = 0," 1. or lo = :bl, lg_,' =1 (m
both cases 3 =1,2,3, j=1,2,...,ng), is written as

(3.3) th(2) = ta(2)], =to— LoAotadisJote — @3N L Al (g7 |

(3.4) [ta(2) Ro(2)], = th(2)RA(2)

where Ri(z) = :R"(Z)|n. = Ry(2) + LoAo(2)I8(2)Jo(2) is the continuation [9] on II; of the free
Green function Ry(z). Iflg = 0 (aiid hence I1; is a two-body unphysical sheet}. the continuation
in the form (8.3), (3.4) is possible on the whole sheet Il;. Al lp = %1 (i.e.” in the case when
11; is a three- body sheet) the form (3.3), (3.4) continuation is possible on the domain Py 11;.
All the kernels in the right-hand parts of Eqs. (3.3) are taken on the physical shecl.

PROOF of the theorem we give for example of the most intricate continuation on three- body
unphysical sheets II; with o = £1. For the sake of definiteness we consider the case lp = +1.
For Iy = ~1, the proof is quite analogous.

Let us consider at z € Ilp, Im z < 0 the bilinear forin

(3.5) (rtebo()f) = [[ar [ [ap= 22D i arp
R?

k2 + p2 —_
R3 R3

with f(k,k’p) = f(k,p)f'(K',p), [, [ € O(C®), k =k, K = k,, p = pa. Making replaccments
of variables |k'| = p = {K'|?, Ip| = A = z — |p|* we find that the integral (3.5) turns into

(3.6) }T/dk/dfc’/di) / qufdpﬁ&%%ﬁéﬂf(k, Ak, V= A).
5 s5? z-00 o

R3

2

Lxistence of the analytical continuation of the kernel (to/%0)(z) on the sheet 11, lo = +1.
follows from a possibility to deform continuously the contour of integration over variable p 10
arbitrary sector of the analyticity domain ’Pbﬂo{é’,) of the integrand in variable A in the way
demonstrated in Fig. 1. Besides, this is connected with a possibility at l.noving of = l'l.'om lo
to II;, {y = +1, to make a necessary deformation of the integration p:d.t]l in variable A in such
a way that this path is separated from the integration contour.in variable p. ’ S
To ‘obtain the representation (3.4) at a concrete point z = zo, we choose a special final.
location of the integration contours in variables A and p after consistent deforming them (s((
Iig. 2). Singularity of inner integral (over variable p) remains integrable after such deformation
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Figure 1: Deformation of the integration contour over variable p. The integration contours
over p and A are denoted by letters in brackets. The cross “x” denotes the eigenvalues A, ; of
hq on the negative half-axis of the physical sheet and the pair resonances belonging to the]set
ases) on the sheet I, o= +1 Also, there are denoted the cuts on II;, I = +1 begmnmg at

the points of am . ; s

I8}

0 ) Iy

" Figure-2: The final location of the integration contours over variables p (I'y|JI';) and X
(G1lUG:). The contour I'; represents a loop going clockwise around the countour Gy, the line
segment [0, z]; 2= [0, +00); G2= (2 —00, iImz}|J[t Imz, 0).

L

due to presence of the factor \/p. As a whole the integral (3.6) turns into ,

i/dk/dis'/dﬁx
RJ

/WZT/ ff'(’“f A i, ok VTR

rr:
(3.7) ‘
/d/\\/z— / d\/_a(k\/—’) (k\/_k'\/z—p
FlUFz

+22m\/_TJ / dpyp 2ei0esE) ¢°"( ¢‘”( )f<k fk' = ,,p)}

where ¢! denotes the pair T-matrix ta(z) contmued on the second sheet (a.s regards ta(A), the
contour Gl 3 A belongs to its second sheet) The last term arises as a result of taking reSIdues
in the points Ay ; € 04(ha)- .

Evidently, the domain of vanable z E I, b= +1 where one can cont.mue ana.lytlcally
the function (3.5) in the form (3.7) to, is determined by the condltlons I‘l C Py and I'y ﬂ Z,; =
. These conditions may be satisfied at z € Py only. :

* Note that value of the inner integrals over T'y'at*A € G are determined by residues at the
points:p = A. At the same time fG dX... !.'= 0 since at A € G2 the’ functlons under the
integration sign are holomorphic.in p € Int IJI Therefore

(frtaRo(2) ) sem st = / dk / d / d x

R3 $?

{/d/\\/z—— —omi)V/A e, (k, VAR, \)F(k, VAK, VE S X 5)+

G1

o

(38) + / IWETh / apyp et ok, )+pm<ira(k N 2 o \/;.p

/dz\\/z_—_—/dp\/_——[———f(k Jok, \/sz

No . +°°. ‘, . . oy i
+Y2rivihe; [ dp\/ﬁ————%";k_)iw( kv, .,p)}

In the second surnmand of Eq. (3.8) we have used the representatlon ([ 1.3.2) of for the pair
T-matrix continued on the second sheet. Look at the expresswn for 74(k, k',¢) in Ref. (1],
Sec. 3. Remember that 2,({) = t.(¢) + Ti/C 72(0). B

Joining thé summands including i, on the physical sheet, in the alone integral [ UG
and using then the holomorphness of the function under the integration sign in variable A,
we straighten the contour ‘G |J G2 turning it into the ray (z — oo, z}. Asaresult we get the
bilinear form corresponding to the product (taRo)(z) taken on the physical sheet.

The last term of the expression’ (3.8) corresponds to the kernel of — &, (L) A J(@)* Ry,



Backing in the rest of summands including ¢!, and 7, to the initial variables &', p’ and
utilizing then the definition (3.1), we find that these summands correspond to the expression

LoAa [t,, - LOA(,J{,s;},J;,t(,] 3836 — LoAtadls; oteRa.

Gathering the results obtained we reveal that the analytical continuation of t, Ry on the sheet
II;, I = +1, looks as .

[taRo(2)]]5, = (ta — LoAotalis; ota — BaITL® A7 )5
(3.9) %(Ro + LoAoTN o) 4+ LoAe®JN L) A (@7 3ty
To be convinced in the factorization (3.4), is sufficient to note that the last summand of (3.9)
equals to zero. Indeed one can check easily that at Inz # 0or Imz =0 and z > ma.x As,j the

following equahtles take place
(3.10) o (J(°><1>*J*)(z) =0, (Jo®a J(a’f)(z) =0.

Thereby the last term of (3. 9) dlsappea.rs and hence, Eq. (3. 4) is true This completes the
proof

REMARK 1. As a matter of fact, the kernel [taR(]](Z)ln corresponds to the two-body problem
and thereby it has to be translationally invariant with respect to variable p,. This fact may be
understood if one introduces the generalized function (distribution) 0,(p) over O(C?) acting

as (0., f) = /d{f/dpf(fp) where «; is the line segment connecting the points ¢ = 0
5

and € = z. It fol]ows from the representation (3.8) that the kernel of [taRo)( z)|n may be
rewritten as

(taRo) (P, P',2) = 6(p - P) {M

K4 p?—z
+,”-L0[0Z(p) /—z_pz%;’f_;_?) 0.(K Wz = K7 £k, ¥ k”)ﬁ(”*]';f vz - k2 - pl)] |
a,i(k “k' 8 z— Ao
+szla,\/—,,"’ (kB (|p|_ \up/——lz. » )},

k—k K=k, p= pa,p—Pa,

where due to the presence of the factor &§(p — p'), the trans]a.tlon invariance is emphasized
explicitly. Analogously

tL(P, P',2)

fl

{t (k, K z—p)+mL00 (p)\/z—p -ra(k Kz —ph)+

+'-Zmza;,-¢z’—_xa.,- 50 &(1pl - a‘/x*)} (o~ 7).

Usmg Eqs (3.3) and (3:4) one can present the Faddeev equations (2 1) contmued on the
sheet II; in the matrix form ¢

(3.11) C MUz) = () - t'(z)ng‘(z)rM{(z)'

where o
(3.12) ti(z) =t — LoAotdls ot — ®IEL1 A1), 07,
(3.13) RY(2) = Ro(2) + LoAo(2)I}(2)Jo(2).

Here, si(2) = diag{s1.:(2),s24(z),s3.(2)}. By M'!(z) we understand the supposed analytical
continuation on the sheet IT; of the matrix M(z). \

LEMMA 1. For cach two-body unphysical sheet II; of the surface R there exists such u path
from the physical sheel g lo the domain 11(h°') in I1; going only on two-body unphysical sheets
Iy thal moving l)J this path, the parameler z slays always in respeclive domains ﬂ“ml) C 1y

ProOF. Let us use the principle of mathematical induction. To make this, at the begmnmg
we arrange the branching points A, ;, a = 1,2,3; j = 1,2,...,n,, in nondecreasing order

redenoting them as /\1,/\2,...,(\;", m < Zna, A € dg < oo < Ay, and putting /\,,,H = 0.
2V

Let the multi-index { = (I, b, ...y m) (orruspond tcmpordu]) namely to this enuineration. As
previously, [; = 0 if the sheet II; is related to the main branch of the fun(‘tlon (2= A2 clse
l; = 1. The mdcx lo is omitied in these temporary notations.

It is clear that the transition of z from the physical sheet Tlg across the segment (A). Az)

on the neighboring utiphysical theet Iy (into the domain 1]}}‘,’5) M= (1&’), Ig”, DY with

M =1 and l( Y=0atj#1l,is possible by definition of the domain IS (see Ref. (1], Sec 1),
According to Lemmas {1].1 and {1}.2, if z belongs to “1(” , 1t may be lead to the real axis in

the interval (A1), 400) with certain A" < A;. Remaining in Ill(,, the ‘point = may even go
around the threshold Ay crossing the real axis in the scgment (A3, Ap). Thus, the parameter =
may be lcad from the sheet Il on the each ncnghbormg unphysical sheet and in particular.
on the sheet 11; related to I, = 0, & = 1, I; = 0, 7 > 3. Transition of = from Iy across the
scgment (Az, A3} on the sheet T1; with'ly = 12 =1,1;=0,7>3,is always possible.

We suppose further that the parameter z may be carried in this manner from iy on all

the two-body unphysical sheets Il defined by the conditions l( ) =0, Jj > k. It assumed

also that during the carrying, z always remains in the domains ﬂl((':‘;l) of these sheets and does

not visit different sheets. It follows from Lemmas {1].1' and [1].2 that if 2 stays in the domain’

hot)
s

segment (A*), 400) with certain A8} < A, Hence the parameter = from cach of the sheets

of cach shect of the typc described then witlingly. it can be lcad to the real axis in the

_may be (arri( > across the interval (A, Aiy1) on the néighboring unphysical sheet Than with

1}"“) I(k) <k, I(kﬂ) 1 and I(k“) 0, 7 > k+ L. This means actually that = may be

carriced from Tlg on all the two-body unphysical sheets Hyeeny with [ ;H’l) =0,j>k+1. tor
all this the parameter 'z remains in the holomorphness domains lll(un and doces not visit the
sheets Iy with s > k+ 1. By the principle of mathematical induction we conclude that the
parameter z may be carried really on all the two-body unphya(rdl sheets.

Proof is completed.

Using results of Sec. 4 o_f the paper [1] and Lemma 1,-one can prove the following importam
statement.

THEOREM 2. The iteralions Q™(z) = (( tRoT)"t) , n>1, of absolule Lerms of the Fad-
decv cquations (2.1) admil in a sensc of distribulions over O(C") the analytical conlinuation

on the domain I]( hol) of each unphyszcal shecl 1, C ?R This continualion is described by the
equalities QU (=z )| = ((= th1l )il (2)



REMARK 2. The products LJ,¥"TQM, ot YWIIL, LoJoQt™, QML

LU TQMYEIL,,  LeJoQMIile, LiJ1U YOI, and LodoQTWJIL,. 0 <
m < n, arising at substitution of the relations (3.12) and (3.13) into Q(")(z)lnl, have to be
understood in a sense of definitions from Sec. 4 of the paper {1].-

REMARK 3. Theorem 2 means that one can pose the continued [Faddeev equations (3. 11) only
in the domains H(h ) - 10,.

4. REPRESENTATIONS FOR THE FADDEEV COMPONENTS
'OF THREE-BODY T-MATRIX

In the present section, usrng the Faddeev equations (3. 11) continued, we shall obtain the rep-
resentatlons for the matrix Al’(z) in the domains H( ) of unphysrcal sheets II; € R. The
representatrons will be gnen in terms of the matrix /t[( ) components taken on the physical
sheet, or more precisely, in terms of the half-on-shell matrix M(z) as well as the operators
inverse to the truncated scattering matrices Si(z) and S, (z). As a matter of fact, the con-
struction of the representations for M*(z) consists in explicit “solving” the continued Faddeev
equations (3.11) in the same way as in {9], [10] where the type ([1].3.2) representations had
been found for analytical continuation of the T-matrix in the. multichannel scattering problem
with binary channels. We consider derivation of the representations for: M!(z) as a constructive

proof of the existence (in'a sense of distributions over >< O(C?)) of the analytiéal continuation
=1

of the matrix M(z) on unphysical sheets II; of the surface R. SR
So, Iet .us consider. the Faddeev equa.txons (3.11) on the sheet I; with Iy = 0 or I, = *1
and lg; = 0 or ng =1, #=123, j=12,..,np Using the expressions (3.12) for t'(z)
and (3.13) for R)(z), we transfer all the sumrnands including Al'(z) but not Jy and J;, to
the left-hand part of Eqgs. (3 11). Making then a simple transformation based on the identity
s71(z) = Io — 571(2)30(2)t(2)3}(2) Ao(2) Lo we rewrite (3.11) in the form ‘

(1) 1+ tRo'r)M’ —t [I — ADI s 30t — Agu,,xg)] anfA‘”(J <1>* + x“’)

where A((,l)(z) = LDA(',(é), Agl)(z) = L1A1( ). Besrdes we denote
X = |Lofs] ' To(I ~ tRo) TM',

(4.2) X0 =_r, [.I $*Ro + APJ, 9 J'Jo] ’I‘M’ a

It follows from Eq. ({1):3.5) that

(4.3) © © 9" Ro = - ¥
Together with (4.3) the equahtles : o ‘ e
(4.4) (e J')( )=0, (303)(2) =0,

take place being true in accordance with (3.10) forallz€C \ (—oo Ammax)-
Using Eq. (4.3) and first of Eqs. (4.4) one can rewrite X(’) in the form

s R I v,

too. Note that the condition z & (—oo Amax) necessary for Eq (4.4) to be valid, does not touch _

the two-body unphysical sheets II;, [p = 0, since in this case A(l)(z) = 0 and consequently,
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the terms including the products 383, are plainly absent in (4.1).. Meanwhile the points
z € (—00, Amax] Were excluded from the three-body sheets II;, lo = £1, by definition.
Notice further that the operator I+ tRyT admits the explicit inversion in terms of M(2),

(4.6) (I+tReY)™' = =1- MTR,,
for all z € Il which do, not belong to the discrete spectrum (rd(H) of the Ham1lton1an H, and
(a.m o M'I‘Ro)t =

The equality (4. 6) is a srmple consequence of*the Faddeev equations (2.1) and the identity
RoT = TRy. The relation (4.7) represents an alternative variant of these equations. Now, we
can rewrite Eqgs. (4.1) in the equivalent form ) .

M(I ADIEST ot — Ag”ngg’_’)—

(48) ~(I— MTRo)®J AP 8% + X)), .
Eq. (4.8) means . that the matrlx M'( z) is expressed in terms of the quantities X(I)(z) and
X&‘)( ). Main goal of the section consists really in presentlng these quantities in terms of the
matrix M(z) considered on the physical sheet.

To obtain for X(l) and X(’) a closed system of equations we usée”the definitions (4.2)
and (4.5) and act on the both parts of Eq. (4.8) by the operators s; 1Jo( - tRo)T and .I /A8
At this moment wé use also the identities )

(4.9) [I—tRo]TM = [L - tRo| T[T — MY Ro] = [~ MRo|T

where Mo = QM = (I+ T)M. The relations (4.9) are another easily checked consequence
of the Faddeev equatlons (2.1). Along with Eq. (4.9) we apply second of the equalities (4.4).
As a result we come to the following system of equations for Xl(, and X1 -

Mo —t,

X = |Lolsy T [(Mo — t)(T = AT Tot — APILXL]
(4.10) - ~|Lolsy ToMo TR I AV (3,00 + XYy,
X0 = L ETMI - AP - A"’J'X“’)
(41) —L r[<1>+ MT\II]J*A(')(.II(D' +x“’)

It is convenient to write this- system in the matri¥ form BOX®: = D(‘) XU) (X(I) X(I))
with BO = {B“)}, i,j = 0,1, the matrix CODSIStlng of operators standing at unknown X()
and X(’). By DU, DO = (D(l) D(')) ) we understand a column constructed of the absolute
terms, of Eqs. (4.10) and (4 11). Since s; = Lo+ A(’)JotJo we find BY) = s (Io + Al )JOJVIOJO)
At the same time B} = [Lo|sy 1J(,M(,T\I:JfAi”, BY = 1,0 rMJJ,Ag” and Bﬂ’ =0+
L1 0wt AY because T(® + erI:) TVl '+ TMTY = (TV+ TMT)E = U¥ (sce [1],

Sec. 4).
The absolute terms look as

by = |L0|51_I[Jo(Mo“‘—jt)(I = APIs Iot) — iLOIJoMOT‘I’JtA(I)Jl‘I’]
DY = LT M- ADIS 3ot) - L,le-leA"’Jltp'

The operator s;(z), lop = %1, has inverse one for all z € C. If z ¢ Zm1 then sy ( )
is a bounded operator in Go. That is why, acting on the both parts of the:first equation

<11



B[(,QX,(,‘) + B,S'I)X(ll) = [)f," of the system BOX®M = D® by the operator s;, and not changing
its second equation, we come to the equivalent system

(4.12) BOX® = p®

with the (operator) matrix

(413) B = (io+ILo!JoMoJ*A“’ |LoldoMo TS A )

L TMILAY |+ Ly eruwsta?

B“)(z) Go @ Hy — Go ® Hy, and the absolute term D having the components D() =5 I)“)
and D{) = D).

LEMMA 2. The operator (B(')(z))-l exists for all z. € C such that there erists the op-

erator S;'(z) inverse to the truncated three-body scattering matriz 5(z) given by first of

the equalities (2.4) with L = diag{Lo, L1}, L = diag{|Lo|, L1}, and such that there ezist

the operators [Si(2)la and [Si(2)]5 inverse to [Si(2))oo = Io + JoTI}AoLo and [Si(2))1 =

I+ Ly W UWI A, Ly, respectively. The components [(B(')(z))—]] 4,7 = 0,1, of the oper-
ij

ator (B“)(z))i] admit the representation

(4.14) ‘[(B“)(z))“]oo‘ = 1o~ 'S oo {lLolJoTo—[Sz]m[Sl]”'L I 'I‘M}J"A(’)
(4.15) [(B(’)(z )"] o= 5 o, :

= {5 lad e TMIEAY {10 Qs3] ILOIJOI’UJ"A“)}

= [Sl ]]00

(w16) [(B%:)7],,
(4.17) [B(')(z)) ']

1
with To = QM. _
Note that since |Lo| and A() are numbers turning into zero at Io =0 51multaneously, the
factors |Lo| in (4.14) and (4.16) may be omitted.
PROOF. Let us find at the beginning, the components [(B(’)(z))— ] and [(B(’) N~ ]
10

which will be denoted temporarily (for the sake of contracting the wntmg) by Yoo and Y,O
Using Eq: (4.13) we write the equation system for these components,

(418) (B0 Yoo + [BOn Yio = o
(4.19) ' [BY)o Yoo+ [BU)11 Yio = 0

il

Eliminating the unknown Y;o from the first equation (4.18) with a help of (4.19) we come to
“the followmg equation 1nc1ud1ng the element Ygo only,

C(a20) {10 +at [|L0|J0T0J"A(') [SionlSil 29 \If‘TMJfA‘”]} = 1o
At intermediate transforms we used the equality Mo = Q'Ty. .

The operator matrix in the left-hand part of Eq. (4. 20) complementary to I, has three
the same rows. Thus one can apply to Eq. (4.20) the inversion formula

(421) [10+9 (c,,cz, cs)] —ho-0t[f+C +cz+ca] (Cl, Car Cs),

12

which is true for a wide class of the operators (C'1, Cz and C3). A smgle essential requm ment
to Cy, C; and Cy evidently, is the existence of (lo +Cy+Ca + C3)"
In the case concerned

Co(2) = {LoloTosh ~ 1Sl (S Ladr ¥ T(M]a3} } A
t
where [M]g is the 8-th column of the nlatrix M, [M)s = (4\419, Mzg, ‘M?g) . Thus

Jo+Cr+ Ca+ Cs = do+ JeTILAY = (Saa[SHT I LU AL = (Sioo ~ (Sl [ST [Stho-

Note that clements [.S’,—,"]'.j, i,j=0,1,0f 57! may be present by the components (S1];; as

(4.22) 5 = ([Siloo ~ [Siloy [S05 [Si0) ™
(4.23) (57, = (S = [Siho (Sl [Sioy) ™
(4.24) (57, = =180 (Sto ST
(4:25) - [9, ']o, =" (S5 [ [S7'],,

1t follows from (4.22) tha.t lo + Cl + Cz +C3 = [S, ]oo . Thercfore in the conditions of
Lemima; the operator (Jo+ Cy 4 Cz + C3)~! invertible. Now, a use of I.q (4 21) in (4. 20) jeads
us unmedmlcly to lhc representation (4.14) for [(H“)) ]oo

When calculalmg Yo = [(B(’)) ]10 we climinate from the sccond equation (4.19) vice'

versa, the quantity Yoo usmg Eg. (4.18). For all this, we necd to calculate the operator inverse
to I + JoMthA() H(‘rc we apply again the relation (4.21) and oblam lhat

It

(fo+ nf[Lo;Ju'rngA{,")

-1
(L, + 11,0|J0MOJ;A§,")
: o = Q' [Si)od | LoldoTod} AL,

(4.26) .
With a help of (2.4) we can writc the resulting cduation for ¥1o as
(180 = [SholSi [Sh} Yio=
21 = 3,0 T MILAD [T + JoMoT} A -
According to (4.23) the expression in braces in ‘the left- hand part of Eq. (1.27) coincides with

[S,"]l_ll. Then from (4.27) we get immediately (4.15).
System of the equations,

(4.28) : [B(l)]oo Ym + (B0 Y =0

(4.29) ' A [B(I)]xo Yo1 +[BY, vy = l|

for the ¢components Yoi ='[(B®)"o; and Yy, = [(B(‘)) i1 is solved analogously. Search for
Yy is at all a simple problem because the use of the inversion formmila (4.26) for Eq. (1.28)
immediately gives Yo = 0 [S)]o) [Silyy Yai- Substituting this Yoy in'(4.29) we find ™~

{[Sl]n - (S']w[Sl];ol [Sl}m} Yu = il'

13-



Here, one can see in the left-hand part as in (4.27), the operator [S ] 11‘
come to Eq. (4.17).

When calculating the unknown Y, we begin with expressmg by it the unknown ;.
Using Eq. (4.29) we get

(4.30) Yir =[S} (1‘1 — LW MIAD Vs ).

Inverting it, we

Substltutmg (4.30) into Eq. (4.28) we obtain an equation with operator standing at Yy, which
may be inverted with a help of Eq. (4.21). Then we use also the chain of equalitics

[LolJoMoTWIAY = |Lo|TotQM TWI AD =
= Q'lLongﬂMT\IIJ" AY = Qb (S]], /-

51mpl|fymg the absolute term as well as the summand in the left-hand part, engendered there
due to (4.30) by the element [B(')] Completing the transforms we find

Yor = —Qf {[Sl]oo [Sl]m [S']u S’]lo} [S’ 01 Sl]u .

In view of (4 25), the expression standmg after'Q in the right-hand part of the last equation,
coincides exactly with that for. [Sl ]01 [‘herefqre finally, we obtain Eq. (4.15). Thus, all the

components of the inverse operator (B(‘)) have already been calculated.

It follows from the representations (4.14) - (4.17) that (B(')(z)) “exists for such z € C
that there exist the operators inverse to S,(z), [S‘(z)]oo and [Si(z)];,- -

The lemma has been proved. .

Let us back to Eq. (4.12) and inverse in it, usmg the relatlons (4 14) - (4.17), the operator

BW(z). Thereby we find the unknowns XU) and X(ll) which express M!(2) [see Eq. (4. 8)]

When carrying a concrete calculation of X(l) = [(B“)) ] D(l) [(B(‘))—l] D(l) we'

use the relation |Lg| [(B(I))-lJoo Iy Mg = Qt|Lo) [Sl_l]
of (2.4) and (2.3). Along with the identity =~

0 JoTo that can be checked w1th a help

(4.31) L Tt (10 ADItsr ngt)—s, Iot,

this relation simplifies essentially the transform of the‘f)roduct [(B“))—l} 0 DE,”. Besides when
calculating X(()”, we use the equalities (4.4). As a result we find ]
(432) X = QN {|Lo| [S7], JoTo + [T, Lt (310" TM 4 31@7)}) — [Lofs; ot

Now, to find _Xﬁl) = [(B‘m)‘l']m‘ DY + [(B“))_l]“ DY, we observe additionally that
the equality {io -t [S,'I];1 JUT()J'[A([)}J()IWU = Ot [S ]00 Jng s1mpllfymg the product
[(B“))_l] o Du), is valid. The final expressxon for X() read as

€

(4.33) X = Ly {57, ILolo a+[Sr‘] LIJIW'TM—( =(57'],,) Lot}

To obtain now a representation for M!(z), one needs at the moment only to substitute the
found expressions (4.32) for X((,’) and (4.33) for X() iniEq. (4.8). Carrymg out series of simple
but rather cumbersome transformations' of Eq (4 8) we come as a result'to the statement
analogous to Theorem 1 of Ref. [1] concerning analytical continuation of the two-body T-
matrix. The statement is following.
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THEOREM 3. The matriz M(z) admils in a sense of distributions over O(C®), the analyt-
ical continuation in z on the domains H(h"l) of unphysical sheets I1; of the surface R. The
continuation is described by

{ M — 0ot t -1 Jo M
(431 M=M (MQ 3, o3t +Mrest) LA S7L ( LOTM 4 3,0 )

where S)(z) is a truncated scattering matric (2.4), L = diag{lo,l1,1, .. 1ny5 12,'1, veos b2mgy U314 0y
Isn,} and L = diag{llol, 111 s Hingy 2,0y oy Famgs {3,000y L3 }- Kernels of all the operators in
the right-hand part of Eq. (4. 34) are taken on.the physical sheet

Note that LA S l(z)L = L[S](z)]"* AL. This means that the relations (4 34) may be
rewritten also in terms of the scattering matrices 512).

5. ANALYTICAL CONTINUATION OF THE SCATTERING_MATRICES

Let { = {lo, ity o fimys Loty vy lamas [3,3y 00y l3ng ) With certainly, T = 0 ot lp = 41 and
lajy IaJ =0or lh; =41, a=1,23, ] =1,2,. o The truncated scattering matrices
Sz) : Ho ® Hy, — Ho ® H; and S,( ): Ho @ ’H1 - Ho ® H1, given by formulae (2.4), are
operator-valued functions of variable z being holomorphlc in the domain H(]ml) of the physical
sheet . At lp = l'and =1, a= 1,2,3, 3=1,2,...,714,these ma&nces coincide with the
respective total three-body scattering matrices: S[(z) S(2), S;'(z) = 51(2).

We describe now the analytical continuation of Sr(z) and S}(z) with a certain multi-index
I’ on unphysical sheets II; € ®. We shall base here on the representations (4.34) for M(z)'l.l

As mentioned above our goal isto ﬁnd the exp11c1t representatlons for S,(z)|1.I and Sf(z)l

'agam in terms of the physmal sheet.

First of all, we remark that the function Ag(z)is univalent. It looks as Ag(z) = —niz?

on all the sheets II;. At the same time after continuing from Il on II;, the function Ag;(2) =
—7iy/z — Ag,; keeps its-form if only lg; = 0. If Ig; = 1 this function turns into Aj;(z) =
—Agp ;(z). Analogous inversion takes (or does not take) place for arguments PP, po and pjs of
kernels of the operators JOQMQ"JO, JOQMT\IIJ J, o 'I"MQ"J'r and JI\II'(TV + TMT)\IIJ
too. Remember that on the physical sheet Hg, the actlon of Jo(2) (Jt (2)) transforms P € R® in
VZP (P’ € RSin /zP"). At the same tlme, Pa € R3 (p5 € R®) turns under Ja, (2) (J[,J(z))
into \/z —Aaiba. (2~ ,\B,pﬂ) That is why we mtroduce the operators E(1) = diag{&, &}
where.& is the 1dent1ty operator, in 'Hu if [ =0, and &, the inversion, (Eof)(P) f(~ P) if
lo = *1. Analogously &) = d1ag{€1 Loy Elmes €25y Eama; Ea1,y - 83 .n} where & ; is the
identity operator in' H(#) if ls; =0, a.nd Es.4» the inversion (Ep'_,f)(pg) f(=pp) if lg; = 1.
By ei(I) we denote the diagonal matrix e;(I) = diag{ei,1,..-;€1,n:5 €2,051+,€2m,3 €31, -54,€3.05}
with elements eg; = 1 if I3; = 0 and ep; = —1 if lg; = 1. Let e(l) = dlag{eo,el} where
€y = +1 . ’
THEOREM 4. If there e:usts a path on the surface §R such that at moving by it from the domain

H(h‘ﬂ) on Iy to the domain H(h"l)ﬂH,(,};"l) on Iy, the parameter z stays on intermediate sheets

M always in the domains. TPV NTIEY, then the truncated scattering matrices Sp(z) and

Slf,(z) admit the analytical continuation in z on the domain H§3‘°‘)ﬂn§,‘;°‘) of the sheet I1;. The

continuation is described by

(5.1) Se(2)l, = Q) [i+ DTL Ae(ly~ EFL AST ETL Ae(z)] £Q),
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(5.2) i), = €W [i+e(1)A LTE = e)A LTL S]] A LTL] £0),

where L' = {I, & 1, i i nys Tas s Tong Ig‘l,...,lgm} and [ = {II’[ By lims s Bings

B2 lyny }-

PROOF. We give the proof for example of Sy(z). Usmg the definition (2.3) of the operator
(z) we rewrlte Sp(z) in the form* . .

_ 3 Fr Jo2 ) t 1t t » 0 0 !
Su(z) =I+1 [( J, oY ) M (Q Jo T‘I’Jl) + 0 Jl\I"TV‘l’ﬂ La

Note that when continuing on the sheet I, the operators' Jo(2), I(2), i(2) and Ji(z)

turn into &(I")Jo(z), I (2)E (1), 81(1”).]1(2) and Ji (2)81(1”), respectively. At the same

time the matrix-function A(z) turns into-A(2)e(I"). Then usxng Theorem 3, for the domains
(h°1) ﬂnf,’;f:" of intermediate sheets IIi» we have

Sp z)ln =i+ S(I")L TLEI Ae(I) -

(6.3) —E(L ( J ]J\‘I’,?f ) (MQ'J{,, [v+MT] \I;Jf) L'a St x

” JOM ) o
"L',< WU+ TM] ) (Q'Jé, TR} L") Ae(l)

where the summand following 1mmed1ately by iis engendered by the term M(z) of the right-
hand part of (4.34). The last summand of (5 3) is orlglnated from the second summand
of (4.34).

In view of (4.4) we have LVt = ’JﬂI’"JI,Q1 = 0. Analogously, JoQv¥J! equals to
zero, too.. Thus, taking into account (2.3) we find

. (5.4) S,,(z)| o — i + g([") ZITLI 8(1’()Ae(l") - 8(1”) LITLII A 57, LIITLI (1") Ae(l")

By the supposition, the parameter z moves along such.a path that on the sheet [l it is
- situated in the domam H‘*‘°"ﬂnf,‘;2" In this domain, the’ operators (L"TL’)(z) (L”TI ")(z)
and (L”'TL )(2) are defined and depending on z analytlcally Consequently, the same may be
said also about the function Sp(z)ln In equal degree this statement is related to the sheet

II;. Replacing the values of multi~index I” in the representatlons (5:3) and (5.4) with I, we

come to the assertlon_of theorem for Sp( z)|nl. Truth of the representatlons (5.2) for S,,( )ln

is established in the same way. ‘
The proof is completed. i

REMARK 4. If Iy = 0 then the representation (5.1) for the analytical continuation of S;(z) on
the (its “own”) sheet Hz acqurres the snmple form [cf: ({1].3.6)], .

,;)|n,=8<1) [+ - 577 1)] (= &S (z)f()

Just so S](z) . ;(Q [S,f(z)]—l EW).
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6. REPRESENTATIONS FOR ANALYTICAL CONTINUATION
OF RESOLVENT

The resolvent R(z) of the Hamiltonian H for three-body system concerned is expressed by
M(z) according to Eq. (2.2). As we established, kernels of all the operators included in the
right-hand part of (2.2) admit in a sense of distributions over O(CS), the analytical contin-

uation on the domains Tlfhol) of unphysical sheets I1; C R. So, such continuation is admitted
as well for the kernel R(P, P',z) of R(z). Morcover, there exists an explicit representation for
this continuation analogous to the representation ({1].3.7) for two-body resolvent.

THEOREM 5. The analytical continuation, in a sense of distribulions over O(C8). of the
resolvent I¥(z) on the domain llfh"l) of unphysical sheet II; C R is described by

R(z)|, = I+

) _ t _ iy 1t —1F Joll - VR]
(6.1) +([/ = RVYIS, ot ROMT]wJ,)I,As,IL(JI\I,_[}_TMRO]Q,).

Kerncls of all the operators present in the right-hand part of Eq. (6.1) are taken on the physical
sheet.

PROOF. For analytical continuation Il’( ) of the kernel J2(P, P’':z) of R(z) on the sheet II; we
have according to (2.2), .

{6.2) ‘ R(2) = R(2) - ll{,(:)ﬂM,'(z)Qth(z’)k.

For M!(2) we have found alrcady the representation (4.34). Since RS = Ry + Lu/\ngJot\vc can
rewrite Bq. (6.2) in the form R

R = Ito— ReQM'Q! Ry + AoLoJ) (i0 = 30QM'Q1ILLoAo) Jo ~
(6.3) ~AoLoJ JoM'QY Ry — RoQM' Q138010 A0,
Consider separately the contnbutrons of each summand of (6.3). l)oing this we shall use the

notations

- tqt t t t JoiMmQt ‘
B = (amal}, amMYeI!+003!) and B = (7J.\P'TMQT+J,¢'Qf _

1t follows from (4.34) that QM!Q! =QMQ! —BLA S,'l"l:Bf. Ilcndc two first summands
of (6.3) give together .
Ro— RoQIMQ IRy + RoBL ASTUIB' Ry = R+ RoBL AS;Y LB Ry.

Transforming the third term of (6.3) we use again the representation (4.31). We find
1yt 72)0
JoQM'Qt I LoAe = TOOLOAO— (’Too, ’TO,) L AS! ( 7 ) LoAo =

o
= wol L AWy —woT L AST LT L AWy = woT 1, A (1 _SPUdL ,1) i

where wy stands for the projector acting from y @ My to Ho as wy ( fo ) = fo. fo € Ho.

fi € . By wj we understand as usually the operator adjont. to wy. So far as §; = I+ LTL A
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wehave I 57 LFL A =57 (T4 ITLA-LTL A) = §;". Taking in account that L = L-
we find : ,

LoAo(fo = JoQM' QI LoAo) = woAL(I = LT LASY) Ly = woL A 87" Luwg.

This means that the third term of (6.3) may be present as JongAS, Lwo
When studying the fourth summand of (6.3) we begin with transforming the product
AoLoJoQM'Q to more convenient form. It follows-from (4.34) that

AOLOJOQM'Q" AoLoJo@MA! = AoLo (T, ﬁ,,) LAS[' LB,
In view of AoLoJoQM Q! = woALB' and AgLo (7’5,,,701) L = woALT L, we have
C AcLodoM'Q = wo (AL - ALTL AS,-‘i) B! = w,L AS71 LB,

Analogously, in the fifth term of (6.3), QM'QNLoAo = BL[S]] A Lwy = BLAS" Lw;.
Thus two last summands of (6.3) give together —Jiwol, AS; ! LBt Ro— RoBL ASTY LagJo.
Substltutmg the expressions obtained into Eq. (6.3) we find

R = R+(J0wo—RoB)LAS 'L (wido — B'Ry).

Taking into account the definitions of B and Bt as well as the fact that RyQMQO! = RV,
QMQR, = VR (see[2], [3]) and Re2@J; = —QWJ,, J;@*0R, = —J, 920, we come finally
to Eq. (6.1) and this completes the proof. ; ’ :

7. ON USE OF THE DIFFERENTIAL FADDEEV EQUATIONS
FOR COMPUTATION OF THREE-BODY RESONANCES

As follows from the representations (4.34), (5.1) and (6.1), the matrices M(Z)’n," S"(Z)In,
and the Green function R(z ln

o4(H) of the Hamiltonian . Nontrivial smgularltrcs of M(z ln s Sy(z ln and R(z
(hol)

may have poles at points belonging to the discrete spectrum

@),
correspond to. those pomts z € Mo ;™ ‘where the inverse truncated scatterlng matrix
[S1(2)]7! (or [S](2)]~" and it is the same) ddes not exist or where it represents an unbounded
operator. The points z where [Si(z)]™! does not exist; engender poles for ‘M(z)‘nl, ‘ S'p(z)|rIl
and  R(z)|p . ‘

The necessary and sufficient condition [12] of 1rreversrb111ty of the operator S;(z) for given
z consists in existence of non-trivial solution A{e) ¢ 'Ho GB H; to the equatlon

Such points arc called (three~-body) resonanccs.

(1) . Si(5) AT = 0.

Investigation of this equation may be carried out on the base of the results of Sec 4 of the
paper (1] concerning properties of kernels of the operator T(z) In view of the space shortage
we postpone this investigation for another paper. :

The equation (7.1) may be applied for a practical computations of resonances situated in

the domains II {hol) C II;. The resonances have to be considered as those values of z €N H(h"l’
for which the operators S';(z) and S7(z) have ergemalue zero.
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Elements of the scattering matrices Si(2) and S](z) are expressed in terms of the ampli-
tudes (continued in the energy z on the physical sheet) for different processes taking place in the
three-body system under consideration. Respective formulae [3] written for the components

of ‘T read as

Tosina(Pa P, 2) = C”’(Z) ﬂJﬁk(Pava7z)s
z;'j;g(ﬁf,,Pl,Z) = (‘0 ( )-A ,JO(parpa )
Toorl Py 2) = CO2) Avox(P, B, 2),

Too(P,P'2) = C(z) Awl(P, P, 2)
N LGS ) '
with C7(2) = ~ s v s o :
branch. The functions .A,.Jdk represent amplitudes of elastic (@ = 8; j = k) or inelastic
(a=83;7#£%) s(attcrmg and rearra.ng(‘mcnt (a # B) for the (2— 2,3) process in the initial
state of which the pair subsystem is in the &-th bound state and the complementary partl(](' is
asymptotically free. The function Ao,s x represents for this process, a breakup amplitude of the
system into three partic}es The amplitudes A, ;0 and Ago correspond to processes respectivly.
(3 — 2) and (3 — 3) in the state where initially, all three particles are asymptotically free.”
Remember that contributions to Agg from the single and double rescattering represent smguldr
distributions (cm. [1]).

Describing in Sec. 4 of the paper [l] the analytical properties in variable = and the smootl]-
ness properties in angular variables P or Pa and P’ or P, of the matrix T kernels we have
described thereby as well the propertics of the amplitudes A(z):

"To search for the amplitudes A(z) continued onthe physical sheet, onscan*use e.g., the
formulation [3], [11] of three-body scattering problem based on the Faddeev differential equa-
tions for components of the scattering wave functions considered in the coordinate space.; It is
necessary only to coine in this formulation, to complex values of energy 2 The square:roots

22 and (2 — Aa;)V% @ = 1,2,3, j = 1,2,...,n,, presenting in the formulae of [3]. 11
d(lcrnnmng asymptotical boundary conditions at the infinity, have to be considered as the:
main branches of /z and /2 — A, ;. Solving the Faddeev differential cquations with such con-
ditions one finds really the analytical continuation on the physical sheet for the wave functions
and consequently, for the amplitudes A(z). Knowing the amplitudes A(z), one can construct
a necessary truncated scattering matrix Si(z) and then find those values of = for which there
exits a nontrivial solution A to Eq. (7.1). As mentioned above these values of = represent
the three-body resonances on respectivc sheet 11;.

where for the function z(" =34 ope iakes the main

Concluding the paper we make the following remark. .

It is well known [3] that a gencralization of the Faddeev equations [2] on the case of
systems with arbitrary number of particle is represented by the Yakubovsky cquations [13).
The latter have the same structure as the Faddeev cquations. Thus the scheme used in the
present paper, may be applied as well to construction of the type (4.34), (5.1) and (6.1) explicit
representations for analytical continuation of the 7' and scattering matrices and resolvent on
unphysical part of the cnergy Riemann surface in.the N-body problems with arbitrary N,
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‘Hpencranneﬂnsr zmsr Tpexqacmqnon T-ManPlllbl
AHa Hedmauqecxux Jmc'rax noxaaarenbcrna

kmo6osa OI/ISII/I S ey

Morosmnos A.K. = ‘ E5-95:46

Ilaercsr noxasarenbcrno smnblx npezrcrannennn, cdlopmymipoaannhxx
B IIpeAbIAyLIEi ‘pabore asTopa IS AHATTMTHYECKOTO nponomxenus{ KOMITIOHEHT -

Danneesa’ Tpexqaemqnon T-ManPlleI Ha Hedmanl{ecxne JIUCTHI PUMaHOBOH
‘nosepxnocm 9HEPIHUH. Hponozu»rrcsr 060CHOBaHHC aHAJIOTHUHBIX -npencTas-:

JICHHMH 0g anamrmqecxoro HpOIlOJI)KCHPlS{ TpeX‘-laC‘TPl‘-leIX ManPlLl paccesnmsr .

iR peaonbaenrbl O6cy>xnaercs{ anropmM 'HAXOXAEHUS peaonancon B CUCTEME
-Tpex xnamonmx qacmu Ha OCHOBAHUH nnd)d)epenunanbnmx ypaBHemm (Dan-,

Pa6ora BbIHOJIHeHa B .Ha6oparopnn Teopemqecxon dmanxu PIM H H Boro-'j .

o

. Mpenpuur Omehu‘nennomjm{crnryra ﬂhep‘nblx"nccne;iosannﬁ;lly&ra, 1?995 L

'on Unphysxcal Sheets Proofs

Motov1lovA K. . f? e R
Representatlons for Three- Body T—matrlx Ll

A proof is glven for the exphcxt representatlons wh1ch have been formulated

‘m the: author’s previous work for .the ‘Faddeev components ‘of three- body
< 'T—mamx contmued analytlcally on unphysxcal sheets of the’ energy Rxemann

o ,surface Also, the analogous representatlons “for analytical - contmuatlon
of the three body scattering matrlces and resolvent are proved. An algorlthm
| 1o search for the three- body resonances on the base of the Faddeev dlfferentlal

equatlons is dxscussed el
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