
ES-95-46 

A.K.Motovilov1 

REPRESENTATIONS FOR THREE-BODY T-MATRIX 

ON UNPHYSICAL SHEETS: PROOFS2 

Submitted to «TeopeTH'lecKaR H MaTeMaTH'lecKaR <PH3HKa» 

1 E-mail: MOTOVILV@THSUNl .JINR.DUBNA.SU 
2The work supported, in part by Academy of Natural Sciences of RAS 
and International Science Foundation (Grant # RFB000) 



l. ·. INTRODUCTION 

The paper is a.continuation of the author's work [l) devoted to studying a structure of the 
1'-'matrix, scattering matrices and resolvent of three-body Hamiltonian continued .analytically 
on unphysical sheets, of the energy .Riemann surface. . ,. . 

A central .result of the paper [l) consists in construction of the ·explicit representations for 
the continuation of three-body T-matrix on unphysical.sheets in terms.qf:this matrix itself, 
taken on the physical one; as well as. the scattering matrices. There were outlined only schemes 
to prove, the representations above in Ref. [l ). Main goal of the present work. is to present a 
full proof. With the representations for T,matrix we base also analogous representations for 
analytical.continuation of the scattering matrices and re~olvent (se~ Ref. [l)). . . . . . ... 

As in [l) we suppose that interaction po,tentials are pair)Vise.ones .wpich decrease i~ the 
coordinate space not slower than expon~ntially. All the analysis i~ carried out 

1
on the base of 

the momentum space Faddeev. integral equations [2),, [3) for components of the. T ~matrix.,. At 
that we find analytical continuation of the Faddeev equations as on neighboring, unphysica\ 
sheets as on remqte ones .belonging to a certain part. of the totaL three-body, Riemann sµ~face. 
A foll description ()f tpe part under. consideration see _in Ref. [l), The representations for the 
components of Tc-matri;x: on unphysical sheets arise as a result,of explicit solving.the Faddeev 
eql\ations continued in terms of the physical sheet.. . .. . . . . . , . ,·: 

Note that a continuation of the s-wave Faddeev equations on unphysical sheets neighboring 
with physical one, was made previously in the work [4) (see also Ref. (51) in tlre· case of separable 
pair potentials: ' · . . . . . . '" . 

In the' paper, we discuss also a practical meaning of the representations obtained. '. Ac­
cording to the representations [see Eqs. (4.34), (5.1) and (6.1)), the nontrivial singularities 6£ 
the T-matri1< as well as the scattering matrices and resolvent are determined, after the con­
tinuation of them on unphysical sheets by singularities of the operators inverse to truncated 
scattering matrices on the physical sheet. Thus, the three-body resonances (i.e. the poles 
of the resolvent as well the T- and scattering matrices) are.actually .. those values of energy 
for.which the scattering matrices, truncated in accordance with the index (number) of the 
unphysical sheet under consideration, have zero eigenvalue. These properties of three-body 
scattering matrices are quite analogous to the familiar properties of the scattering matrices 
in problems of two particles and multichannel scattering problems with binary channels (s~e 
e.g.,.Refs. [6]-[8) or [5), [9), [101). For computations of three-body resonances as zeros o.f the 
truncated scattering matrices above, one can apply in particular, the differential formulation 
of the sc1i:tterh1g_problem [3), [11) going on the complex plane of energy (physical sheet). 

The paper is organized as follows. . 
In Sec. 2 we remember main notations of Ref. [l). The analytical continuation of the 

Faddeev equations on unphysical sheets is carried out in Sec. 3, Sec. 4 is devoted to deriving 
the explicit representations for the Faddeev components of the three-body T-matrix continued 
on unphysical sheets. The analogous representations are constructed in Sec. 5 for the scattering 
matrices and in Sec. 6, for the resolvent; In Sec. 7 we formulate an algorithm to calculate the 
three-body resonances on the base ·of the Faddeev differential equations in configuration space. 

2. NOTATIONS,. 

Throuhout 'the paper we follow strictly by the conventions and notations adopted in Ref. [l). 
Therefore we restrict ourselves here only to presenting for them a brief summary. Note at once 
that at using formulae of the paper.[l) (it will take plac~ rather often) we supply their number 
in Ref. [l) with the reference "[l)". 

For the description of the system of three particles concerned in the momentum repre-



sentation, we use the standard sets of reduced relative momenta ([l].2.1) k,,, p,,, a = I, 2, 3, 
which are usually combined into six-vectors P = {k,,,p,,}. Transition from the pair {k

0
, p.,}. 

to another one, {k/l, P/l}, corresponds to the rotation transform in R6, k0 = c0 /lk/l + Sc,JP/l, 
p0 = -s,,/lk/l + Ca/JP/l with coefficients c0 /l, sa/l (3] depending on the particle masses only. 

The Hamiltonian Hof the system is given by (Hf)(P) = P2 f(P) + I:!=
1
(v

0
f)(P), 

P 2 = k.; + p.;, f E 1-{0 = L2 (R6
), where v0 , a = 1, 2, 3, are pair potentials assumed for the 

sake of definiteness, to be local. This means that the kernel of each v,, depends only on the 
difference of variables ka and k~, v,,(k,,, k~) = v,,(k,, - k~)-

We deal with two variants of the potentials v.;. In the first one, v0 (k) are holomorphic 
functions of variable k E C 3 satisfying the estimate ([l].2.2). In the second variant, the 
potentials v,,(k) are holomorphic in k in the strip W2b = {k : k E C3, Jlmkl < 2b} only 
and obey at k E W2b the estimate ([l].2.3). In the both variants v,,(-k) = v0 (k), and this 
guarantees self-adjoi_ntness of the Hamiltonian H. 

In the paper, the exposition is given for example of the second variant of potentials. 
Respective statements for the first one may be obtained from the statements of this work if to 
put in them, b = +oo. 

By h,, we denote the Hamiltonians of the pair subsystems· a, a = 1, 2, 3. Eigenvalues 
>.. 0 ,; E o'd(h,,) of h0 , >.. 0 ,; < 0, j = 1, 2, ... , n,,, n0 < oo, are enumerated taking into account 
their multiplicity: number of times to meet an eigenvalue in the numeration equals to its 
multiplicity. Maximal of these numbers is denoted by Amax, Amax = ma_x >..0 ,; < 0. The notation 

<>,J 
"Po,;( k,,) is used for respective eigenfunctions. · 

We understand by od(H) and O"c(H) respectively the discrete and continuous components 
of the spectrum O"(H) of the Hamiltonian H. Note that O"d(H) = (>..min, +oo) with Amin = 
min>..,,,;. · 

<>,J 

The notation H0 is adopted for the kinetic energy operator, (H0 f)(P) = P 2 f(P). By 
R0 (z) and R(z) we denote the resolvents of H0 and H, respectively: Ro(z) = (Ho - zl)- 1 and 
R(z) = (H - zl)-1 with I, the identity operator in 1-{0 • 

Let M0 /l( z) = li,,/JVa - v,,R( z )v/l, a, /3 = 1, 2, 3, be the components [2], (3] of the T-matrix 
T(z) = V - VR(z)V where V = V1 + v1 +v3. The Faddeev equations (2], [3] for operators M,,0 
read in matrix form as 
(2.1) M(z) = t(z)- t(z)Ro(z)TM(z) 

where Ro(z) = diag{Ro(z),Ro(z),Ro(z)} and by T we understand the 3 x 3-matrix with 
elements la/J = 1 - lia/l• Besides we use the notations t(z) = diag{t1(z), t 2(z), ta(z)}. Here, 
the operators t,,(z), a~ 1,2,3, have the kernels.t 0 (P,P',z) = t0 (k,,,k~,z - p.;)li(p

0 
- p~) 

where t,,(k, k', z) stand for the respective pair T-matrices t,,(z). These M, t, Ro and T are 
3 

considered as operators in the Hilbert space 90 = EB L2 (R6 ). 
o=l 

The resolvent R(z) of H is expressed by the matrix M(z) as [3] 

(2.2) R(z) = Ro(z)- Ro(z)nM(z)n1R0 (z) 

where n, n : 9o ---> 1-{0 , denotes operator defined as the matrix,-row n = (1, 1, 1). At the 
same time nt = W =Jl, l, 1)1. 

Everywhere by z - >.., z EC, >..ER, we understand the main branch of the· function 
(z - >..)112. Usually, by q we denote the unit vector in the direction q E RN, q = q/lql, and 
by sN-l the unit sphere in RN, q E 3N- 1

• The inner product in RN is denoted by ( •, • ). 
Notation ( •, •} is used for inner products in Hilbert spaces. 

Let 1-(
0 ''> = L2 (R3

) and 1-f"l = EB 1-f"•'>. Notation 1Ji0 is used for operator acting from 
J=l 

2 

., 

.t 

:·~ 

1-{(•l to 'Ho as (IJi,,f)(P) = I:;;11Pa,;(k0 )/;(p0 ). By IJi we understand the matrix-diagonal 
3 

operator combined of IJi,, as IJi = diag{IJi1, W2, 1Ji3}, and acting from 1t1 = EB 1-((a) to 9 0 • 
o=l 

The operators 4>,, and <I> are obtained of IJi,, and IJi by the replacement of functions t/;0 ,;(k0 ) 

with form-factors ¢,0 ,;(k,,) = (v,,iJ,0 ,;)(k,,), a= l, 2, 3, j = l, 2, ... , n,,. 
By O(CN) we denote the Fourier transform of the space C0 (RN). 
The operator J 0 ,;(z), a = l, 2, 3, j = l, 2, ... , n,,, realizes the restriction of functions 

f(p,, ), p,, E R3 , on the energy shell >..,,,; + IPal2 = E at z = E ± iO, E > >.. 0 ,;, and then if 
possible, continues them analytically into a domain of complex values of energy z. On O(C3), 
this operator acts as (J0 ,;(z)/)(p0 ) = /( ✓z - X0 ,;p0 ). Notation J~.;(z) is used for the operator 
"transposed" with respect to J 0 ,;(z) (see. Ref. [l]). 

The operator J 0 (z) is defined on O(C6
) analogously to J 0 ,;(z) by (Jo(z)f)(.P) = f(vz.P). 

The notation Jb(z) is used for respective "transposed" operator (l]. 
The operators J 0 ,; and J~.; are combined in the diagonal matrices J(0 l(z) = diag{J.,,1(z), 

... ,J 0 ,n
0

(z)} and J(0 lt(z) = diag{J~,1(z), ... , Jtn.(z)}. In their turn, we construct of the lat­
ter, the op~rators J 1(z) = diag{J<1l(z), J(2l(z), J{3l(z)} and Ji(z) =;c diag{J(1lt(z), J(2lt(z), 
j{3lt(z)}. Besides the listed ones, we use in the work, the block-diagonal operator 3x3-matrices 
J0 (z) = diag{J0(z),J0 (z),Jo(z)}" and Jb(z) = diag{Jb(z),Jb(z),Jb(z)} as well as operators 
J(z) = diag{J0 (z),J1(z)} and J1(z) = diag{Jb(z),J;(z)}. 

Alor1g,with Ho, 90 .and 1t1 described above, we consider the Hilbert spaces if..0 =- L2(S5 ), 

90 = (f) Ho and if..; = (f) if..(a) where if..(a) = EB if..(o,j), if..(a,j) = L2(S2). The identity 
o=l cr:=1 3=1 

operators in if..0 , 90 , if..1 and if..0 EB if..1 are denoted by i0 , lo, f1 and i, respectively. 
The operator-valued function T(z), T(z) : Ho EB 'H1 -+ 1to EB 1t1, of the variable z E 

C \ a( H) is defined by 

. _ ( nM(z)nt nM(z)TIJi ) 
(2.3) T(z) = . IJi*TM(z)nt IJi*(Tv'+ TM(z)T)IJi 

with v = diag{v1,v2,v3}. The truncated three-body scattering matrices are expressed by T(z) 
as 
(2.4) S1(z) = i + (£7 LA)(z) and S;(z) = i + (ALTL)(z) 

where T(z) = (JTJl)(z), T(z): Ho EB if..1-+ if..0 EB if..1 .. The multi-index 

(2.5) l = ( lo, /i,1, •··, l1,n1 , 12,1, • •·, 12,n» 13,1, •··, l3,n3) • 

has the components· 10 = 0 :or lo = ±1 and 10 ,; = 0 or 1;,i = 1, a = l, 2, 3, j = 1, 2; ... , n,,. 
Notations Land Lare used for the diagonal matrices corresponding to the multi-index l: L = 
diag{L0 , Li}, L = diag{ILoJ, Li}, Lo= lo and L1 = diag{l1,1, ... , 11,n,, 12,1, ... , 12,n,, 13,1, ... , 
13,n,}- By A(z) we understand the diagonal matrix-function A(z) = diag{Ao(z), A0 ,;(z), 
a= 1, 2, 3, j = l, 2, ... , na} with the elements A0(z) = -7riz2 and A,,,;(z) = -'ll'i✓z - >.. 0 ,;. 

The notation IIfi~1 is used for the domain in variable z E C where (LT L') ( z) is a holo­

morphic operator-valued function. The matrices S1(z) and S;(z) as well as the: products 
(L0J 0 M)(z), (L1J11Ji•TM)(z) and (MJ6Lo)(z), (MTIJiJiL1)(z) are holomorphicfonctions 

of z on domains rr;hol) = Ilfi01 • A description of the domains rrtf and II;hol) see Ill Ref. [1], 

Sec 4. , 
We consider only a part of the total three-body Riemann surface. This part is denoted 

by R. Sheets II1 C R are generated by branching in the two-body, z ~ >...,,;, a= l, 2, 3, j = 

3 



1, 2, ... , na, and three-body, z = 0, thresholds. When enumerating the sheets, the multi-index 
I given by (2.5) is used. At /0 = 0 its components la,;, a = 1, 2, 3, j = 1, 2, ... , na, can 
get arbitrary value among two numbers O and 1. In this case, Il1 represents a copy of the 
complex plane C cut along the ray [Amin,+=). If lo = ±1 then the rest of components la,j, 

a= 1, 2, 3, j = 1, 2, ... , n 0 , of I are assumed be equal to 1. There is accepted that at /0 = +I 
the sheet Il1 coincides with the upper half-plane c+ = {z EC: Imz > 0} and at 10 = -1, 
with the lower one, c- = {z E C : Imz < O}. We suppose additionally that the sheets 

3 . 

Il1 with lo = ±1 are cut along the rays constituting together the set Z,es = LJ zJ;,l. Here, 
o===l 

zJ;.> = {z : z = ZrP, 1 ~ p < +=, Zr E u!;}} is a totality of the rays beginning in the 
resonance points u!;} of subsystem a and going to infinity along the directions Zr = zr//zr/, 
Zr E u!;}. A more detailed description of the surface R and in particular, the way of sticking 
the sheets Il1 see in Sec. 5 of Ref. [l]. 

If all the components of the multi-index l are zero, 10 = /0 ,; = 0, a = 1, 2, 3, j = 
1, 2, ... , n 0 , the sheet Il1 is called the physical one, Il0 • The unphysical sheets Il1 with /0 = 0 are 
called the two-body ones since these sheets may be reached from Il0 rounding the two- body 
thresholds z = A0 ,; only, with no rounding the breakup threshoid z = 0. The sheets Il1 at 
/ 0 = ±1 are called the three-body ones. 

3. ANALYTICAL CONTINUATION OF FADDEEV EQUATIONS FOR 
COMPONENTS OF T-MATRIX ON UNPHYSICAL SHEETS 

Goal of the present section consists in continuation on unphysical sheets of the surface R, 
of the absolute terms and kernels of the Faddeev equations (2.1) and their iterations. The 
continuation is realized in a sense of generalized functions (distributions) over O(C6 ). Results 
of the continuation are represented in terms related with the physical sheet only. 

By L(a), L(a) = L(<>l(/), we denote the diagonal matrices formed of the components 
la,I, la,2, ... , la,na of the multi-index l of the sheet Il1 CR: L(a)) = diag{/

0
,1, 1

0
,2, ... , la,n

0
}. 

At that L 1(1) = diag{L(1l, L(2l, L(3l} and L(l) = diag{L0 , Li} c L 0 = 10 • Analogously, 
A(a)(z) = diag{Aa,1(z), Aa,2, ... , Aa,n

0
(z)} and A1(z) = diag{A(1l(z), Al2l(z), A{3l(z)}. Thus 

A(z) = diag{A0(z), A 1(z)}. 

By Sa,1(z) we understand the operator defined in Ho as 

(3.1) ~a,1(z) = io + Jo(z)t,,(z)Jb(z)Ao(z)Lo, z E Il0 • 

It follows from Eq. (3.1) that s 0 ,1 =' i0 at 10 =· 0. If 10 = ±1 then according to Eqs. ([l].4.42)­
[l].4.44), the operator Sa,1(z) is defined for z EA n c±, A= {z : Re z > -b2 + (Imz)2 I (4b2)}, 
and acts on J E Ho as 

(3.2) (s 0 ,1(z)f)(P) = J dk1
s0 (k0 ,k:,zcos2w)J(cosw0 k:,sinw0 fi,,) 

52 . 

where w,, ,k,,, fi,, stand for coordinates [3) of the point .P on the hypersphere S5, w
0 

E [0, ,r /2], 
k,,,fi,, E S2. For all this, P = {cosw,,k,,, sinwafia}• By Sa we denote the scattering matrix 
([1].2.16) for the pair subsystem a. As a matter of fact, s0 ,1 represents.the scattering matrix 
s,, rewritten in the three-body momentum space. 

It follows immediately. from Eq. (3.2) that if z E An c± \ zJ;.> then there exists the 
bounded inverse operator s:-.}(z), · 

4 

'i 
'1 

" 

!' 
) 

(s:_\(z)/)(i'>) = 1 dk's;1(k0 ,t,zcos2wa)f(cosw,J:,sinwafia) with s;; 1(k,k1
,(), the kernel of 

52 

the inverse pair scattering matrix s;;1((). 
The operator s:\(z) becomes unbounded one at the boundary points z situated on rims 

of t lw cuts ( the "res~nance" rays) included in zf;.>. 

THEOREM 1. The absolute terms ta(P, P', z) and kernels (taRo)(P, P', z) of the Faddeev equa­
tions (2.1) admit the analytical continuation in a sense of distributions over O(C6

) both on 
two· body and three--body sheets 111 of the Riemann surface R. The continuation on the sheet 
111, I= (lo,11.1,••·, 11,n"/2,1,---, l2,n,,h,1, ... ,/3,n3 ), lo=' 0, /13,; = 0,1. orlo = ±1, 13,j = 1 (in 
both wses ;-J = 1,1,:l, j = 1,2, ... ,na), is written llS · 

(3.:l) t~(z) = to(z)\
11

, = to - LoAotaJbs:.~Joto - <I>0 J(o)!L(o)A(o)J(0 )<I>:, 

(3.4) [to(z)Ro(z)]\ 11, = t~(z)R~(z) 

where /~(z) = .Ro(z)l 11, = Ro(z) + LoAo(z)Jb(z)Jo(z) is the continuation {9} on TT1 of the fm 

Green function Ro(z). If lo= 0 (aiid hence II1 is a two-body unphysical sheet). the continuation 
in the form (3.3}, (3.4) is possible on the whole sheet II,. At 10 = ±I (i.e. in the case when 
II, is a th1·ee- body sheet) the form (3.3}, (3.4) c~ntinuation is possible on the domain An 111• 

All the kernels in the right hmul parts of Eqs. (3.,'J) a.i-e ta.ken on the physical sheet. 

PROOF of the theorem we give for example of the most intricate continuation on three- body 
unphysical sheets 111 with 10 = ±I. For the sake of definiteness W<' consider the case 10 = + I. 
For /0 = -1, the proof is quite analogous. 

Let us consider at z E II0 , Im z < 0 the bilinear form 

(3.5) (!, to/¼J(z)j') = 1 dk 1 dk' 1 dp 
10

~~•:' ~: = :2

) :f(k, ep) 

R3 R' R3 

with j(k,k'p) = f(k,p)f'(k',p), J,f' E O(C6
), k = k,,, k' = k~~ p = p0 • Making replacements 

of variables /k'/-+ p = /k'/2, /p/-+ A= z - /p/2 we find that the integral (3.5) turns into 

I 1 1 ·,1 !' ~100 

t 0 (k,..fiik
1

,A) - • r--. (:l.6) 1 dk dk dfi dAv z - A dp..fii P _ A f(k, ..foe, v z - Aji). 

RJ 52 S2 z-oo o 

Existence of the analytical continuation of the kernel (t0 R0 )(z) 011 tlie sheet. 111. /0 = ± I. 
follows from a possibility to deform continuously the contour of int<"gra.tion owr variahlt, p to 
arbitrary sector of the analyticity domain Pb nu!~) of the integrand in variable A in t lw way 
demonstrated in Fig. I. Besides, this is connected with a possibility at moving of z from 11 0 

to 111, /0 = +1, to make a necessary deformation of the integration path in variabll' ,\ in surh 
a way that this path is separated from the integration contour in variable p. 

To obtain the representation (:l.4) at a concrete point z.= .. z0 , we choos<' a sp<'rial final 
location of the integration cont.ours in variables A and p aft.er consistent. deforming t.lwm ( sec· 
Fig. 2). Singularity of inner integral (over variable p) remains integrable after such dl'formation 

5 



\ . 

~ 
)( )( 

>.a,i 

( >.) 
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0 

z 

~ 
(p) 

Figure 1: Deformation of the integration contour over variable p. The integration contours 
over p and>.. are denoted by letters in brackets. The cross "x" denotes the eigenvalues >.a,i of 
h0 on .the negative half-axis of the physical sheet and the pair resonances belonging to the set 
a!:,J o~ the sheet. II1, · 10 ',,;, +l. Also, there are denoted the cuts on II1, 10 = +l, beginning at 
the points of a!:,J. 

G2 

~. 

0 000 
>.a,; 

0 f2 

Figure 2: The final location of the integration contours over variables p (f1 LJf2) and>.. 
( G1 U G2 ). The contour r 1 represents a loop going clockwise around the countour G1 , the line 
segment [O, z]; f 2 = [O, +oo); G2 = (z - oo, i lmz] LJ[i lmz, 0). 

6 

'1 

.f 

1' 
J 

due to presence of the factor ,.jp. As a whole the integral (3.6) turns into 

i J dk J dk' J dfa x 
R 3 5 2 S2 

x { j d>.✓z...:. >. j dp..Jp t~(k~ '!~',>.) i(k, ..Jpk', ✓z - >.fa)+ 

G1 r1LJr2 

J r-. J , , t;,(k, ..Jpk', >.) - ·, . ~ + d>.v z-:- >. . dp..Jp P _ >. f(k, ,./Pk,'! z _- >.fa)+ 
(3.7) 

G2 r1 LJr2 

na . ' +oo ' · <p (k)ef, •(k') _ '• '• • · } 
+ L21riJz->.0 ,; j dp,.jp a,J ->.a,J . ,J(k,,.jpk';Jz-Aa,;fa) 

j=l O p a,J ., ' , 
' . . . 

where t~ denotes the pair T-matrix ta(z) c;ontinued on the second sheet (as regards ta(>.), the 
contour G1 3 >.. belongs to its second sheet). The last term arises as a result of taking residues 
in the points Ao.,i E ad(ha)- · ; 

Evidently, the domain of variable z E II1, 10 = +l, where one can continue analytically 
the function (3.5) in the fori;n (3. 7) to, is determined by the conditions r 1 <:;: A and r 1 n ?!;J = 
0. These conditions inay be satisfied at z E A only. · ·. · 

Note that value of the inner integrals overf1 at'>. E. G1 are determined by residues· at the 
points• p = >.. At the same time fa d>. ... fr : .. · == 0 since at >.. E G2 the functions' under the 
integration sign are holornorphk in p E Int r\. Therefore , , I , 

(f;taRo(z)J')i,EII,;lo=+l = i.J dk j dk' j dfa,x 
R3 5 2 S2 

x { j d>..rz=>..(-21ri)v0 t~(k, ✓:\k', >.)j(k, ✓:\k', ✓z...:. >.fa)+ 

G1 

(3.8) + J d>..,rz=>.. J dp,.jp ta(k, ..Jpk', >.) +P ~~T;(k, ..Jpk', >.) /(k, ..Jpk', ✓z - >.fa)+ 

~ G , 

+ j d>.~ j dp,//"(\'!;">.) j(k,..Jpk',~fa) + 
G2 f2 

na .• . · • , <p ·(k)</> ,(k') _ • ' ' · · · +oo - } 
+ L21riJz - Aa,j j dp,.jp a,J _ ).a,J. J(k,,.jpk',Jz- Aa,;fa) . 

j=l O p a,J 

In the second sum~a_nd of Eq. (3.8) we have u-~ed the represent~tion ([1).3.2) of for the pair 
T-matrix continued on the second sheet. Look at the expression_for T0 (k,k',() in Ref. [1), 
Sec. 3. Remember that t~(() =ta(()+ 1ri../( T;((). ,·.•· .. · 

Joining the summands including ta on the physical sheet, in the alone integral fa,LJG
2 
... 

and using. then the holomorphness of the function under the integration sign in variable >.., 
we straighten the contour 'G1 LJ G2 turning it into the ray (z - oo, z]. As a result we get the 
bilinear form corresponding to the product (taRo)(z) taken on the physical sheet. 

The last term of the expression· (3.8) corresponds to the kernel of -<I>aJ(a)t L(o.) A(a)J(a)q,• f4J. 

7 



Backing in the rest of summands including t~ and Ta to the initial variables k', p' and 
utilizing then the definition (3.1), we find that these summands correspond to the expression 

LoAo [ ta - LoAoJ6s;;jJota] J6Jo - LoAotaJ6s;;-,}JotaRo-

Gathering the results obtained we reveal that the analytical continuation of taRo on the sheet 
II,, 10 = +l, looks as 

(3.9) 

[taRo(z )J In, = (ta - LoAotaJbs;;-,~Jota - 4>aJ(a)t L(a) A(a)J<a)q,:) X 

x(Ro + LoAoJ6Jo) + LoAo4>aJ(a)tL(a)A(a)J(a)q,:J6Jo. 

To be convinced in the factorization (3.4), is sufficient to note that the last summand of (3.9) 
equals to zero. Indeed, one can check easily' that at Im z =/ 0 or Im z = 0 and z > max .\0 ,j the 

. J 

following equalities take place 

(3.10) (J(a)q,:J6)(z) =:' 0, (Jo4>aJ(a)t){z) = 0. 

Thereby the last term of (3.9) disappears and hence, Eq. (3.4) is true. This completes the 
proof. · ' · 

REMARK 1. As a matter of fact, the kernel [taRo](z) In, corresponds ,to the two-body problem 
and thereby it has to be translationally invariant with respect to variable Pa• This fact may be 
understood if one introduces the generalized function (distribution) 0,(p) over O(C3 ) acting 

as (0., f) = ~ I ti{ '-1t I df,f( '-1tfi) where 'fz is the line seg'ment connecting the points ( = 0 

-,, S2 

and ( = z. It follows from the repr~sentation (3.8) that the kernel of [t 0 Ro](z)l
11

, may be 
rewritten as 

(t D)'(PP' )=8( - '){ta(k,k',z-p2)+ 
a HO , , Z p p kt2 + 2 p -z 

+1riL [o (p)✓z _ ..2 Ta(k,k',z- P
2

) -0 (k')✓z - k12 t' (k k' k'2)li(~ - IPI)] + 
. 0 z . I' k'2 + p2 - z z a , ' ' I Pl2 

+
~ 2 . / . ~ </>a,;(k)ef>a,;(k') . li(lpl- ~)} 
L.., 7rZ a,JV Z - Aa,j k2 - .\ . . I j2 , 
~ ~ p, 

k = ka, k' = k:, p = Pa, p' = P~, 

where due to the presence of the factor li(p - p'), the translation i~variance is emphasized 
explicitly. Analogously 

t~(P, P', z) = { ta(k, k', z - p2
) + 1ri Lo 0,(p)✓ z ~ p2 Ta(k, k'z - p2)+ 

~ . ~ ·· - , li(IPl- ✓z-. .\,._;)} , + L..,21rila,;yz-.\a,i <l>a,;(k)<f>a,;(k) · I l2 li(p--;-p). 
J=I ' ' p 

Using Eqs. (3.3) and (3.4) one can present the Faddeev equations (2.1) continued on the 
sheet II, in the matrix form · 

(3.11) M1(z) = t 1(z)-t1(z)~(z)iM((z) 

8 

) 

},_ 

·, 
r 

where 
(:1.12) 

(3. 1:1) 

t.1(z) = t- LoAotJls,1Jot - q,J;·L1A1J1ct>·, 

R~(z) = Ro(z) + LoAo(z)Jl(z)Jo(z). 

Herc, s1(z) = diag{s1.1(z),s2.1(z),s3 ,1(z)}. By M 1(z) we understand the supposed analytical 
continuation on the sheet II, of the matrix M(z). 

LE~IMA 1. For each IIL'o body unphysical sheet II, of the surface ?R there exists such u path 

from lhF physical sheet [10 to the domain ll)hol) in II, going only on two-body unphysical .,heels 

ll1, that moving by this path. the parameter z slays allL'ays in respective domains II)~ol) C: II1,. 

PROOF. Let us use the principle of mathematical induction. To make this, at the beginning 
we arrange t.he branching points·.\",;' a= 1,2,:l; j = 1,2, ... ,n", in nondecreasing order 

redenot.ing them as .\1, .\2, ·--:_A.~/ m ::0: L na, .\1 < .\2 < , .. < Am, and putting .Xm+I = 0. 

" Let. the multi index 1 = (/1 , 12 , ... , lm) correspond temporarily namely to this ern1im·ration. As 
previously, l; = 0 if the sheet II1 is related to the main branch of the function ( z - ,\i )112 dse 
/1 = I. The index 10 is omitted in i.hese temporary notations. 

It is clear that. the transition of z from the physical shed. Il0 across t.he sPglllPnt ( .\ 1 . .\ 2 ) 

on the neighboring ui1physical theet fl 1(1J (into the domain 11:l';\ ), [(I)= (1\1>, 1~1) ..... l[,:>) ,,·ith 

1\1> = I and 1}1
> = 0 at j f l, is possible by definition of the domain II~~\ (seP H<'f. [I]. Sec I). 

According to Lemmas [l].l and [l].2, if z belongs to ll)c~~l), it may be lead to thP real axis in 

the interval (.\(ll,+oo) wit.h certain ).(l) < .\1. Remaining in n)~~l) th<' point :: may "''en go 
around the threshold .\1 crossing the real axis in the segment. (>.Pl, .\1 ). Tims, the paranwter:: 
may be lead from I.he sheet. Il 1(1J on the each neighboring unphysical sh<'<;I. aml in parti,·nlar. 
on t.hc sheet 111 related to 11 = 0, 12 = 1, li = 0, j 2: 3. Transit.ion of = from TI0 across the 
segment ( .\2 , .\:1) on the sheet. I1, with· 11 = 12 = 1, l; = 0, j 2: 3, is ahvays· possibl<'. 

We suppose further that. the parameter z may be carried in this manner from Il 0 011 all 
the t.wo-body unphysical sheet.s H,c•J defined by the conditions 1y> = 0, j > k. It assunwd 

also that during the carrying, z always remains in the domains II)c:~') of t.hcse sheets and do<'s 
not visit different sheets. lt follows from Lemmas [l].1 and [l].2 that. if: stays in th,, dc,111ain 
nj'.~~I) of each sheet of the type described then wittingly, it can b,, I.cad to tlw rPal axis in t lw 
segment ( ).(k), +oo) with certain ).(k) < .\k, Hence the parameter : from each of t_hc shePt, 111(•' 
may be carried across the interval (.\k, Ak+i) on the neighboring unphysical sheet 11 1,>+" with 
1y+I) = 1 - 1y>, j ::; k, 1t1;1> = 1 and ,y+i) = 0, j > k + I. This means actually that = 111ay lu• 

carried from Ho Oil all th~ two-body unphysical sheets ll,c•+1) with w+I) = 0, j > .k + I. For 

all this the parameter z remains in the holomorphness domains nj~01)l and does not visit t lw 
sheets 111c,J with s > k + I. By the principle of mathematical induction we conclud,· t.hat tlw 
parameter z may be carried really.on all the two-body unphysir;al sheets. 

Proof is completed. · 
Using results of Sec. 4 of the paper [I] and Lemma l, one can prove th<' following irnp,,rtant 

st,atement. .k 

TIIEOHtM 2. The iterations Q(nl(z) = ((-tRo Ttt )(z), T1 2: 1, of absolulr lrrms of th, hul­
deev equations (2.1} admit in a sense of distributions 01•cr O(C6

), tlw analytiml conti1111alio11 

on the domain nj"01
> of each unphysical sheet 111 C ?R. This continua/ion is dr.s<Tibnl by th,· 

cqualitfr., Q("l(::)1
11

, = ((-t1R/1i)"t1
)(::). 
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REMARK 2. The products L,J,w·TQ(m), Q(m)TwJ;L,, LoJoQ(m), Q(m)J6Lo, 
L1J1 w·TQ(m)ylj"JJ;L1, LoJoQ("')JbLo, L1J1 w·TQ(m)JbLo and LoJoQ(m)TwJ; Li. 0 ::; 
m < n, arising at substitution of the relations (3.12) and (3.13) into Q(n)(z)ln,' have to be 
understood in a sense of definitions from Sec. 4 of the paper (l).· 

REMARK 3. Theorem 2 means that one can pose the continued Faddeev equations (3.11) only 
in the domains rrlhol) C II1. 

4. REPRESENTATIONS FOR THE FADDEEV COMPONENTS 
OF THREE-BODY T-MATRIX 

In .the present section, using the Faddeev equations (3.11) continued, we shall.obtain the rep­
rese~tations for the matrix' M1(z) in the domains rrlhoI) of unphysical sheets II1 c R . .The 
repres~ntations will be given in terms of the matrix M(z) c~mponents taken on the physical 
sheet, or more precisely, in terms of the half-on-shell matri:,(M(z) as well as the operators 
inverse to the truncated scattering matrices S1(z) and Sl(z). As a matter of fact, the con­
struction of the representations for M1(z) consists in explicit "solving" the continued Faddeev 
equations (3.11) in the same way as in (9), (10] where the type ([l].3.2) representations had 
been found for analytical continuation of the T-matrix in the multichannel scattering problem 
with binary channels, We consider derivation of the, representations for M 1(z) as a constructive 

' 3 ' 

proof of the existence (in a sense of distributions over X O(C6 )) of the analytical continuation 
n=l 

of the matrix M(z) on unphysical sheets II1 of the surface R: 
So, let us consider. the Faddeev equations (3.11) on the sheet II1 with 10 = 0 or /0 = ±1 

and 1/J,j = 0 or !13,j .';,' 1, /3 = 1,2,3, j = 1,2, ... ,nfJ. Using the expressions (3.12) for t 1(z) 
and (3.13) for R/i(z), we transfer all the summands including M 1(z) but not J0 and .11, to 
the left-hand part of Eqs. (3.11). Making then a simple transformation based on the identity 
s1

1(z) = lo- s;-1(~)J0 (z)t(z)Jb(z)Ao(z)Lo we rewrite (3.11) in the form 

(4.1) (I+ tRo Y)M1 = t [1- Ag):1t~;-1Jot-Ag)Joxg)J - <I>J;A\')(,J1<l>" + x\')) 

where Ag)(z) = L0 A~(z), A;1i(z) ~ L1A1(z). Besides we denot~ 

xg) = ILols,'Jo(I - tRo)T M1, 
( 4.2) 

X\1
l = -L, [J1<I>"Ro + Ag)J1<I>"J6Jo] TM1

• 

It follows from Eq. ((l]:3.5) that 
(4.3) . J, <I>"Ro = -J, w·. ·, 
Together with (4.3) the equalities ·1 

( 4.4) (J1<I>"Jb) (z) = 0, (Jo<I>J;) (z) ~ 0, 

take place being true in accordance with (3.10) for all z E C \' (-oo, A.,;ax]­
Using Eq. (4.3) and first of Eqs. (4.4) one can rewrite X;') in the form 

(4.,'i) X (I) ~ L J 'q,*TM,I 
1 - 1 1, , 

too. Note that the condition z ff. (:....c'io, Amax) n~·cessary for Eq; '(4,4) to be valid, does not touch 
thf' two-body unphysical sheets II1, 10 = 0, since in this case Ag)(z) = 0 and consequently, 

10 

) 

'l 
I 

i~ 
\~ 

the terms including the products JbJo, are plainly absent in (4.1). Meanwhile the points 
z E (-oo, Amax] were excluded from the three-body sheets II1, 10 = ±1, by definition. · ' 

Notice further that the operator I+ tRo T admits the explicit inversion in terms of M(z), 

(4,6) (I+ tRo T)-1 = I- MTRo, 

for all z E Ho which do. not belong to the discrete spectrum ud(JI) of the Hamiitonian H, and 

(4.7) (I_- MTRo)t = M. 

The equality ( 4.6) is a simple consequence of·the Faddeev equations (2.1) and the identity 
Ro T = Tllo. The relation (4.7) represents an alternative variant of these equations. Now, we 
can rewrite Eqs. (4.1) in the equivalent form · · 

M 1 = M (r- A(1lJts-1J t- A(1)Jtx(1l) -. 001 0 ooo. 

· -(I-MTRo)<I>JiAi1l(J1<P"+X;1l).· . 
(4.8) 

Eq. (4.8) means that the m;trix M1(z) is expressed in terms. of the quantities xgl(z) and 
X;1\z). Main goal of the section consists really in presenting these quantities in terms of the 
matrix M(z) considered on the physical sheet. 

To obtain for xgl and x\'l a closed system of equations we use 'the definitions ( 4.2) 
and ( 4.5) and act on the both parts of Eq. ( 4.8) by the operators s;-1 Jo(~ - tRo)T and J1 w•. 
At this moment we use also the identities . · • , · · ·· '· · 

(4.9) (I - tRo]T M = Mo - t, (I- tRo]T(I- MTRo) = (I- MoRo]T 

where Mo = ntnM ~.(I+ T)M. T_he relations (4.9) are another easily checked-consequence 
of the Fadd~ev equations (2.1). Along with Eq. (4.9) we apply second of the equalities (4.4). 
As a result we come to the following system of equations for xgi and x\lJ: 

(4.10) 

(4.11) 

X~1
) = ILols1

1Jo [(Mo-t)(I-AglJbs,1Jot-Ag)JbXgiJ­

-ILals11JoMo TwJtAfl(J1<I>* + x\1l), 

x\1l = L1J1 w"T M(I- AgiiistJit _:_ AgiJixg)) -

-L1J1 w*T[<P + MT~]JtA\IJ(J~tp• + x\lJ),. 

It is convenient to write this. system in the matrix form .i,(1Jx(I), = iJ(I)'' x(I) == (xgi ,x\'lJt 
with .iJ(l) = {BW}, i,j = O, 1, _the matrix consisting,of operators standing at unknown xg) 

and x\'l. By iJ(1l, iJ(I) = (D~1
), iJ\'l)t),' we· understand a col~mn constructed of the absolute 

terms of Eqs. (4.10) and (4.11). Since s1 =Io+ AglJatJ6 we find .Bg] = s;-1(Io + Ag)JoMoJb), 
At th . . t" B-(1) ....:. IL I -IJ· M, y,T,JtA(l), B-(1) - L J ff•*TMJtA(I) d B-(I) - 1· . e same 1me 01 - a s1 a o "' 1 1 , 10 - 1 1"' 0 · 0 an 11 - 1 + 
L1J1 w•UwJ;A\'l because T(<I> + MTw) ;,;, Tvw -i- T MTw = (Tv + TMT)w = Uw (see (1], 
Sec. 4). 

The absolute terms look as 
-(I) 

Do 
f)(/)•. 

1 

= ILols1
1(Jo(Mo ~· t)(I--' AglJbs,1Jot) - lLalJoMo TwJlAflJ1cI>*), 

L1J1 w*TM(I - 1giJbs11Ja.t) - L1J1_w•uwJ1A~1
) J1cI>*. 

The operator s1(z), lo = ±1, has inverse one for all z E C. If z ff. Zres then s1
1(z) 

is a bounded operator in !}0 • That is why, acting on the both parts of the· first equation 
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ng]xg> + ng1x~1> = iJg> of the system _jj(1>x<1> = jj(I) by the operator s1, and not changing 
its second equation, we come to the equivalent system 

( 4.12) s(1>x(I> = n(I> 

with the (operator) matrix 

(4.13) 
B(ll _ lo+ Lo JoMo O o · Lo JoMoiWJ1A1 

( 

• I I JtA(I) I I t (I) ) 

- L1J11[1•1 MJbAg) i.+ L1J1 l[l*Ul[IJ;A\1) , 

B(l)(z): 9o EB if.1 -+ 90 EB if.., and the absolute term fl(I) having the components ng> = sif)i1> 
and D\1> = iJ\1>. , 

LEMMA 2. The operator (B(ll(z)r
1 

exists for all z. E C such that there exists the op• 

erator S1-
1(z) inverse to the truncated three-body scattering matrix S1(z) given by first of 

the equalities (2.4} with L = diag{L0,Li}, L = diag{ILol,L1}, and such that there exist 
the operators [S1(z)]0J and [Si(z)]1/ inverse to [S1(z)]oo = io +.JoTJbAoLo and [S,(z)]n = 

i. + L1J1 \Jl*U\JIJ;A1L1, respectively. The components [ (B<1>(z)r1L;' i,j = 0, 1, of the oper-

ator (B(ll(z)r
1 

admit the representation 

(4.14) [ (B(l)(~))-lLo 

(4.15) [(s(ll(z)r1L
1 

= 

(4.16) [(s(l>(z)r1J.o 

(4.17) [(s(ll(z)r1].
1 

with T0 = OM. 

lo - nt[s,1]00 {ILolJoTo - [S1]01[Si]j"/ L1J1 w·rM} JlAg>, 

ntrst]oi, 

-[Si1]11L1J11[1'iMJlAg> {io- nt(si]rnJILolJoToJlAg>}, 

[s1-1loo 

Note that since I Loi and Ag> are numbers turning into zero at 10 = 0 simultaneously; the 
factors JL0J in {4.14) and (4.16) may be omitted. . · 

PROOF. Let us find at the beginning, the c~mponents [ (B(ll(z)r
1
Lo and [ (s<1)(z)r1Lo' 

which will be denoted temporarily (for the sake of contracting the writing) by Yoo and Y10. 
Using Eq. (4.13) we write the equation system for these components, 

(4.18) 

( 4.19) 

[B<1>]00 Y~ + (B(ll]o1 Yio = lo 
[B(1>]io Yoo+ [B(ll]n Yio = 0 

Eliminating the unknown Yio from the first equation (4.18) with a help of (4.19) we come to 
the following equation including the element Yoo only, 

(4.20) {Io+ nt [ILolJoToJbAg> - [Si]o1[Si]1/ L1J1 \Jl*i MJbAg>]} Yoo= Io. 

At intermediate transforms we used the equality M0 = ntr0 .. 
The operator matrix in the left-hand part of Eq. (4.20) complementary to Io, has three 

the same rows. Thus one can apply to Eq. (4:20) the inversion formula 

(4.21) [io + n 1(Ci, c:, C3)r
1 

= lo - nt [io + c.+ C2 + C3r
1 

(Ci, C2, C3), 

12 

which is true for a wide class of the operators (C1, C2 and C3). A single essential requir<"ment 

to C'i, C2 and C\ evidently, is the existence of (io + C1 + C2 + C3)-1. 
In the case concerned 

CJJ(z) '= { JLolJoToJJJb - [Si]oi[S,]1/ L1J1 l[l*i[M]JJJb} Ag> 

when· [Af]a is the /J-th column of the matrix M, [M]JJ = (Mw, M2JJ, M~a) 
1

. Thus 

i0 + C 1 + C2 + C3 = io + JoTJbAg> - [S1]01[S1] 11
1 J1 l[l*UJJbAg> = [S,loo - [S,loi[S,] 1.1(Si]10. 

Note that clements [Si-:1];;, i,j = 0, 1, of s 1-
1 may be present by the components [S,]ij as 

(4.22) 

(1.23) 

(1.24) 

(•1.25) 

[s1-
1
loo 

[s1-
1l 11 

[st]10 

= ([Siloo - [Silo1 [Si]~/ [Sil10r
1 

([S,]11 - [S,]10 [s,];;; [Sil01r
1 

- [Si]~/ [S,]10 [s1-lloo 

[s1-
1
lo1 · = -[si];;; [Silo1 [.St1l 11 

It follows from (4.22) tl;at io + C1 + C2 + C3 = ( [s1-1] oor 
1
. Therefore in the conditions of 

Lemma, the operator (10 + C1 + C2 + Ca)-1 invertible. Now, a use of Eq. (4.21) in (4.20) kads 

us immediatclyto the representation (4.14) for [(JJ(1>r
1
] . 

. 00 
When calculating Y10 = [(n(1>r 

1
) we eliminate from the sernnd equation (1.19) \'ice 

. 10 

versa, the quantity Yoo using Eq. (4.18). For all this, we need to calculate the operator im·erse 

to Io+ J0 M0JbAg>. Herc, w~ ~pply again the relation ( 1.21) and ob_tai? that 

(
• t (1))-l 
lo+ ILolJoMoJ0 A0 = (

• t , t (1))-l· 
Io+ fl ILolJofoJ0A0 = 

(4.26) = lo- nt [Sd~; ILolJo10J~;1g>. 

With a help of {2.4) we can write the resulting equation for }··10 as 

{ [Sd11 - (S,]10 [s,];;; [Silo1} Y10 = JI 

(1.27) = -J11J1•1MJiAg> [Io+JoMoJ~Aif
1 

According to ( 4.23) the expression in braces in 'the left hand part of Eq. (·L27) niincides with 

[st];i. Then from (4.27) we get immediately (1.15). 
System of the equations 

( 4.28) 

{4.29) 

.,,,, [JJCll]oo Yo1 + [BCll]o1 Y11 = 0 

[B(ll];o Ym + [B(1>]11 Y11 = i1 

for the components Y01 = [(JJ<1>)'-1]01 and Yi1 = [(JJCllJ-1]11 is solv<'d analogously. S,;ard1 for 
Y11 is at all a simple problem because the use of the inversion formula (4.26) for Eq. (·l.211) 
immediately gives }01 = nt [si];;;1

1 [Si]01 Yu. Substituting this }~ll in (·1.29) we find 

{[Sd11 -[S,]10[8,]~
1 

[S'i]01 } }i1 = i1. 
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Here, one can see in the left-hand part as in (4.27), the operator [s,-1] ~/. Inverting it, we 
come to Eq. (4.17). 

When calculating the unknown Y01 , we begin with expressing by it the unknown Y11 • 

Using Eq. (4.29) we get 

(4.30) [ 1-1 ( • (I) ) Yi1 = S, 11 /1 - L1J1 WY MJoA0 Yo1 . 

Substituting ( 4.30) into Eq. ( 4.28) we obtain an equation with operator standing at Y01 , which 
may be inverted with a help of Eq. { 4.21 ). Then we use also the chain of equalities 

I IJ -v- t (1) I I t ,T,J! (I) Lo oMo,WJ1A 1 =; LoJo!1!1Afi-,, 1A1 = 
= !11ILolJo!1MYwJ; A\'l = nt [Sdo1 ,; ,_ 

simplifying the absolute term as well as the summand in the left-hand part, engendered there 
due to ( 4.30) by the element [BUlJoc Completing the transforms _we find 

Ycn = -nt { [Sdoo - [Silo1 [St]~/·[Sd10}-
1 

[Silo1 [St)~/· 

In view of (4.25), the expression standing after'nt in the right-hand part of the last equation, 
coincides exactly with that for [s,-1]01 . Therefore finally, we obtain Eq. (4.15). Thus, all the 

components of the inverse operator (BUlf
1 

have already been calculated. 

It follows from the repre~entations (4.14) - (4.17) that'(BUl(z)f1 exists for such z EC 
that there exist the operators inverse to S1(z), [S,(z))00 and [S,(z)Ju. 

The lemma has been proved. 
Let us back to Eq. (4.12) and inverse in it, using the relations (4.14)- (4.17), the operator 

BUl(z). Thereby we find the unknowns xg) and x\'l which express M1(z) [see Eq. (4.8)j. 

' When carrying a concrete calculation of xg) = [ (B('lf
1}j 'Di1) + [ (BUlf1] n\'l we 

. .oo , ,. .. 01 , 
use the relation !Loi [(BUlf

1
Lo Jo Mo= n 1!Lol [s,-1loo Jo To that c~~ be check~d with a help 

of (2.4) and (2.3). Along with the identity · 

( 4.31) Jot (io :-- Ag)J6s1
1Jat) = s1

1Jot, 

this relation simplifies essentially the transform of the product [ ( flU))- 1
] 

00 
ng) _ Besides when 

calculating xgJ, we use the equalities (4.4). As a result we find 

(4.32) xg> = nt { !Loi (St1loo JoTo + [S1 1lo1 L1 (J1 ,r,•y M + J1(f>*)} - ILols11Jat. 

Now, to find x\1l = [(aUlf
1
] . ng) + [(BUl)-

1
] D;'l,_ we observe additionally that 

' . 10 11 

the equality {io - nt [s1-1J;; JoToJ6Ag)} JoMo = nt [stJ~ol JoTo simplifying the product 

[ (B(/) r 1] IO D~'l, is valid. The final expression for x\'l read as 
' ' 

(4.:l3) x\
1
l = L, {[st1Jio ILolJo1_o+ [st]II L1J1W*YM- (i, -l[.S'1-1l11) L1J1w·}. 

To obtain now a representation for M 1(z), one needs at the moment only to substitute the 
found expressions (4.32) for xg) a~d (4.33) for x\'l. in,Eq. (4.8). Carrying out series of simple 
but rather cumbersome transformations of Eq. ( 4.8) we come as a result: to the statement 
analogous to Theorem 1 of Ref. [l] concerning analytical continuation of the two-b~dy T­
matrix. The statement is following. 
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THEOREM 3. The matrix M(z) admits in a sense of distributions over O(C6 ), the analyt­
ical continuation in z on the domains rr/hol) of unphysical sheets I11 of the surface lR. The 
continuation is described by 

(4.34) · t) 1 - ( Jo!1M ) Ml= M - (MntJ6, (f>J; + MYWJ1 LA s,- L J1W*YM + J1(l>• 

where S1(z) is a truncated scattering matrix {2.4), L = diag{lo, 11,1, ... , l1,n11 12,1, ••• , 12,n,, 13,1, ... , 
13,n,} and L = diag{llol, 11,1, ... , l1,n11 12,1, ... , h,n2 , /3,1, ... , 13,n3 }. Kernels of all the operators in 
the right-hand part of Eq. (4-34) are taken on.the physical sheet. 

Note that LA s,-1(~)L = L[Sf (z)J-1 AL. This means that the relations (4.34) may be 
rewritten also in terms of the scattering matrices S;(z). 

5. ANALYTICAL CONTINUATION OF THE SCATTERING MATRICES 

Let I = {lo, 11,1, ... , 11,n,, 12,1, ... , 12,n,, /3,1, ... , /3,n,} with certain' lo, lo =· 0 or 10 = ±1 and 
lc,,j, l"',j = 0 or lc,,j = +l, a= 1,2,3, j = 1,2, .. ,.,nc,. The truncated scattering matrices 
S,(z) : Ho EB if.1 --> ho EB if.1 and S;(z) : Ho EB if.1 --> Ho EB if.1, given by formulae (2.4), are 
operator-valued funct_ions of varia\J_le z being holomorphic in the domain IT/ho!) of the physical 
sheet I10 • At lo= 1 and lc,,j = 1, a= 1,2,3, j = 1, 2, ... ,nc,, these matrices coincide with the 
respective total three-body scattering matrices: S1(z) = S(z), S;(z) = Sl(z). 

We describe now the analytical continuation of Sl'(z) and S1~(z) with a certain multi-index 
l' on unphysical sheets IT, E lR. We shall base here on the representations (4.34) for M(zlln,· 

As mentioned ab'ove,' our goal is to find the exrli~it rep~esentations for S1(z) In,, and sf (z) In,, 

again in terms of the physical sheet. 
First of all, we remark that the function A0(z) .is univalent. It looks as A0 (z) = •-7riz2 

on all the sheets IT,. At the same time after.continuing from Ila on I11, the function Ap,;(z) = 
-7riJz - >.p,j keeps its-form if only lp,j = 0. If lp,j = l this function turns into Ap,;(z) = 
-Ap,;(z). Analogous inversion takes (or does not take) place for arguments P, P', pc, and Pp of 

kernels of the operators Jo!1M!11J6, Jo!1MiwJL J1 ,r,•y M!11J6 and J1 W*(Tv + T MY)WJi, 
too. R~member that on the physical sheet IT~, the action of J 0 ( z) (Jt( z)) transf~rms P E R 6 in 
ftP (P' E R 6 in ftP'). At t.hes~m'1;time,pc, E R 3 · (ppER3) turns under Jc,,;(z) (JL(z)) 
into J z - >.r,,i pc, ( J F - >.p,j Pp)- Th?'t'is why we introduce the operators £(/) = diag{ £0 , t'i} 

where £0 is the identity operator, in 'Ho if 10 = 0, and £0 , the inversion, (t'of)(P) = f(,-P) if 
lo= ±1. Analogously t'1(l) = diag{t'1,~, ... ,t'1,n,; t'2,t,•••,t'2,n2 ; £3,1,•••,£3,n,} where t'p,; is the 
identity oper~tor in' i{(P,i) if lp,J = 0, and t'p,;, th~ im;ersion (t'p,;f)(pp) = f(-pp) if lp,j = 1. 
By e1(l) we denote the diagonal matrix e1(/) = diag{e1,I,··•,e1,n,; e2,1; ... ,e2,n2 ; e3,1, ... ,e3,n3 } 

with elements ep,j = 1 if lp,j = 0 and epJ = -1 if lp,j = 1. Let e(l) = ·diag{eo,ei} where 
ea= +l. 
THEOREM 4. If there exists a path on the surface lR such that at moving by it from the domain 
rrl~ol) on Ila to the domain rr/~ol) n rr/~ol) on rr,, the parameter z stays on intermediate sheets 

rr,,, always in the domains rri~~l) n rr(~~l)' then the truncated scattering matrices s,,(z) and 

s,~(z) admit the analytical continuation in Z on the domain rri~01lnrr/~01l of the sheet Il1. The 
continuation is described by 

(5.1) s,,(zlln, = t'(l) [i+ L'TL' Ae(l)-L'TL A St LTL' Ae(l)] t'(l), 
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(5.2) S;,(z)jn, = £(/) (i + e(/)A L'TL' :_ e(l)A LT L [sl]-1 A LTL'] £(1), 

where L' = { lb, 1;,1, ... , 1;,n,, 1;,1, ... , l;,n,, 1;,1, ... , 1;,nJ and L' = { !lb!, 1;,1, ... , 1;,n,, 1;,1, ... , 1;,n,, 

1;,l, ... , 1;,n3}. 

PROOF. We give the proof for example of S,,(z). Using the definition (2.3) of the operator 
T(z) we rewrite S,,(z) in the form· · 

' - I [ ( Jofl ) ( t t 'V' t) ( 0 0 ) ] I s,,(z) =I+ L J1 q,•y M n Jo, i q,Jl + 0 J1 IV*ivll!J; LA. 

Note that when continuing on the sheet IJ,,,, the operators· Jo(z),' Jb(z), J,(z) and Jt(z) 
tum into £0 (/")Jo(z), Jb(z)£o(I"), £1(l")J1(z) and J!(z)£1(I"), respectively. At the same 
time the matrix-function A(z) turns· into A(z)e(l"). Then using Theorem:!, for the domains 
nl~ol) n nl~~l) of intermediate sheets n, ... we have 

s,,(z)ln = i + £(/")L't L1£(l")Ae(l")-,,, 

(5.:l) -£(/")L'( J:i~-r) (MntJt [v+Mi]wJ!)L"ASj;:1 
x 

xL" ( Jof!M ') (ntJt Tll!Jt) L'£(1")A (/") - J11V*[v+iM] o, I e 

where the summand following immediately by i, is engendered by the term M(z) of the right­
hand part of (4.34). The last sumrriand of (5.3) is originated from the second summand 
of (4.34). 

In view of (4.4) we have J11V*vf!tJb = 'J1<I>*Jbf!t = 0. Analogously, J 0f!v'VJi equals to 
zero, too .. Thus, taking into account (2.3) we find 

(5.4) S,,(z)ln = i + £(/") L'T L' £(/")Ae(I") - £(/") L'T L" A Sj·;,1 L"T L' £(/") Ae(l"). ,,, 

By the supposition, the parameter z moves along such .a path that on the sheet fl1,, it is 
situated in the domain nl~01>nnl~~1>.·1n this domain, the ~perator: (L'TL')(z), (L'TL")(z) 
and (L11TL')(z) are defined and depending on z analytic.i.lly. Consequently, the same may be 
said also about the function Sl'(z)ln · . In equal degree, this statement is related to the sheet 

t" . ' 
II,. Replacing the values of multi-index I" in the representations {5.3) and {5.4) with I, we 

come to the assertion of theorem for S,,(z)ln. Truth of the representations (5.2) for S1~(z)j 
I ~ 

is established in the same way. 
- The proof is completed. 

REMARK 4. If 10 = 0 then the representation (5.1) for the analytical continuation of S1(z) on 
the (its "own") sheet Il1 acquires the simple form [cf. {[l].3.6)}, 

S1(z)ln, = £(/) (i + e(/) - Sj""1(z)e(l)j £(/) = £(/) St(z) £(/). 

Just so S;(z)ln, = £(/) [SJ(z)J- 1 £(/). 
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6. REPRESENTATIONS FOR ANALYTICAL CONTINUATION 
OF RESOLVENT 

The.resolvent R(z) of the Hamiltonian H for three-body system con.cemed is expressed by 
M(z) according to Eq. (2.2). As we established, kernels of all the operators included in the 
right- hand part of (2.2) admit in a sense of distributions over O(C6 ), the analytical contin­
uation on the domains nlhol) of unphysical sheets 111 C ~- So, such continuation is admitted 
as well for the kernel R(P, P', z) of R(z). Moreover, there exists an explicit representation for 
this continuation analogous to the representation ([l].3.7) for two-body resolvent. 

THEOHEM 5. The analytical continuation, in a sense of distributions over O(C6 ). of the 
resolvent R(z) on the domain nlhol) of unphysical sheet fl1 C ~ is described by 

R(z)ln, = fl+ 

(6.1) +([I-RVJJL f![I-RoMi]\JIJl)LAS,-'L( J,w·W~rf/:Lint ). 

Kernels of all the operators present in the righl--hand 7mrl of Eq. (6. 1) arc taken on the physical 
sheet. 

PROOF. For analytical continuation R1(z) of the kernel R(P, P's) of R(z) on the shPet [11 we 
have according to (2.2), 

(6.2) R1(z) = ll;i(z) - R~(z)OM1(z)0 1 Jl;i(z). 

For M 1(z) we have found already the represent.at.ion (4.34). Sinr<' R~ = Ho+ L0 A0JbJ 0 ·\\"<' rnn 
rewrite Eq. (6.2) in the form · 

R
1 

= Ro - RonM1nt Ro+ AoLoJb (io - Jof!M1ntJb"LoAo) Jo -

(6.3) -AoLo.JbJof!M'nt Ro - R-0nM1ntJbJoL~Ao. 

Consider separately I.he contributions of each summand of (6.3). Doing this we shall use th<' 
notations 

( t t .,. t n t) d t ( JoHMf!t ) B= f!Mf!.Jo, HM,\JIJ1+"<I>J, an B = •J,\Jl•iAHJt+.J,<1>•.nt . 

It follows from (4.34) that, f!M1nt = f!Mn 1 - BLA s,-1 LBt. lknce t.wofirst Sllllllllands 
of (6.:l) give toget.her 

Ro - llof!Mf!1 llo + lloBL As,-1 LBt Ro= R + RoBI, ASt' LB1 H0 • 

Transforming the third term of (6.3) we use again the representation (4.:1,1). \V<' find 

I t t ' ( ' ' ) -1 - ( Too ) J0 f!M n J 0 LoAo = TooLoAo - Too, To, L AS1 L Tio LoAo = 

= woT L Aw~ - woT L A s,-1 LT L Aw~= WoT /, A (i - s,- 1 Lt L ,1) i,...,'t; 

whne w0 st.ands f~r the projector acting from Ho (fl H 1 t.o Ho as w0 ( ~~ ) = j 0 • .fu E H0 • 

Ji E 1i1• By w~ we understand M usually the opera.I.or adjont. to w0 • So far as 81 = i + LT LA 
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we have i-s,- 1LtLA = s,-1 (i + LTLA -LTLA) =st.Taking in ac"ount that L = L-L 

we find 

LoAo(Io - Jo!1M1ntJbL0Ao) = WoAL(i- LT LAs,-1 )Lw~ = WoLA s,-1 Lw~. 

This means that the third term of (6.3) may be present as JbwolASt Lw~. 
When studying the fourth summand of (6.3) we begin with transforming the product 

A0L0J0!1M1!1t to more convenient form. It follows from (4.34) that 

. I t t ( • • ) -1 - t AoLoJo!1M !1 = AoLoJo!1M!1 - AoLo Too, Toi LA S1 LB . 

In view of A0L0J0!1M!1t = w0 ALBt and A0 L0 ( Too, Toi) L = w0 ALT L we have 

I t ( • -1 -) t -1 - t A0 L0 J0 !1M !1 = w0 AL - A LT L AS1 L B = w0 L AS1 LB . 

Analogously, in the fifth term of (6.3), !1M1ntJbL0Ao = BL [ sn-l A Lw,j = BL Ast L"!o· 
Thus two last summands of (6.3) give together -JbwoLAs,- 1 LBtRo- RaBLAs,- 1 Lw,iJo. 
Substituting the expressions obtained into Eq. (6.3) we find 

R1 = R+ (Jbwo - RoB) LAStL (w~Jo - BtRo). 

Taking into account the definitions of.B and Bt as well as the fact that R0!1M!1t = RV, 
ntMf!Ro = V R (see,[2], [3]) and Ra!1<I>J1 = -!11TJJ1 , J 1 qi•ntRo = -J1 w.•nt, we come finally 
to Eq. (6.1·) and this completes the proof. 

7. ON USE OF THE DIFFERENTIAL FADDEEV EQUATIONS 
FOR COMPUTATION OF.THREE-BODY RESONANCES 

As follows from the repr~sentations (4.34), (5.1) and (6.1), thy matrices M(z)lrr,' S,,(z)ln, 

and the Green function R(z)J
01 

may have poles at points belonging to the discrete spectrum 

ad(H) of the Hamilton_ian H. Nontrivial singularities of M(z)lrr,' S,,(z)ln, and, R(zlln, 

correspond to those poi~ts z E Hon n/hol) where the inv~rse truncated scatteri~g matrix 
[S1(z)J- 1 (or [Sf (z)J-1 and it is the same) does not exist or where it represents an unbounded 
operator. The points z where [S,(z)J- 1 does not exist, engender poles for M(z)ln,' ' S,,(z)ln, 

and R(z)ln,· Such points are called (three-body) resonances. 
The necessary and sufficient condition [12] of irreversibility of the operator S1(z) for given 

z consists in existence of.non-trivial solution A(res) E 'Ho EB 'H1 to the equation 

(7. I) S1(z)A(res) = 0. 

Investigation of this equation may be carried out on the base of the results of Sec. 4 of the 
paper [l] concerning properties of kernels of the operator T(z). In view of the space shortage 
we postpone this investigation for an~ther paper. · 

The equation (7.1) may be applied for a practical computations of resonances situated in 
tllf' domains n/hol) C rr,. The resonances have to be considered as those values of z E Ila n rr/hol) 
for which the operators S,(z) and sf (z) have eigenvalue zero. 
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Elements of the scattering matrices S1(z) and Sl(z) are expressed in terms of the ampli­
tudes ( continued in the energy z on the physical sheet) for different processes taking place in the 
three- bodv system under consideration. Respective formulae [3] written for the components 
of T, read. as · 

T,.,j;/l,k(Pm Pp, Z) 
'T,.,j;o(Po, P', z) 
'To;/l,k( i1, Pp, z) 

Too(l\J°J',z) 

cJ3)(z) Ao,j;/l,k(Po,Pp,z), 
= c~3>(z) Ao,j,o(Po, P', z) 

cJ6l(z) Ao,e,k(P,p'tJ,z), 
cJ6

l(z) Aoo(P,P',z) 

• ,(N) e•<(N-3)/4 • (N-3)/4 . . 
with C0 (z) = 2(N-I)/2 ir(N+l)/2 z(N-3)/◄ where for the funct10n z one takes the mam 

branch. The functions Ao,j;[i,k represent amplitudes of elastic (o: = /3; j ;=, k) ~r inelastic 
( n = /J; j # k) scattering ancl rearrangement ( n # /3) for the (2 --+ 2, 3) process, in the_ initial 
state of which the pair subsystem is in thl' k-th bound state and the complementary particle is 
asymptotically free. The function Ao,/l,k represents for this process, a breakup amplitude oft he 
system into three particles. The amplitudes Ao,i;D and A00 correspond to processes rPspet"tidy. 
(:! --+ 2) and (3 --+ 3) in the state where initially, all three particl~s are asymptotically free. 
Hernernber that contributions to Aoo from the single and double rescattering repres('Jlt singula:r 
distributions ( CM. [I]). · · · · 

Describing in Sec.1 of the paper [l] the analytical properties in variable= and the smooth­
ness properties in angular variables j, or Pc. and P' or Pp, of t hP matrix T kernels W<' han· 
described thereby as well the properties of the amplitudes A(z). 

To search for the amplitudes A(z) continued on the physical sheet, onecan'usc e.g., th<' 
formulation [3], [11] of three--body scattering problem based on the Faddee\' differential.equa­
tions for components of the scatt.ering wave functions considPred in the coordinate space.: It is 
necessary only to come in this formulation, to complex valurs of cnprgy z, The square.roots 
z 1l 2 and (z - Ac.,i)112, a= 1,2,3, j = 1,2, ... ,11 0 , presenting in the formulae of[:!]. [Ii] 
determining asyrnptotical boundary conditions at th<' infinity, have to bP considered as t lw 
main branches of vz and J z - Ao,i· Solving the Faddccv <liff Prential Pquations with such con­
ditions one finds really the analytical continuation on the physical sheet for the wa\'e fun ct ions 
and consequently, for the amplitudes A(z). Knowing the amplitudPs A(z), one can construct 
a necessary truncated scattering matrix S1(z) and th('Jl find those \'alues of z for which tllC'r<' 
exits a nontrivial solution A(res) to Eq. (7.1 ). As mPntioncd above thesP values of= repn•st·nt 
the three ·body resonances on respective sheet 11,. 

Concluding the paper we make the following remark. 
It is well known [3] that. a generalization of the Faddct•v equations [2] on t lw ms,· of 

syst<•ms with arbitrary number of particle is represent.Pd by the Yakubovsky equal ions [I:!]. 
The lat.ter have the same structure as the Facldeev equations. Thus the schcnw usi•cl in t Ill' 
present paper, rriay be applied as well to construction of the type ( 1.34 ), (5.1) and (Ci. I) explicit 
representations for analytical continuation of the 1°' and scattering mat.rices and resolvent on 
unphysical part of the energy Riemann surface in the N -body problems with arbitrary .\'. 
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MoToBttJI0B A.K. 
Ilpe)].CTaBJieHHSI )].JISI TpexqaCTlllIHOH T-MaTplll.l,bl . 

. Ha Hecptt3tt1,iecKttx JittCTax: JJ.OKa3.aTe:nhCTBa• · 

ES-95.;.46 

. .II,aeTCSI )].OKa3~lTeJibCT_BO SIBHbIX npe)].CTaBJieHHH, ccpopMyJittpOBaHHbIX 
B npeJ:(bIJJ.ymeii: pa6oTe aBTOpa )].JI5I aHaJIHTlllleCKOro npO)].OJI)KeHHSI KOMilOHeHT 
Cl>a)J.JJ.eeBa Tpex1IaCTlllIHOH T-M~lTplll.l,bl Ha Hecptt3ll1IeCKlle JlllCTbl pttMaHOBOH 
IlOBepXHOCTll 3Heprttll. IlpOBO)].llTCR ··06ocirmiaHtte aHa.nOrttlIHbl~ npe)].CTaB­
JieHHH )].JISI aHaJIHTttlieCKOro np0)].0JI)KeHH5I TpexllaCTlllIHblX MaTpttu, pacceSIHllSI 
tt pe30JihBeHTh1." 66cy)KtiaeTcSI anropttTM · Haxo)KJJ.eHttSI pe~oHaiicoB · B cttcTeMe . 
Tpex K_BaHTOBhIX qacTttU. Ha ocHoBaHtttt JJ.ttcpcpepettu,HaJihHhIX ypaBHeHttii: <l>aJJ.--
J].eeBa. 

Pa6orn BhlilOJIHetta B Jia6opaTOptttt TeopeTttlleCKOH cptt3HKH HM. H.H.Boro-
mo6oBa 0115111. . . . . . ·. 

Ilpenp11HT Qm,eJ(11H_eHHOfO. l1IICT11T)'Ta ll;:\Cp!!blX 11CCJIC'AOBaHl1H. }J,y6na, 1995 

Motovilov A.K. 
Representations for Three-Body r::matrix 
on Unphysical Sheets: Proofs 
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A proof fs given for the explicit representations which have been formulated 
. in the author's pr:evious work for the ,Fadde~v components of thre·e-body 
T-matrix continued analytically on tiqphysicai sheets of the energyRiemann 
surface. Also, . the analogous representations for analytical continuation 
of the three-body scattering matrices and resolvent are proved. J\n algorithm 
to search for the three-body resonances on the base of the Faddeev differential 
equations is discussed. 

· The investigation . has · been performed at the Bogoliubov · Laboratory. 
of Theoretical Physics, JINR.. . . 
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