


1. INTRODUCTION

Resonances are one of the most interesting phenomena in scattering processes. The problem of
defining and studying resonances in quantum mechanics is payed a lot of attention in physical
and mathematical literature. In recent years, the investigations of resonances in few-particle
systems attract a growing attention. The role of such resonances is well known in physxcs of
nuclear reactions and astrophysics.

Developing methods for studying resonances has a long history beginning from the paper
by G.Gamow [1]. In this paper devoted to description of a-decay, it was discussed for the
first time a relation of resonance states to complex poles of the scattering’ matrix (it should
be noted however that complex frequencies were considered much earlier, e.g. by J.J. Thomson
in 1884). For spherically symmetrical potentials, the interpretation of resonances in two-body
problems as'poles of an analytic continuation of the scattering matrix was rigorously based in
the known paper by R. Jost (2] (for further references in this d1rect10n see e.g. the books [3]
and [4]):

Approaches to 1nterpreta.t10n of solutxons to the’ Schrodlnger equation (so-called Garnow’s
vectors) correspondmg to reSonances are dlscussed in Refs [5]-[7) (see also’literature cited
therein

Idga to interpret resonances as poles of a.na.lytlca.l continuation of the resolvent kernel
for'the Schrédinger operator (or matrix elements of the Tesolvent between suitable states) is
realized in [8]-[16] (see also Refs. cited in these papers and in the books [17], [18]): Such
interpretation became a basis for the perturbation theory for two-body resonances which is
well developed now (see. {11], (12], [17]).

In the case when support of interaction in -a system of two pa.rtlcles is compact with
respect to relative coordinate, the approach [19] by P.Lax and R. Phillips may be applied (this
approach was created 1mt1ally for acoustical problems) The Lax-Phillips approach allows to
describe resonances as a discrete spectrum of a dissipative operator representing generator of
contracting semigroup. At present, the Lax-Phillips scheme is realized only in those scatiering
problems which generate the energy Riemann surface? with two sheets of the complex energy
plane (see Refs. {20}, [21]) In multichannel scattermg problems, the approach above is partly
realized.in [22].

Beginning from 1970-es, the complex scaling method [10], [14] is applied to investigation
of resonances (see also Refs. [15] and [18]). This method gives a possibility to rotate the
continuous spectrum:of Hamiltonians in such a way that’certain sectors become accessible
for observation on unphysical sheets neighboring with physical one. Resonances situated in
these sectors turn into a part of the discrete spectrum of the Ha.mlltonla.n transformed. The
complex scaling method may be applied in the cases when potentials are a.na.lytlca.l functions
of coordinates. This method allows to compute location of resonances in concrete physical
problems (sce, e.g. Refs. [15], [23]). As regards the structure of the scattering matrix and
resolvent continued on unphysical sheets, this method gives not too large capacities.

Many important conceptual and constructive results (see [24]-[29]) for the physical sheet
in three~body scattering problem are known to have been obtained on the base of the Faddeev
equations [24] and their modifications. In particular the structure of resolvent and scatter-
ing operator was studied in details, completeness ‘of the wave operators was proved and the
coordinate ‘asymptotics were studied in the. case of quickly decreasing as well as Coulomb
interactions® [24], [28], [29], [32]. Analogous results were obtained also for singular interactions
described by the bounda.ry condltlons of var1ous ‘types'[32], [33]. On the base of the Faddeev

2The latter is understood usually as the Riemann surface of the resolvent kernel considered as a function of
energy or as that of the resolvent bilinéar form restricted on certain subsets of Hilbert space. Such operator-
valued functions as the T and scattering matrices have usually the same Riemann surface since these functions
are closely related to the resolvent. .

3The new approaches [30], [31] (see also hterature clted in [31]) have been developed recently in alrstract
scattering theory for N-body systems which allow to prove existence and asymptotical completeness of the
wave operators in the case of pair interactions decreasing at the infinity as r=¢, ¢ > /3 — 1, i.e. substaatially
slower than Coulomb potentials.
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equations, the methods of investigation of concrete physical systems were developed [29], [32],
34}, 135
i34, /[Xs to the unphysical sheets, the situation is rather different. Here, when solving a concrete
- N-particle problem one usually restricts himself with developing some approximate numerical
.algorithm to search for resonances on unphysical sheets neighboring with physical one. A
survey of different physical approaches to study of three—body resonances in the prob]ems of
nuclear physics can be found in Ref. [36]. A number of rigorous results (sec [18]) is obtained
in framework of the complex scaling method [10], [14), [15]. These results touch first of all
the proofs of the existence of analytical continuation of resolvent in the N-body problun with
potentials holomorphic with respect to the scale transforms.- In Ref. [37], a proof is given for
‘the existence of analytical continuation for the amplitudes of processes 2 — 2 in the N-particle
system across the branches of continuous spectrum below the first breakup threshold of the
system into three clusters
A goal of the present work con51sts in analytical continuation and 1nvest1gdt10n of the
structure of three-body T-matrix, scattering matrices and resolvent on unphysical shencts of
the energy Riemann . surface. The interaction potentials are supposed to be pairwise and
decreasing in coordinate space not slower than exponentially. When constructing a theory of
resonances in the two-body problem-with such interactions one can use the coordinate as well
as momentum representations. However, it is clear a priori that the analytical continuation
-of the three-body scattering theory equations [24], {29] on unphysical sheets becomes a very
difficult problem if the equations are written in configuration space. .Thing is that there
exist noncompact (cylindrical): domains where interactions do not decrease. Meanwhile, the
kernels of ‘the integral equations continued increase exponentially.. Their solutions have to
increase exponentially, too. This means that the integral terms become divergent ones and
_ the coordinate space equations lose a sense. In the momentum space, the integral terms of
the scattering thedry equations, e.g. the Faddeev equations for components of 7-matrix, are
actually the Cauchi type integrals analytical continuation of which (in a sense of distributions)
is a solvable problem. A continuation of such kind on unphysxcal sheets neighboring with
physical one was a.lready realized for the s—wave Faddeev equations in the paper [38] (see
also Ref.[36]) for the case of separable pair potentials. In the present paper, we construct a
continuation of the Faddeev equations in the case of sufficiently arbitrarypair potentials not
only on the neighboring unphysical sheets but also on all those remote sheets of the three- body
Riemann surface where is possible to guide the spectral parameter (the energy z) going around
two-body thresholds.
Main result of the paper consists in a basing of existence of analytical continuation on
“unphysical sheets of z for the Faddeev components Mop(2), «,B = 1,2,3, of the operator 7'(z)
and a construction of representations for them in terms of the physlcal sheet {see formula (6.8)).
Accordmg to'the representations, the continued matrix M(z) of the Faddeev components,
= {M,s}, is explicitly expressed on unphy51cal sheets in terms of this matrix itsell taken
on the physical one and some truncations of the scattering matrix. Kind of the truncation
is determined by the index (number) of the unphysical sheet concerned. Note that structure
of the representations is quite analogous to that of the representatlons found in the author’s
recent works [39] and [40] for analytical continuation of T-matrix in multichannel scattering
problems’ with binary channels. Representations for analytical continuation of.three- body

scattering matrices follow immediately, from the representation above for M(z) [see Egs. (6.9)

and (6.11)]. As follows from the explicit representations (6.8), (6.9)’ and (6.11) obtained by us,
the singularities of T=matrix, scattering matrices and:resolvent on unphysical sheets dlfferxng
from those.on the physical one (poles at the discrete spectrum eigenvalues of the Hamiltonian},
arc actually singularities of the operator-valued functions of z inverse with respect to suitable
truncations of the scattering matrix. Consequently, the resonances (i.e. the poles of T-matrix,
scattering matrix and resolvent on unphysical sheets) are zeros of certain truncations of the
scattering matrix taken on the physical sheet.

Results of the present paper were announced in the report [41]

The paper is organized as follows.

In Sec. 2. the main notations are described. Sec. 3 contains an information on analytical
propertics of the two body 7- and scattering matrices which is necessary in subsequent sec-
tions. Scc. 4 is devoted to description of properties of the Faddeev components of three- body
T matrix and scattering matrices on the physical sheet of energy. In particular, the domains
on the physical slicet are established where the half- on-shell Faddeev components and different
truncations of the scattering matrices included in the representations (6.8), (6.9) and (6.11)
may be considered as holomorphic [unctions. We justify these representations only on a certain
part of the three body Riemann surface which is described in Sec. 5. Analytical continuation
of the Faddeev equations on unphysical sheets is described in Sec. 6. Also: in this section.
the representations (6.8). (6.9) are (6.11) formulated for analytical continuation of the matrix
M(z). scatiering matrices and resolvent respectively.

2. NOTATIONS

We consider a system of three spinless non-relativistic quantum particles. Movement of: the
mass center is assumed to be separated. For description of the system we use standard sets of
the relative momenta k. po [29]. For example

. 12
0 my + 1y / Nigps — M3p2
3 . .
(2.1) 2myimny my + my
2. . 1/2
my + my + mgy / (m2 4+ m3z)p; — my{p2 + pa)
mo= . .
2my (1, + my) my + mg 4+ my
where mg, pa are masses and momenta of particles. Expressions lor k,. p, with a == 2.3

may be obtained from {2.1) by cvelic permutation of indices. Usually we combine relative
tmomenta ko, p, o six-vectors 2 = {k,,p,}. A choice of certain pair {k,.p,} fixes cartesian
coordinate systen in R®. Transition [rom one pair ol momenta to another one means rotation
in RY, k, = caghs + 8apPs> Po = —Sapky + cappPs, \Vl”l (ooﬂ‘(lenls Cads 8o depending on the
pd.lll(]( masses only [29], such that =1 < cag <0, 82, =1—¢? '
3 # a.

In momentum representation, the Hamiltonian /1ol the three body system under con-
sideration is given by (H )’} = P*f(P) + }:Zzl(v(,f)(]’). P?=k2 42, [ € Hy = Ly(RY).
with ¥, the pair potentials which are integral operators in k, with keruels v, (b, &),

For the sake of definitenessall the potentials v,, o = 1,2,3, are supposed 1o be local. This
means that the kernel of ve depends on the difference of variables &, and &, only. va(k,. &)
= vo(ko — kl,). We consider two variants of the potentials v, In the first one. v, (k) are
holomorphic functions of the variable & € C? which satisly the estimate

Sas Can = Cog and sy, = — 5,0,

2.2 |1>,,(I.)| < ————c‘“’“"'kl Yk e C?

22). (1 eIy

with some ¢ > 0, @y > 0 and 0y € (¢ /u, 2). In the sccond variant, the potentials v, (&) are
holomorphic functions with respect 1o k in the strip Woy = {k 1 & € C*. [lmk] < 2} only and
obey for k € Wy, the condition (2.2) with ap = 0: )

c
g (B € — Wk Ik < 26,
(2.3) foa (k)] < TR0 [Imk] < 2b

It is supposed \hd( in both vartamts v.(—k) = vo(k). The latter condition gnal.m\u‘s self

adjointness of the Hamiltonian /[ on the set D) = {f+ [(1 + P*)?*|f( l’)|2dl’ < o} [24).
Note that the first variant 1((|un( wents of holomorphness of v, (&) in all C* and no more

than exponential inercasing (2.2) in [lm k] mean that these potentialshave a compact support



in the coordinate space. In the second variant, the potentials v, (k) rewritten in the coordinate
representation, decrease exponentially.

By ha, (haf)(ka) = sz(k )+(vaf)(ka), we denote the Hamiltonian of the pair subsystemn
a. The operator h, acts in Lz(R®). Due to conditions (2.2) and (2.3) its discrete specirum
od(ha) is negative and finite [18]. We enumerate the eigenvalues Ao ; € gu(ha), Aa; < 0,
7 =1,2,...,n4, N, < 00, taking into account their multiplicity: number of times to meet an
elgenvalue in the numeration equals to its multiplicity. Maximal of these numbers is denoted
by Amax, Amax = max A, j < 0. Notation 1,,;(k,) is used for respective eigenfunctions.

a,

J
By o4(H) and o.(H) we denote respectively the discrete and continuous components of the
spectrum o( H) of the Hamiltonian H. Note that o4(H) = (Ayin, +00) with Amin = min A, ;.
a,j

Notation Hp is used for the operator of kinetic energy, (Hof)(P) = P f(P). Ro(z) and
R(z) stand for the resolvents of the operators Hy and H : Ry(z) = (Ho — zI)7! and R(z) =
(H — 2I)™! where in this case, [ is the identity operator in Hp.

Let Mug(z) = bapva — vaR(2)vg, a,8 = 1,2,3, be the Faddeev components [24], {29} of
the three-body T-matrix T'(z) = V —~ VR(2)V with V = v; +v;+v3. Operators M,4(z) satisfy
the Faddeev equations [24], [29] : .

(2.4) Mop(2) = bata(z) — ta(2)Ro(2) D Mys(z), a=1,2,3.
Y#ao

Here, the operator t,(z) has the kernel

(2.5) - ta(P, P, 2) = tolka, kb, 2 — 2)6(pa — PL),

where t,(k, ¥, z) stands for the kernel of the pair T-matrix ta(z) =

Ta(Z) (h _z)

It is convement to rewrite the system (2.4) in the matrix form
(2.6) ’ M(z) = t(z) — t(2)Ro(z) TM (),
with t(z) = diag{ti(z), t2(2), ta(z)} and Re(z) = dia.g{Rg(z), Ro(2), Ro(2)}. By T wedenote a

number 3x3-matrix with the elements Yap = 1 —bug. M(z) is the operator matrix constructed
of the components M,g(z), M = {Myg}, o, = 1,2, 3 The matrices M, t, Ry and T

are considered as operators-in the Hilbert space Go = G) L,(R%). By Q(")(z) QN (z) =

Vo — VoTa(2)v, with

(——t(z)Ro(z)T)kt(z), we denote iterations of the absolute term Q0)(2) = t(2) of (2.6).
The resolvent R(z) is expressed in terms of the matrix M(z) by formula [29]

(2.7) ‘ R(2) = Ro(z) — Ro(2)AM (2)0 Ro(2),
where €1, 2 : Gy — Hy,stands for the matrix—row, Q=1 1, 1)‘. At the same time Q' = OQ* =
(1, 1, ). The symbol “}” means transposition.

Throughout the paper we understand by v/z — z€C, A€R, the main branch of the
function (\1 A)!/2. By ¢ we denote usually the unit vector in the direction geRN, = q/[q[,
and by SV~ the unit spherc in RV, qESN 1. The inner product in R is denoted by (-,
Notation (-, -} is used for inner products in Hilbert spaces.

Let " = Ly(R%) and H™ = % H. By ¥, we denote operator acting from ’_H(u)

to Ho as (U f)(P Zz/)(” (ko) fi(Pa), (fl,fz,...,fﬂu)lf. Notation V¥ is used for the

operator adjoint to ¥,. By ¥ we denote the block—diagonal matrix operator ¥ = diag{¥, ¥,

T

¥4} which acts from Hy = (B H to Gy and by ¥*, the operator adjoint to W. Analogously

to W,, 2, ¥ and ¥* we mtroduce the operators @,, @, ® and 9%, which are obtained from
the former by replacement of the elgenfunctlons 1/)a,(k ) with the form—factors ¢, j(k,) =
{(vada i) ko), @ =1,2,3, 7 =1,2,..

The palr T-matrix to(z) is known [24],[29] to be an analytical operator-valued function
of the variable z € C\[0, +00) having at the points z € o4(h,) simple poles. Its kernel admits
the representation

(2.8) ta(k, K, 2) = Z —qsi’A(—k)"s—“!(—kl + 1ok, k'2),

where #,(k, k'z) is a function holomorphic in z € C\[0, +00). Therefore
(2:9) ta(2) = ~Paga(2) 23 + Ea(2),

where the operator t,(z) has the kernel £, (ky, k., 2—p2)6(pa—p%) and g,(2), ga(z)=diag{gas{z}
., Gama(2)}, is the block-diagonal matrix with elements g, ;(2), the operators in H(®7) with

smgular kernels ga,;(2)(Pa, Pl, 2) = 8(pa — D) /( oj — 2+ pa) .
Below, we consnder restnctlons of different functlons on the energy shell

(2.10) k=\zk, keS?

in the f.woAbod’y problem and on the energy ’shells |

(2.11) : : P=\zP, Pess,

and

(2.12) Po = \/Z = XajPays Paj €S54 =123, j=12.,n,

in the problem of three particles. In the last case the sets (2.11) and (2.12) are called respec-
tively three-body and two-body energy shells.

Let O(CV) be the Fourier transform of the space C°°(RN) (we deal with ¥ =3 or N == 6
only). Any f(q) € O(CV)-is a holomorphic function in variable ¢ = (g1, q2,.... g¥) €
satisfying the estimates i——l—rf(q)l < co(f) - exp(a}Img|}(1 + {g])~%, with a, the md\us

of the ball centered in the origin and containing the support of the Fourmr pre-image of this

function in RV, |m| = m; + ... + mp, and |Imgq| = \/21_1|Imq,]’ As @ one can take

arbitrary positive number. For fixed f and m = (my,...,mn), the coefficient ¢ > 0 depends
only on 4.

Let j(z) be the operator restricting functions f(k), k'€ R3, on the energy shell (2.10) ‘at
z=E+i0, E >0, and continuing them if possible, on the domam of complex values of the
energy z. On the set. O(C?) the operator j(z)acts as

(213) : =)/ (k) = f(v/zh).

Its kernel is the holomorphic generalized function (distribution) [42] j(k, ¥, z) = §(vzk — k).
By jt(z) we denote the operator “transposed” with respect to j(z). Acting on ¢ € Ly(S?)
the operator j!(z) gives as a result the generalized functions (distributions) over O(C?),

(2.14) G = [ di s~ V3R ot = =YD,
i 5



1.e. )
(215) (M@= [disvEbed), feoe.

52
Remember that in terms of the operators j(z) and jf(z), the pair scattering matrices s, (z),
5a(2) : Ly(8%) — L2(S?), look as (index of pair is omitted) [39]): :
(2.16) Cs(z) =1+ aa(2)i(2)t(2)it (=),

where ao(z) = —miy/z and I is the identity operator in Lg(Sz) Analyticity domain of s(z),
z € C, is determined in a general way by properties of the pair potential v (sec e.g., (3], [4],

and also [39], [40]).
Let Jo3(2), a=1,2,3, j =1,2,..,n,, be the operator of restriction on the energy

shell (2.12). Its action on O(Ca) is defined as
(Jai(2) ) Ba) = fF(Vz = Xaj Ba)y @=1,2,3, j=1,2,0,1,

Operators J, j(z) have the kernels Jo ;(pa, 2Ly 2) = 6( AajPa — Ph)-

By Jo(z) we denote operator of restriction on the shgll (2.11). On O(CS) this opera-
tor is defined as (Jo(z)f)(P) = f(\/_P) Its kernel is Jo(P, P',z) = (/z)™36(\/zP - P') =
8(vz — PSP, ).

Notations J!, ;(2) and Ji(2) are used for respective “transposed” operators. Their action
is defined sxmllarly to (2.14),(2.15) as ‘

(J1,(2)0)(pa) = / 45800 ~ /7 RagBl)(BL), € HED,

UNP) = [ dP5(P = VEPYP), o € Tl

5 " : i
where H®9) = L,(5?) and Ho = L2(5%). The generalized functions sz-(z)go and J{(z)p are
elements of the spaces O’ (C3) and O'(C8) of distributions over O(C?) and O(C®), respectively.
Operators_J, ; and Ja] are then combined into the block-diagonal matrices J{?)(z2) =

dxag{.]a'l(z) am,(z)} and JIeH(z) = dlag{.] 1(z) J} .. (2)}. Latter aré used to construct
_operators J; (z) = diag{J)(2), J?)(2), J®)(2)} and J*(z) = diag{JW(2), J®(z), J(z)}.

The action of J®)(z) and J;(z) on elements of the spaces respectively, O} = X Oled),
: ' . E a=}
3
O = O(C?) and O; = X O® can be understood by the definition of the operators J ;(2).
h a=1 L R
The operators J(®1(z) act from H( = & H(@) to the space of analytical distributions O«
=1 -

. . 3 .
over O, In its turn the operator Ji(z) acts from H; = 69 H(@3) to the space of analytical

distributions O} over O;.

At last, we use the block-dlagonal operator 3x3-matrices Jo(z) = diag{ Ig(z) Jo(2), Jo(2)}
and J} o(2) = dlag{.]o( z), Jo(z) Jo(z)}, constructed of the operators Jo(z) and Jo(z), respectively
as well as operators J(z) ="diag{Jo(2),J1(2)} I}(z) = diag{.]é(z),.]{(z)], Action of these
operators is clear due to definitions of the operators Jo, J1, Jj and JI. In particular the

. : 3
operator J¥(z) acts from the space Go = aé—ax o to the space a>-<1 O(C8).

The identity operators in the spaces 7:(0, Qg, 721 and 7:(0 & ’fil are denoted by io, iu, i,
and I respectively.

3. ANALYTICAL CONTINUATION OF THE 7- AND SCATTERING
MATRICES IN THE TWO-BODY PROBLEM

In this section we remember some analytical properties of the pair T-matrices which will be
necessary further when posing the three-body problem. Note that above properties are well
known (see e.g., Refs 4], [3] and also [36]) for a wide class of the potentials v,(z). As a niatter
of fact we want to cxpose here only an explicit representation for the two-body T-matrix on
unphysical sheet which is a particular case of the explicit representations constructed in the
author’s work {39] (sce Theorem 2 in [39] dnd comments to it) for a rather more general situation
of analytical continuation of T-matrix on unphysical sheets in the multichannel problem with
binary “channels.

lhroughoul the section we shall consider a ﬁxcd pair subsystem. Therefore its index will
be omitted in notations. Statements will be given for the first variant of the potentials (2.2). If
it. will be necessary, different assertions for the second variant (2.3) will be written in brackets.
Also. we use the notation

(3.1) Pb = {Z v Rez > — b2 + i—[;;(lm ")2} A

Remember that the 011(1gy Rigmann surface in the two-body problem coincides with tha
of the function 2'/2. On the physical sheet, z!/2 = \/z, and on the unphysical one, z'/2 = -z
For these sheets we use the notations respectively, 11y and I1,.

Representation for continuation of ¢(z) on unphyslca,l sheet which will be used further. is
described by the following statement which is one-¢hannel variant of Theorem 2 of Ref, [39].

TUurOREM 1. The two-body T-malriz {(z) allows analylical continuation in variable = on the
sheet 11y (on the domain Py{\11;) as a bounded operator in Ly(R?). Resull of the continudtion

(Z)Ill. ( l(z)lpbﬂlll) is cxpressed by T'- and S-malrices on the physical sheel: . .
(3.2) ) l(z)]“1 = (z) — ap(z) 7(2)
where 7(2) = (Ts7151)(2). The kernel t(k, k’,z)‘nl is a holonwrphi,(‘ Junclion of variables
k& € C* and z € 11\ (J,,,,Uad(h)) (k, FeW,andz € P11\ (o‘rmU(r:,l(/x)) ) Here,

Oves i5 ¢ sel of the points z € C\ a(h) (z € P\ a(lz)) where the operator [s(2)]™! docs not

cxisi.

Emphasize that for the second variant of potentials (2.3), the existence of the continvation
of {(z) on unphysical sheet. is guaranteed by Theorem | for the domain P, 11, bounded by

the parabola Im/z = b, inside of which the function » (\/:_.(l: — l:’)) is holomorphic in =
for arbitrary £, & € 2. Note also that the operator (jfj1)(z). included in Eq. {2.16). is a
compact operator in C(S?) [39]. Consequently on the domain of its analyticity 1k \ a(h)
(P 1o\ (z)) on the physl( al sheet, one can apply to the cquation

@33 s(z)A=0

the Fredholm alternative [18] (sce Ref. [39]). This means that the set o, heing countable. hds
not concentration pomts in C\o(h ) (Pb\ o(h ))

On the phywal sheet Ho, the pair 7T~ matrix admlts the representation (2.8). It follows

from the Lippmann Schwinger equation for ¢;, 7 = 1,2,...,n,
(3.4) ¢i(k) = /d(/ v(k, (1) )\ oilq). A <0,
R?
7



that form-factor ¢;(k) admits analytical continuation in k on C? (on Wy) and at the same
time, it satisfies the type (2. 2) estimate where one has to replace fp with a number 0, 1 < 0 < 0q,
which can be taken in any close vicinity of 6y [24]. Hence the eigenfunction

é;(k)
k2 —

(3.5) Wi(k) = —

of h admits also an analytical continuation on C3? (on W) with the _exception of the set
{k € C*: k? = A;} where ¢;(k) has smgularlt\es (turhing for k& = fk k€ 52, into a pole in
energy z at z = /\ .

The regular summand t(k,k'z) of the kernel of ¢(z) is holomorphic function in variables
kLkeCdzelly (kK eW,ze Py and admits the estimate

[E(k, k' 2)] < (1 + [k — k')~ - expla(| Im k] + | Im k])],

with arbitrary 8 € (1,8).

As to continuation of t(z)ln , it follows from Eq. (3.2) that the points z € 04(h) give to
it genera.lly speaking, poles of the first order. One can easily check however that if eigenvalue
X € aq(h) is simple then'the respective singularities of the both summands of (3.2) compensate

each other and the pole.of #(z ]n does not appear at z = A, It follows from the Fredholm

analytical alternatlve [18] for Eq. (3 3) only that poles of t(z at z € ey are of a finite

M,
order and no more. It is easily to show that .if A(k ) is a nontrivial solution of Eq. (3.3)
at z € Oresy 2 ¢ a4(h), then the Schrédinger equation ( A, +v#(z)) v#(z) = 29%(z) has
at this.z a nontrivial (resonance) solution ¥#(z) with exponentially increasing asymptotics

—: VZiz)
Vh(2) = (A(=5)+o(1)) "

. The function ¥ (z

l ( Tes
sponding to resonance at the energy z (see e.g., Refs. [3], [6], [7]). The function .A(k) makes a
sense to the breakup amplitude of resonance state?.

The formula for analytical continuation of the scattering matrix on unphysical sheet II,
(on the set Py (11;) follows immediately from Eq. (3.2) (see Ref. [39]),

(3.6) 3(2)]y, = Els(NES

(z) is so-called Gamow vector corre-

where £ stands for the inversion in Ly(S%), (E£)(k) = f(=k).
Utilizing (3.2) one can easily to get the explicit representation in terms of the physical
sheet as well for analytical continuat_ion on Iy ( on P, (\II;) of the resolvent r(z) kernel®:

. (3.7 r(@)g, = r+aq(1_rv)jfs-'lj(1_m). )
The continuation has to be understood in a sense of generalized functlons (distributions) over

O(C"): one has to continue the bilinear form O(z) = (v (z)fl,f2 / dg fl(q)h(q) with fi,
f2 € O(C).

4

4Analogous assertion takes place as well in the multichannel scattering problem with m binary channels:
solution A = (A}, Az, ..., Am) to the equation s;(z) A = 0 at resonance energy z € a%., (in notations of Ref. [39])
represents amplitudes (1 e. coefficients at spherical waves in coordinate asymptotics of the channel components
of solution to respective Schrodinger equation) A;(ky), A2(£2), ..., Am(km) of resonance on the sheet II; to
breakup into channels 1,2,...,m, respectively.

®Similar representations take place as well in the case of the multlchannel problem. In notations of Raf. [39]

read them as r(z)[n =r+ (I Zro)JVALsTII(I - wr).

N

4. MATRIX M(z) AND THREE-BODY SCATTERING
MATRICES ON THE PHYSICAL SHEET

At the beginning, remember shortly principal properties [24], [29] of the Faddeev equations (2.6)

for the matrix M(z) and properties of the kernels M,4(P, P', z) at real arguments P, P' € RS.
To formulate these properties we cite here the following deﬁmtlon [24].

The operator-valued function Q,s(z) of variable z € C, Qo,p(z) Ho — My, is the type

D,p function, o,8=1,2,3,if 1t admits the representatlon .

L Qap(2) = Fap(2) + Caal2)Zap(2)+ .
(4.1) +Jan(2)80(2) 25 + PaBa(2)Kap(2)gs(2) -

The operator-valued functions Fap(2) : Ho — Ho; Zap(z) 1 Ho = H, T, g(z) 'H(ﬂ) —
Ho and Kap(z) : H®) — H®) are called components of the function Qag(z) If' Qag(z) is an
integral operator then its kernel is called kernel of the type D,g .

Let AN (P,0) = Z (1+ lp(,|) o1 + lps]) 8. A function Q(z) of the type Dyg is called

a8, off
the class D,g(0, 1) function if its components Fops Lap, Jap and K,g are integral operators
and for the kernels Fo5(P, P', z) at P, P', AP, AP’ € R®, the estimates

(4.2)' ' lfag(P’P',z)' $N(P,9-)(1+Pz2)_17

. '}-aﬂ(P'i"AP’\P/'i"AP,72+AZ)_'F(P>P’Z)IS
(43) L SNEROARY)T(APK AP+ [Az).
with certain ¢ > 0 take place and at the same tlme the kernels Z, ;,5(pa, P, ), Tais, k(P P, 2)
and }C(,ka(pa,pﬂ,z) satisfy inequalities which may be got from 4. 2) and (4 3) 1f to take
respectively, ko = 0, kj = 0 or simultaneously, ko = 0, kj = 0.

Let Q")(z) be an iteration of the absolute term of Eq..(2.6). In a contrast to QU (2) = t(2)
kernels of the operators Q™(2) at n > 0 do not include é~functions. Moreover, it follows from
the representation (2.9) for t(,(z) explicitly manlfestmg a contrlbutlon of the dlscrete spectrum
of pair subsystems, that matrix elements Q(ﬂ(z), a,f=1,2,3, of the operators Q()(z) with

n > 1 are actually functions of the D,g type. Their components .7-'( (2), Z(")(z), .7((")(2)

and ng;,)(z) at z € C\ [Xmin, +o0) are bounded operators depending on z analytically. In
the case of potentials (2.2) and (2.3), the Hélder index of smoothness u for their kernels
with respect to variables P, P',p, and pj at z € [Amin, +00) equals to.1. If n < 3 then as
Imz — 0, Rez € [Anin, +00) the kernels 73 I, 7%, and K&, have so—called
minor (three-particle) singularities (see Refs. [24] a.nd [29]) weakening with growing n. At
n > 4 such singularities do not appear at all and these kernels become Hdlder functions in
all their variables including the limit values z = E £ 0, E € (Amin,+00). More precise
statement [24] is following: the operator-valued functions Q(")(z) at n > 4 belong to the type
Dop(0,p), 0 <60 < 6y, 0 < p <} uniformly with respect to z changing on arbitrary
bounded set in the complex plane C with cut along the ray [Anmin,+00): One can take as 8,
0 < 8o, any number as close as possible to 0p.. Thus, instead of M(z) it is convenient [24] to
come to the new unknown W(z) = M(z)— Zn—ﬂ Q(")(z), satisfying the equatlon

(44) W(z) = W“’)(Z) — t(z)Ro(2)TW(2)

analogous to Eq. (2.6) but with another absolute term W(©(z) = QM)(z). -
Immersion of Eq. (4.4) in the Banach space B(0,u) (a description of the latter see in
Refs. [24], or [29]) leads one to the following important



THEOREM 2 (L.D.Faddeev [24]). Eq. (2. 6) zs umquely solvable at z ¢ o4(H). Its solution
M(z) admits the representation : o

(45) . M) = ZQ‘"’(z)+W(z),

n=0

where the opemtar—valued functwn W(z) is holomorphzc in variable z at z ¢ O’(H) and its
components Wp(z) belong to the classes Dog(8, 1), 3/2 <80 <0, 0 < p < 1 uniformly
with respect to z changing in arbitrary bounded set of the compler plane C wzth cut alouq the
70y [Amin, +00) and removed. neighborhoods of the points.of a4( H).

Remember now structure of the scatiering operator S [24], [29] for the system of: three
particles. For this purpose we introduce the operator~valued functlon T(z), T(z): Ho®H; —

'HOGB'Hl, of z ¢ C\O’(H),

, \ : T(z) ; ‘("hM(z)QT M(ﬂT\if ' >

(4-6) UTM(2)Qt- ¥ (Tv +TM(z)T)

with v = dlag{vl,vg,v;;} Note that Too(z) = QM(Z)Q1 T(z), 7{,0 (z) + Ho — Ho. The
rest of the components To,(z) = Hy — Ho; Tro(z) : Ho— Hi and Tiy(z) : Ha — H, is
expressed by the transition operators [29] (see also [34]) Us(z) = OM(2)Y, Ul = TM(z)Q!
and U(z) = Tv+ TM(2)Y; . T = Uo¥, Tho=¥* U0 and T11.=U*U¥. The operator T( )
is a matrix integral operator with kernels Too(P, P', z),. T, i o(pa,P 2), To.p;(P, Pj,2) and
Toiipi(PerPpr2), «'=1,2,3, i=1, 2, ey, B=1,2,3, § =1,2,...,ns, properties of
which are determined 1ncludmg the hrmt pomts z=FE4 zO E-> Anin, by Fheorem 2. ‘
By T(z), T(z) Ho ® ’Hl — Ho @ H,, we denote analytxcal continuation in C*: (see
Theorems 3, 6 and 7) of the operators T(E +70) having the kernels .

(F(E £ 40)) (P P’) = Too(:VEP, +VEP, E +i0), E>0
(T(E £30)), 55(P, ). Toip i (EVEP, £1/E = Xg iy, E£i0), - E > 0;
(T(E i_zO))a,i;o(ﬁa,P’)~, a,o(j: E = Xaiba, TVEP,E£i0), E>0;

(T(E j:i(.)))a,g;g‘j(ﬁf!’ﬁ;)') ; Tos: ﬁz(i E — A iba, £1/E — Ag, Jpg,E +10),
v v - E>max{/\[,., Agit

1]

dl

We assume by deﬁmtlon that the product (JTJ’) (2) ¢ comcldes with T(z),

e N (z olo1Jy )2
wn ‘() (JTJ')()—<8°;'1’Z;?%8 8 %m%ﬁ%)

Elements of the matrix (JTJ’)(Z) are expressed in terms of amplitudes of different proc esses
takmg place in the three-body system under consideration [29] (see also Sec. 7 of [43])."
.The scattering operator S is unitary one in the space Ho & H, and as well as 7, it has a

naturzﬂ'block structure. Its comiponents Soo, So E,J, Saig, Sa,ip; have the kernels respectlvely

(18)  Se(P,P')
(4.9) So.,5(P, Pp)
(410)  Saio(pa, P)
(4'11) sa,i;ﬂ.j(Pa‘,P’g_)

6(P i Y= 27rz 6(}’2 P'Z)TM(P P' Py 10),
—2#;‘(‘5_(P2 - pﬂ _"\ﬂ,J)%,;E.J(P:Pﬁyf\E.J + Pﬂ +10),
—278 8(Aai + P& = P T i0(pas P', P +i0),

oo

H,

9w 6(/\0 i+ pq /\p,J Pz)%,i;ﬁ;j(l’av?kv Ag.it PZ’ +ZO) b
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g

Scattering matrices arise from S in the spectral decomposmon for H as operators acting in
the “cross section” (at fixed cnergy) of the space Ho & H, in the Neumann direct integral [28].
Extraction of the scattcrmg matrix from S is related as a matter of fact to the replacements
P> E, dpitpl = E,0a=1,23,i=1,2,...,n, in expresslons (4.8)—(4.11) and then to
the factorization of dependence of the kernels of S on the energies £ and E’,

(1.12) S(E,E') = —xib([ — E')I(E)S(E + i0)d(E"),

where J(E) is a diagonal matrix-function constructed of the Heaviside functions ¥(£) and
D(E=Xg): 9(E) = diag (9(E), 9(E A1), . HE = Ming s HE = Agy), .. 9(E—Agm), V(5 ~
,\, - 0(1* ~Aan)}- Atz € C we understand by S’( ) the operator-valued function S'(z) =

“1(z)1+ 7 (). Here and all over further, A(z) = dlag{Ao z), A 1(2)} with Ag(z) = —miz?
and Arfz) = diag{ AN, A® A where in its turn, AL(z) = diag{Ag1(z), ..., Aana(2)} with
Aaj(z) = —mi/z = Ay ;.

Continuing the factorization, S’(z) = 5(2)A7Y(z) = A71(2)SY(2), corresponding to sep-
arating in (4.12) the multiplier —miA~1(E +i0) as a derlvatxvc of measure in the Neumann
integral above 28] for Hy ® Ha, one comes to the scattering matrices

(4.13) S(z) =1+ (ITI'A)(2) and S'(z) =1+ (AITIN)(2).

In a contrast to Ref. 28] it is more convenicnt for us to use namely this, nonsymmetric. form
of thL sLa‘llnrmg matrices. Matrices S(z) and §%(z) are considered as operators in Fo DH, .
Atz 17440, ££ > 0, thesc opetators are unitary. At z = £ 4 i0, £ < 0, there are
LLrLa.m Lrumatmm of S(z) and Si(z) determmcd by the number of .open channels which are
umtary in 'Ho ®H, IldII]C]) the matrices S(E) = I+ 19(E)(5(E + 10) - I)t}( )) and SHE) =
i+ ﬂ(F)(Sf(E +10).— ) J(E). 1t follows from Eq. (4.13) that operator. T may be considered
as a kind of “multichannel 7'-matrix” (cf. Ref. [39]) for the system of three particles. - .
Note that the matrix T (z) may be replaced in Eq. (4.13) with the matrix T1(z) obtained
from T (z) by the substitution Tv — v (respectively, U = Ut = vT + TMT) in the second
compouent of the lower row of (4.6). To prove that (JT1I)(2) = (ITINY(2)s it is sulficient to
observe that for z = £ 440, I/ > Ay, a=1,2,3, =121, - : - R

(4.14) ' (LW TveI)(z) = (3,8 vTWIN)(z).
Indeed, according to Egs. (3.4) and (3.5), ‘

1= b0p Bai(k(par D)) ¢a,(k“"(p;,pa))

(115) (B YV®)aig;(parPly) = — :
P Tal? 5 s ) = Ao
L : : 1 =6 @ 'kn s ; ‘,(
(116) (U VI Wi (pas ) = =75 - Boulhe poorh)) 80508 (0.
Sap g (v pad® = A
where . . e
(.17) k“’(qq>>—f°—’—‘16—+—q, TE=1,23,

7, € R® (wc shall suppose later that q,9.€ C?). One can easily to understand that on the

energy shells [pa| = /E — Ao, Ippl = VE = Aa,, "E> Aaiy  E > Az, the denominators
of the fractions (4.15) and (4.16) coincide, :
(R = Ao = (K) = D =
' 1

= _F( = Aai B = M = 2eap/E = Xai/E = Ny j(haBly) ~ 52,

(1.18) =
lSu/i
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Meanwhile the expression (4.18) can not become zero at £ > Ay, E > Agj (see Lemma V‘2). It
follows now from Eqgs. (4.15), (4.16) and (4.18) that the equality (4.14) is true.
Along with S(z) and S*(z) we shall consider also the truncated scattering matrices

(4.19) Si(z) =1+ (LITI'LAY(2) and S}(z) =i+ (ALITIL)(2),
where the multi-index
(4.20) - . . l - (10, 11,17'~~,11,n“12.17--~912,n2313_17---7 13‘,13)

has the components lo = 0 or lp = %1 and l,;=0o0rlh;=1,a=1,2,3, j=1,2,..,n, By
L and L we denote the diagonal number matrices

(4.21) L = diag{lo, b1y oos Limys 12,1y oo b2ms B30y ooos baimg }
and .
(4.22) L= diag{llol, 11,17 veny ll,ﬂ]) 12'1, ...,12',,2, 13'1, —eey 13‘-,13},

corresponding to the multi-index !.- The matrix L is evidently to be a projector in Ho ® Ha
on the subspace ’H() if lg = 0 or on the subspace ’Ho @ ’H“) if Iy # 0. Here in both cases,
H(l) o) H(a J)
lo #0
As can be seen from formulas (4.13) and (4 6) the scattermg matrices S(z) and St(z)
include kernels M,g(P, P’, z) taken on the energy shells: their arguments P € R® and P’ € R®

are connected with the energy z = E +10 by Eqgs. (2.11) at £ > 0 or (2.12) at £ > A, ..

We establish below [see formula (6.8)] that analytical continuation of the matrix M(z) on
unphysical sheets of energy z is expressed in terms of analytical continuation of the truncated
scattering matrices Si(z) or S}(z) and the half-on-shell Faddeev components M,5(z) taken on
the physical sheet.. More precisely, along with Si(z), the final formula (6.8) includes the matrices
(LoJoM)(2), (Lih9” TM)(z and (MJ Lo)(2), (M'I‘\]VJf 1)(z). Here, I is a certain multi-
index (4.20) and -L = dlag{Lg,Ll} is the respective matrix (4.21) with Ly = I5.

In the rest of this section we shall formulate some statements (Theorems 3-7) concerning
the existence of the analytical continuation of the above matrices and their domains of holmor-
phness. In view of shortage of space we shall not give here full proofs. Note only that proofs
are based on analysis [24] of the Faddeev equations'(2.6). For all this, one has additionally to
pay a special attention to studying the domains of holomorphness in z of the functions

-1

(4.23) ' . P?x + P232 — 2¢ap(Pa; Pb) - s?xﬂz )

with one or both arguments ps and pj; situating on the energy shells (2.11) or (2.12). Functions
(4.23) arise when iterating Eq. (2.6) because of the presence of the multiplier Rg in the operator
—tRoY. Also, the functions (4. 23) appear as a display of singularities (3.5) of the eigenfunctions
ya],a—-123 i=12,.
In the case when the arguments Pa andfor pj are taken on the shells (2.12), p, =
z = AaiPa and py = \/z — Ag; p,,, the holomorphness domains of the functions (4.23) with
respect to the variable z are described by the following plam lemmas.

LEMMA 1. Foranyp >0, -1 <np <1, the domain '

'

A & 2
(4.24) Rez > =zt 4—:6_7|_A—](Imz)
contains no roots z of the equation
(4.25) ) z——A+p+2cx/z,—~A\/ﬁ17—szz:0,
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with A <0, 0< [c] <1 and s? = 1 — 2 For any number z € C outside the domain (4.24}'one
can always find such values of parameters p > 0 and n, —1 < 5 < 1, that the left-hand part of
Eq. (4.25) becomes equal to zero at the point z.

LEMMA 2. Let the parameters of the equation

(4.26) z=M+z—A+20/z-MVz—dn—s'z2=0

be such: pe[=1,1], M <X <0, 0<c<1 and s* =1—c*. Then the following assertions

take place. ‘
1) If Ag] > | M| then for all 5 € {—1,1] Eq. (4.26) has a unique root z and this root is
real. Moreover z =z, ifn >0, and z = z_ zfﬁ < 0 with

(1+ ¢ =28 %) (M + A2) £ 2/ A dg st — (A2 — M )22(1 — 17’)]
(1 + ¢?)? — 4c2p?

(427) Z4 =

When n runs the interval [—1,1], the roots zy fill the interval {zi, z4] with the ends

1
(4.28) 2 = S—z[—|)\1| Lt 2y [Ar] - A2l

and - ,
(4.29) = 5—12[—[,\1| ~ el + 2/l Tall, 2 < Av.

2) If |As| = 2| A1| then Eq. (4.26) has two real roots:
a) the'root z = Ay ezisting for oll n € [-1,1};
b) the root z = z_ given by (4.27) which eusts for -1 < n< <0 only.
- For =1 < <1 these roots together fill .the mterval [zu, 1] with'z, = —|/\1] (1 4 2ct/s?).

3) IfIA | < || then
1/ p/I—
a) for—-1 <n <% n* ~ il v “Eq. (4:26) has two_real roots z4
C(1 P) |A11

given by (4. 27) which fill the interval [zi¢; 2] wtth the ends (4.28) and (4.29), 2 < Ay;
b) forn* <n <0 Eq. (4.26) has two complez roots z4 described again by Eq. ({.27).° When
(S —p)
AT AT

(along real azis) and b =

7 moves, these roots fill the ellipse centered in the point ze = —|Aif |1+
(¢ = p)(L = ¢*p)
L+ )T+ p)
(along imaginary aa:zs) The nght vertez of the

Il + Al
14c*

Half-azes of the ellipse are given by a = [AI
Il - (¢ —p)(L =)

(1 +c¥)s*(1 — p)\/(l + ¢?)? = 4c*p*?
ellipse is located in the point z( V=zota=—
(e) —

situated between /\1 and Az:} Its !eﬁ

vertez 18 z), Ze—a < 2
Let H(ﬂ“") be the domain in the complex plane C w1th cut along the ray [Amin, +oo) where
the condltlons (4 24) with A = Ag,, €= Cap and the mequa[xtws

(4.30) ' Rez > Apj — sogh® + T2 z(m z)?

452 b2
are valid simultaneously for all @ = 1,2,3, a# f. In the case of the potentials (2.2) one has

to take b = +o0 in (4.30).
" By Raip,j @ # B, we denote domain complementary in C \ [Amin, +00) to the set filled

by the roots of Eq. (4.26) in the case when A1 = min{Aq, Agits A2 = ma.x{)‘ s Aﬂa} ¢ = |cap)
and 7 = (pa, Pjs) runs the interval [-1,1].. ;
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THEOREM 3. The matriz integral operator L;’j}l(z)L’l’, "z = E+1i0, acting in 1, allows

analytical continuation in z from rims of the ray £ € (A\,400), A = max A, on the
Lk #0,
Lo
domain {hol) (k)
o v
(4.31) M = | ﬂ Resosl (Nl ) BN 200
U #0,
I“’ ;60 Iz’”,‘;éo
where If = diag (I, Baseslings Bgsee lngs 1&:1’ - Igm) , 1Y = diag (i, Byl 19y, ‘ Ny .

1ol ), with Iy = I = 0. The nontrivial kernels (L;ﬁl(z)L;') o BB 2), LA,
e AN WJ

15; # 0, turn into functions holomorphic concerning z € Hf};ﬁl) and real-analytic with respect

lo pa,py € S*.

REMARK 1. The domains Hf,};ﬁl) and Hf,},'ﬁ coincide, o) = l'[f,},'f,l).

If ! = 1" = I, we use for H,(,!;ZI) the notation Hfho]),
(432) H(hol) n(hol)

THEOREM 4. Let Lo = I = 0. Then the matrices (MTWJ!L,)(z) and (LyJy¥* TM)(Z) z=

E4140, allow analytical continuation in z from rims of the rayE' € (A, +00), A-= Ag.j,
(ﬁv]) ’a,#‘)

on the domain H(h°l)\a(H) as bounded for z ¢ [Am,n, +oo) operator—valuedfunctzons ofvurzable
z, (MYWJIL)(2): Hy — Go and (LIJI\II TM)(2): Go — Hy.

- Continuing the half-on-shell matrlces (JOM)(z) (MIN(Gz), z=E+i0, E> 0, into

domain of complex z is considered in a sense of distributions over O(C®). For example of M3}
we consider contmuatlon of the bilinear form - .

(F, (M3}) (B 4 i0)) Z/dP/dP' W(P)Mas(P,£VE P', E +0) fo( P')
“ﬁns S§5 '

"where F = (F],FQ,F:;) with F,, € O(Cs) and f = (f1, fay f2) with f, € Ho.

When constructing continuation of this form and that for (JoM)(E + 10) we base on two
simple statements concerning the domains of holomorphness of the function (4. 23) in the case
.when argument P belongs to the three-body energy shell (2.11) and therefore pf; = \/—u
with v € [0, 1]. _

LEMMA 3. Let in the equation p+ zv' + 2c\/—\/_\/—r] —s%2=0, the parameters v' and 1y run
the intervals 0 < v' <1 and =1 < 5 < 1 respectively, and ¢ > 0,52 =1—¢?, 2 € C be fized.
Then the roots p of the above equation ﬁll the set conszstmg of the line segment [0, 2] on the
complez plane C and the circle centered in the origin, the radius of which being equal o cz).

LEMMA 4. Let the parameters of the equation
*33) o 2= A+ zv +2c/zVz = Aoy — 522 =0,
satisfy the conditions v € [0,1], 7 € [-1,1}, A < 0, c € (0,1) and 5> =1 — &. Then if v and

n run the above ranges, the roots z of Eq (4.38) ﬁll the ray (oo, /\/(1 +cY)] and the circle
centered in the point z. = A/(1 — ¢*), radius of which equals to 2A/(1 — ¢4).
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Let flgo)i, H(O]i C C#*, be the domains complementar} in C* to the totality of circles
having radii r = c,ﬁlz\c,,,|/( cis) and centered in the points 2. = Ay ;/(1—¢ ﬁ) where

a,B3=1,23 8+#c,and j=1,2,...,n,. In the case of the potentials (2.3) the domains l'I(O)i
must satisfy cxtra conditions . :

[5a0l°6* (1+ lcaﬁl)z
(1+1capl)?  4sap|?6?

(4.34) Rez > - (Im 2)2.

for all 0, 8 =1,2,3, 3 # a.

Utilizing Lemmas 3 and 4 one can prove the following
THEOREM 5. Kerncls of the matrices (MJ(T))(::) and (JoM)(2), z="E£:i0, E > 0, allow
analytical continuation in z on the domains, respectively lzlgo)+ and ﬁgo)-, I.I,(,o)i C C*. The.
continualion of kernels of the malrices (Q(")J(T)) (2), and (JoQ'™) (2), n <3, included in the
representation (4.5) for M(z) has to be understood in a’sense of distributions over O(C*). At

the same time the kernéls : .

ﬂﬁ([ \/—P Z) f’Jﬁ(pﬂ"\/—I Z)
Ja;ﬁ'k(la\/—\/_ll’ ’ ) and Kﬂ‘lvﬁ.k(Pﬂ’\/—\/’Tﬁb’z)

a, B :‘1,2‘,.3. i=12,..,n4, k=1,2,...,n5
of the malrices (Q(")Jg)(:), n >4, and (WI})(2) as well as the kernels

aﬂ(\/—f) Pz, Ia.j;b(\/;\/‘;ﬁmpl»z)v
Jaﬁk \/—I ,Pﬁ, z) aﬂd Ko gkl \/;\/;pm/’zi*;)'

of the matrices (JOQ("))( ), n >4, and (JW)(z) can be contbiued on’the domains II( s
as usual’ holomorphzr fun(‘lzons of variable z.. Being Holder functions of variables P € S‘,
or\/_pﬁ 0< vV <L, ppes? (PE S% or Vo, 0 < v L1, Pa € §2) with indcx
pw e (0, 1/8), the kernels (4.35) (kr’rnels (4.86)) considered as funciions of P € RS, p. € R
(P' € RS, pj € R3), can be embedded in their lolality in B(0,p) with 0 and ., the arbitrary
numbers such that 0°€ (3/2, 0p) and ' €’(0,1/8): Al |Imz|> 6 >0 one can take p=1. ‘

(4.35)

(4.36)

Let us comment the assertion of the theorem for example of the matrices (A1J$)(:). Note
in parhullar that continuation on I[( )+ ofthc form (F, (Q(")Jg)(}:)f) = En (['m (t‘,Jg)(: )‘f.,)
is described . by the equalities . ) ) e

' ’ 4(['nﬂ’(t‘c,J* fa : /dk /dk' /a’p /(I.u sm wheosfu! x| .
(437) ‘ |

xta(k,,,,\/;coswak(',,zcos w ) kmj:\/_smwapn) f(,(wn,kn,pn)

where w!, k! ,13:, arc the hyperqphcrxcal coordmatcs [2‘)] of the point’ e 95. whi € [O 7/2 ]
ic' ,Ph € Sl Note also that’ /' = {coswok B sm.uapn} and d P’ =sin®w cos? W, (lu. (lL il i
a measure on S°.

'l he analyhcal (oxxflnlxatloxx on [I( ) of the form (l’ (O“)J(f,)(h":t iO)f)’ié given by

@38y (F,(Q“’JI,)(:)f) 3 QE)+QEasl)

o3, afd

15:



where

)=z

1 1
Qiaslz T, ﬁ[/dk /dp,,/dk /dﬁ;/duﬁ-/du'\/.?\/l_.;‘fx
52 0 0

52 52
(4.39) : B (kas VEV752) - fa mkm\/_l’e
Uy = 2¢ag VPV (o, ) — angzO
(ks KN (V2 S5Pay VEVVR), 2(1 — 1)) X
 ta(ES (VY Bl Vaupa), VT = Pk, 2(1 = ')

and

Qzana(z) 4 ﬁl/dk /dPa/dk' /dpg/dpx/_ /a’u VT = vx

52 rE

(4.40) o Folka 2/pba) - fo(VT= u"ic'ﬂ,ﬁzs;,) y
P+ 20— 2apVIASBVY (P, By) — 5242
% ta(ka, KO E /B, vZVV'By), 2 — p) X
x ta(kS Vs /pa)s VEVT = kY, 2(1 = o).

Here, by I'f () we understand a path of integration beginning at z and gomg clockwise
(counterclockw1se) along the circumference C),; having radius |2| and centered in the origin.
After the path crosses the real axis, it goes further along this one so that the rest of I} (T;)
consists of the points p'= A+ i0 (p =A+10), X € (Jz|, +o0). *

Boundaries of the holomorphness donrams H(,,O):t of the form (F, (Q“)JE)(Z)f) are found
as a matter of the fact, from those requirements that the poles of T-matrices ta(-y -, 2(1 = v))
and tg(-, -,2(1 ~ ¢')) which are present in the integral (4.39), have not to-manifest itself
in above domains. Also, we require the same from the poles of T-matrices to(-, -,z — p)
which are present.in the integral (4.40). If z. €. (—00, Apay] then the appearance conditions
(1 -v) = )\a,, 7=12..,n, (1 - V') = dgx, k=1,2,..,ng, for the poles of the T
matrices t(, (1 - u)) and to(+; -,2z(1—v")), are valid for no v, v’ € [0, 1]. The appearance
conditions z — p = Aa,jy .J = 1,2,...,a, of the poles of t,(-, -,z — p) may be realized if only
the contours T'Y include into 1tself more than one fourth of the circumference C),|. However
their’ contrxbutlon to Q2 (z) arising. when the points p = z — A, ; cross contours 'Y, may
be always taken into account using the residue theorem. We shall not present here respective
formulae. Note only that taking of residues in the points p = z — A, ; transforms the minor
three-body pole singularities of the integrand of QZ‘aﬁ( ) into those of the type (z — Ao ; +

20" = 24p1/21/z — Aa jv/V'n —5Z52) 7). Location of such singularities is described by Lemma 4.
The iteration Q) (z) kernels Fog(P, P', 2), Zojis(Pas P’y 2), Jo:pk(P,p5,2), and

K:a’j;g‘k(pa,p;,,z), P,P' € R® pa,ps € R3 have more weak singularities {24], [29] than

the Q(1)(z) components. When continuing the form (F,(Q(Z)Jg)(z)f) we get for it the

representations which differ from (4.38)-(4.40) mainly in replacement of the distributions
{2(v 4 V' = 2eap/OVV (ParBy) — 825 F10)}7!, 0 < v €1, 0 < ¥ < 1, with functions
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singular as

1 YR —2) o5 (1 = ) + learwpa = cor/'B)|
=7 -
2leavbo o Bpl [ (1= 02) 4 fsh (1 = ) = feawba = cant'B)|

(4.41)

The kernels Fog(P, P, 2) Za,jig(Pay P’ 2), TJasgk(PsP5,2), and Ka,ji.k(Pas s, 2) of the iter-
ation @®(z) = (—t(2)Ro(2)T)*t(2) are still singular. Though their singularities are weak,
continuation of the kernels Q(s)Jf)) (2) on the domains I:I,(,O):t we understand as before in

a sense of distributions over O(C¢). So, we realize it following the same scheme as for the
continuation of (Q(’)Jg) (2) and (Q(z)Jf)) (2)-

THEOREM 6. The matriz (JOMJ")( ) (the operator (JOTJO) 2)) admits the analytical contin-
uation in z from the rims of the cut z = E £10, E > 0, on the domains [I(O)i € C* asa
bounded operator in Go (in ’Ho). For all this (JOMJf)( ), z € H(O)i, admits the representation

[cf. (4.5)] (JOMJT)( )= Z(JOQ(")JE)(z) + (JoWI})(2): The operators (JoQI})(z) and
n=0
(JUQ(I)J )(z) are bounded matriz operators in Go with singular kernels. Hamng weakly singular

kernels the matrices (JOQ(")Jt)( ), n=2,3, are compact operators in go To that end kernels
of matriz (JOWJE)(z) are Holder functions of their arguments with the indez p € (O 1/8)

. +As a comment to this theorem we present explicit formulae for the kernels of the operators
(3,Q3%)(2) and (JoQWIL)(2). o o

The first of them have the form (JOQ( )Jf) (P, PLz) = 6ag(J0taJ(t))(P,P’,z), o, =
1,2,3, where - : ‘ »
(Jgtan)(}s, P, z) = tao\/7 cos Woke, Vzcos W'aks, z cos? Wy ) X
% 6(v/Z sinwapPa — VZsinwapl). - k -

Here, Wa, as Pa a.nd wa,ka,p are coordinates of the pomts P = {ka,pa} and Pr= {k;,pa}
on hypersphere S$°. We mean here that

(4.4'2)

o 65, )6 — )
(4.43) §(vzsinwp — Vzsinw'p') = Sign Imz - (Vo) sinfweosw’

where 6(p, 7') is the kernel of the identity operator in L3(S?). The denominator (VZ)3sinweosw
of the right-hand part of Eq. (4.43) represents analytical continuation of the Jacobian for re-

spective replacement of variables.
Therefore the operator (Jot Jo) z) acts at Imz # 0 on f € ’Ho as

(Qetalh)()7) (P) = S‘(g“ s / a,

(4.44) - % ta(Vz coswaka, \/;coswaka, 2 COS wa)f(coswal};,sinwaﬁa).
- The operators (JOQ“)J")( )s ﬁ(o)i have the kernels
(@) 10 ]
’ . 1 1— t (ka,ka ,Z(I—V)) tﬂ(k kﬂ1 (1_‘/))
(To2Wat) (P Plz)=-~ 2. N T
‘509‘ v+ v - 2‘3013\/— (pa’p'ﬂ) - saﬂ Fe
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where ko = V2V T = vka, ky = avT = vk, k) = kP (2\/Upa, VaVipy) and k) =
l;éa)(ﬁ\/;ﬁfj, VZ/Vja ). At the same time v = sin®w, and v = sin?w}.

Main singularities of the kernels (JOQ(Q)Jg)aﬂ(f’, P z)in P, P’ are described by Fqs. {(4.41).

Singularities of the kernels (JDQ(")JDGI’(P, P', z) are more weak.

THEOREM 7. The operators (JOMT\I)JD(Z) : ’):ll — Qo, (Jl\IJ‘TMJB)(z) : ng — 7:11,

’j},l(z) : Hy — Ho, and Tyo(2) : Ho — Hy admit the analytical continuation from rims of the

cut z = E %10, E >0, onto the domains I'I,(,O)i C C* “including the points z € ﬁ,&mi N lI,(,ﬁ”)
B.j

satisfying the additional conditions

|so4/? L (1 + [es])?

Rez >
(T lea )2 ™7 lsp P31

(Im2)%.

fJorany B,y =1,2,3, B# v, and j =1,2,...,ng. For all z € H,(,O)i including the boundary
points z = E £10, E > 0, these operators are compact. ’ i .

Later, we shall use the notation
(4.45) ni® = nP* g,
where li = (loiyll,lr--yll,n“lZ,h---;lz,nzy13,1,-,--713,7;3) with lg: - :tl, la_j = 1, a = 1,2,3, _] =
1,2, .m0, and I = (0, Iy fing, 125wy Lzings B0 ooey l3,ny) With the same Iy ; as I£. Re-
member that the sets HI((};‘)’I) = Hl((l:‘)’zl) were defined by Egs. (4.31). oo

As follows from Theorems 3, 6 and 7, the total three-body scattering matrix S(z), z =
E+1i0, E>0, admits the analytical continuation as a holomorphic operator-valued function,
S(z) : Ho ® Hy — Ho & H,, on the domain Hfiml) C C*. Forany z € H,(i"(’l) the operator S(z)
is bounded. In equal degree the same is true for St(z2).

5. DESCRIPTION OF (PART OF) THE THREE-BOD
RIEMANN SURFACE ‘

By the three~body energy Riemann surface we mean the Riemann surface of the kernel R(P, P/, z)
of the Hamiltonian H resolvent R(z) considered as a function of parameter z, the encrgy of
three-body system. : .

' One has.to expect this surface as well as that of the free Green function Ry(P, P',z2)
to consist of infinite number of sheets already because the threshold z = 0 is a logarithmic
branching point. Actually the Riemann surface of R(P, P', z) is much more complicated than
that of ‘Ry(P, P’,z) because besides z = 0 it has a lot of additional branching. points.  For
example the pair thresholds z = A, ;, « =1,2,3,  j = 1,2, ..., n,, become square root branch-
ing points of this surface. Also, the resonances of the pair subsystems turn into such points.
Extra branching points are generated by the boundaries of supports.of the function (4.23)
singularities which were described in Lemmas 1, 2 and 4.

In the present paper we restrict ourselves to consideration of a “small” part of the total
three-body Riemann surface for which we succeeded to find the explicit representations ex-
pressing analytical continuation of the Green function R(P, P’,z), - the kernels of the matrix
M(z), as well as the scattering matrix S(z), in terms of the physical sheet [see the formulac
respectively, (6.8), (6.9) and (6.11)]. Namely, in the Riemann surface of R(P, P, 2) we con-
sider two neighboring “three-body” unphysical sheets immediately joint with the physical one
along the three-body branch of continuous spectrum [0, +oo). Besides, we examine all the

i8

“wo-body” unphysical sheets, i.e. the sheets where parameter z may be carried if the rounds
of two-body thresholds 2 = Aqj, @ = 1,2,3,- 7 =1,2,...,n,, are permitted but.the crossing
of the ray [0, +00) is forbidden. Evidently, the part of the three-body surface described in-
cludes all the sheets neighboring with physical one. The above sheets are of most interest in
applieations. P .

A concrete description of the part under consideration we give using the auxiliary vector-
function f(z) = (fo(2), fi(z), f2(2), f5(z)), where fo(z) = In2z and fu(2), @ = 1,2,3. are again
vector-functions, fa(2) = ((z — Aou) V%, (2 = Aa2)/% oy (2 — Aama)?).

The Riemann surface of f(z) consists of infinite number of the copies of the complex plane
C’ cut along the ray [Amin: +00). These sheets arc sticked together in a suitable way along rims
of the cut segments between neighboring points in the set of thresholds As,, 0 =1,2,3, ;=
1,2, .10, and Ag = 0. The sheets Il 11, of this surface are identified by the indices of
branches of the functions fo(z) = Inz and f,;(z) = (z — As;)”/? in such a manner that l is
integer and l,, a = 1,2,3 are multi-indices, I = (Ia1y lau2s oy lama )s laj = 0,1. For the main
branch of the function fa;(2), @ = 1,2,3, j = 1,2,...,n,, we take l,; = 0, and otherwise
l,; = 1. In the case if there cxist coinciding thresholds i.e. Ao = Ag; at a # andfor i # j
{this mcans that discrete spectra of the pair Hamiltonian coincide partly though for two pair
subsystems or though one of the pair subsystems has a multiple discrete spectrum) then on
the each sheet Hy, 1, indices I, ;-and Ig; coincide, too, =l ;. As lo we choose the number
of the function In z branch, Inz = In|z| + iwe + i27ly with po, the-argument of z. = = |z]e’*°.
0o € [0,27). Shects [lg1,1, are sticked together (along rims of the cut) in such a way that
if parameter'z going from the shect Il 1,1, crosses segment of line between two neighboring
thresholds ‘A, ; and Agj, Aai < Apj (0F Amax and Ag) than it comes to the sheet Iy . with
indices [, 4 corresponding 10 Ak < Aai (Ayk < Amax) which change by 1. For all thisif I, = 0
then l;'k = I; il I,x = | then l;,k = 0. Indices I, i for A,k > Asi and Iy stay unchanged;
Le=Lxl = lo. In the case if parameter z crosses the cut ou the right from the three- body:
threshold Ao (at E > Ag) then all the indices [,% change as was described above. Besides,
the index lp changes by 1, too. If at that, z crosses the cut from below up then /i = Ij+ 1.
Otherwise I, = Iy — 1. Further, by ! we denote the multi-index [ = {lo, 1, 12, i3). : :

Thus, we have described the Riemann surface of the auxiliary vector-function ().

As mentioned above we shall consider only a part of the three-body Riemann surface which
will be denoted by ®. We include in R all the sheets II; of the Ricmann surface of the function
f(z) with lp = 0. Also, we include in R the upper half-plane, Imz > 0, of the sheet 1I; with
Iy = +1 and the lower half-plane, Imz < 0, of the sheet T1; ¢ [ = —1. For these parts we keep
the previous notations Iy, lp = %1, assuming additionally that cuts are made on them along the

. 3 ‘
rays belonging to the set Z, = U 2. Here, 212 = {z:2=zp 1< p<to0. 3 € ath
a=1 .
is a totality of the rays begiuning at the resonance points z, € al&) of the subsystem o and
going to infinity along the directions 2, = 2 [ o

The sheet TI; for which all.the components of the multi-index ! are zevo, Iy = 1, ; = 0.
a= 1,23, j = 1,2,..,n4, is.called the physical sheet. The unphysical sheets 1L with
1o = 0 are called the two-body shects since these ones may be reached rounding the two- body
thresholds only and it is nol necessary to round the three-body threshold Ag. The sheets 11,
at Iy = %1 are called the threc-body sheets.

On the base of Sec. 4 results one can prove the following

LEMMA 5. For each two-body unphys]i/cal sheet 11 of the surface R there exists sueh a path from
the physical shect llg to the domain Hfhf’l) of I1; going only on the two-body unphysical shecels
1y that moving by this path, the parameter z stays always in respective domains Il},h”n C Hp.
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6.‘ CONTINUATION OF THE FADDEEV EQUATIONS AND
REPRESENTATIONS FOR MATRIX M(z), SCATTERING MATRICES
AND RESOLVENT ON UNPHYSICAL SHEETS

In the present section we formulate main results of the paper. In view of space shortage their
proofs will be given in the following paper {43]. Here we outline only schemes of the proofs.

We begin with description of continuation on unphysical sheets of the Faddeev equa-
tions (2.4).

Let L) = diag{lsi, lo2s---» lama} be the diagonal number matrix constructed of the
components a1, la2; s long Of the multi-index { identifying a certain sheet 11, C R. Yor all
this L, ({) = diag{LM, L@, L®Y} and L(I) = diag{Lo, L1} ¢ Lo = lo.

Let sq1(z) be the operator defined in Ho by

(6.1) Sai(2) = o + Jo(2)ta(2)I8(2) Ao(2) Lo, = € I,

It follows from Eq. (6.1) that s,; = foat lo = 0. If Jy = £1 then according to Egs. (4.42)-(1.44),
the operator s, (2) is defined for z € Py(]C* and acts on f € Hy as -

(6.2) ' (Sa,l(z)f)(p)%/dl::lsa(z:cn];:,yZC052w)f(COSLuaiC;,Sinwaﬁa),‘
N sz i . .

where P = {éos Waka, sinw,Pa} and s, is the scattering matrix (2.16) for the pair subsystem
a. We take into account here the fact that Ip- Sign Imz = 1 for lp = 1 as well as lp = —1.
Remember that for lp = 1 the sheet II; is actually the upper half-plane C* and for Iy = —~1,
the lower one, C* (in accordance with our choice in Sec. 5 of the part R of the total three-
body Riemann surface). Therefore one can see now that on the both three-body sheets II;,
ly'= £1, the operators s, are described by the same formula (6.2). As a matter of fact, the
operators sq;(z) represent the scattering matrix (2.16) for the pair subsystem a rewritten in
the three-body momentum space. : :

It follows immediately from Eq. (6.2) that if z € Py C* \ Z{&) then there exists the
bounded inverse operator 574(z), = '

(s;}(z)f)(f’) = /d/.c'sf:l(lzta,icf,,zcoszwa)f(coswaI::;,sinwaﬁa) where s21(k, I;:',C) stands for

the kernel of the inverse pair scattering matrix s,(¢).

The operator s;'l,(z) becomes unbounded one at the boundary points z belonging to rims
of the cuts (“resonance” rays) included in A
THEOREM 8. The absolute terms to(P; P', z) and kernels (toRo)(P, P', z) of the Faddeev equa-
tions (2.4) admit the analytical continuation in a sense of distributions over O(C?) both on
two-body and three-body unphysical sheets I1; of the surface R. The continuation on the sheet
[‘[1 UIlth I = (lo, 11,1, seey l]_,.”lgvl, ey 12',12,[3'1,...,13'"3), Io = 0;‘13_1' = 0,1, or l(] = :tl, Ig’j =1
(in both cases f=1,2,3, 7 =1,2,...,ng) read as '

(6.3) tl(z) = t"(z)ln, =ty — LvotaJ(t,S;}Jgt‘a O ACYICH (CF S

64) {ba(2) Ro(2)]ly, = th(2)R(2)

where Ri(z) = Iio(z)ln[ = Ro(2) + LoAd(2)3}(2)Jo(2) is the continuation [39] on I1; of the
Jree Green funclion Ro(z). If lo = 0 (and consequently, II; is a two-body sheet) then the
continuation (6.8), (6.4) can be made on the hole sheet Il;. For ly = £1 (i.e. in the case
if Tl; is a three-body sheet) the form (6.3), (6.4) continuation is possible only on the domain
Py 11;. Al the kernels in r.h. parts of Eqs. (6.3) are taken on the physical sheet.
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Proof of the theorem is based on utilizing the properties of the Cauchi type integrals (see
Lemma from Sec. 2 of Ref. [39]), which are the integral terms of Eqs. (2.4). ’

Using Egs. (6.3) and (6.4) one can rewrite the Faddeev equations (2.6) continued on the
sheet II; in the matrix form

(6.5) M'(2) = t!(z) ~ t'(2)Ro(2) TM'(2)
sznsh) t/(z) = t — LoAotd s, It — ®IIL, A1 1,87,
(6.7) R(2) = Ro(2) + LoAo(2)I}(2)Io(2)-

Here, si(z) = diag{s1(2),s24(2),82.(2)}- By M!(z) we denote a supposed analytical continu-
ation of the matrix M(z) on the sheet I,. .

THEOREM 9. The kernels of the iterations Q™ (z) = ((—tRoY)"t)(2), n 2 1, allow, in'a
sense of distributions over O(C®), the analytical continuation on the domain Hfh"l) of each
unphysical sheet I1; C R. The continuation is described by Q(")(Z)In, = ((—t'R{T)"t)(2).

REMARK 2. The products ~ LiJ; U*TQM),  QUITWIIL;,  LoJoQ,  QMIIL,
LU TOMTI L,  [o30Q™3tLe,  LiJ ¥ TQMIL, and LoeJoQMMYWIIL,, 0 <
m < n, arising at substitution of the relations (6.6) and (6.7) into Q(")(z)|n‘, have to be
understood in a sense of the definitions of Sec. 4.

REMARK 3. Theorem 9 means that one can pose the continued Faddeev equations (6.5) only
in domains 1™ C 11;..

Construction of the representations for M'(z) consists actually in an explicit “solving” the
continued Faddeev equations (6.5) in the same way as in Refs. [39], [40] where the type (3.2)
explicit representations had been found for analytical continuation of T-matrix on unphysical
sheets of the energy Riemann surface in the multichannel scattering problem with binary
channels. Utilizing the expressions (6.6) for t/(z) and (6.7) for R!(z), we begin with transfer
of all the summands including M'(z) without Jo and J; to the left-hand part of (6.5). Then
[for z ¢ o(H)] we inverse the operators I + t{z)Ro(z)T, using the relation (I+tRoT)™! =
I— MTR, (see Ref. [29]). Introducing the new unknowns

XY = [Lojs; 3o(I — tRo) T MY,
X0 = Ly [0 Ro + AoLod1 073530 TM',

we obtain for them a closed system of equations which was succeeded to solve explicitly.
Expressing then M'(z) by x§ and X{? one comes to the desired representations for M'(z).

THEOREM 10. The matriz M(z) admits in a sense of distributions over O(C®), the analyt-
ical continuation in z on the domains Hfb"l) of unphysical sheets II; of the surface R. The
continuation is described by .

o a7 Jo M
(6.8) M =M- (MQ*JJ,, oJ] + M‘I‘\IIJ{) LAST'L ( UM 4 1,0 )

where Si(z) is the truncated scattering matriz (4-19), L = diag{lo, 1,15, linas 12,1545 L2005

Iy1, o lany} and L = diag{llol 1yerrs By 1150 lomay 11, nr lang}. Kernels of all the
o;‘r;erators in the right-hand part of Eq. (6.8) are taken on the physical sheet.
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Note that LA S;'(z)L = L[S}(2)]=! AL. Thus, the relations (6.8) may be rewritten also
in terms of the scattering matrices S,t(z). It is clear that these relations may be rewritten in
terms of symmetrized (truncated) scattering matrices [28], too.

The representations for continuation of the (truncated) scattering matrices Si(z), Si(z):
Ho ©H; — Ho ®H, and S't( ), - S, ( z): Ho®Hy — Ho @ 'HI, follow from the representations
(6.8) for M!(z). Before writing ﬁnal formulae we make some remarks.

First of all, we note that the function Ag(z) is univalent. It looks as Ag(z) = —=iz? on
all the sheets II;. At the same time after continuing from Il on I, the function Ag;(z) =

—7miy/z — Mg ; keeps its form if only lg; = 0. If I3; = 1| this function turnsAinto Ap(z) =
—Ap,;(z). Analogous inversion takes (or does not take) place for the argurents P, P/, p, and jj;

of kernels of the operators JoRMQUI!, JoQMTI!, J,¥*T MQJ} and J, ¥ (TV+TMT)\IIIT :

too. Remember that on the physical sheet Ilo, the action of Jo(z) (Jt( )) transforms P € R% in
VzP (P' € R%in /zP'). At thesame time, p, € R® (pj € R®) turns under J, () (Jf 2D
into \/z = Aaipa  (\/z — Ag;jP). Therefore we introduce the operators £({) = d]ag{&, &}
where & is the identity operator in ’Ho if [y = 0, and &, the inversion (&, f)(P) f(— P)
lo = £1. Analogously, & (I) = diag{&€1,1, ..., Eins 21y -es Erings €31, ooy Eamy } Where g5 is the
identity operator in (%) if lg; =0, and EgJ, the inversion (Eg;f)(Pg) = f(—pg) if lg; = 1.
By ei(!) we denote the diagonal matrix e;(I) = diag{e11,...€1n; €21, -1 €203} €317 -2y €3y }
with the elements ep;=1iflg;=0and ep; =~1iflg; = 1. Let e(l) = diag{e,e1} where
e = +1.

THEOREM 11. If there exists a path on the surface R such that at moving by it fmm the
domain H( ol) on Ily to the domain H(honﬂﬂh"l on Ily, the parameter z stays on intermediate

sheets i always in the domains H‘h"l)ﬂm}?}, then the iruncated scattering matrices S)(z)

and 51( ) admit analytical continuation in z on the domam H(h"l) N I5! of the sheet Ly, The
continuation is described by

(6.9)

i

Ay, = EW) [i +I7L Ae(I') _‘Z'J'L' AS; ETL Ae(z')] (1),

(6:10)  SH(2)

i

g:(l’)'[i +e(l)A LTL - (VA LTI [S})* 4 1/']'11] (1

m,

; 7 ' I ’ ’ i ’ {3 4 3
where L' = {lm Bl 1300 lomys 13,1a--- 3n3} and ' = {Il L B ln,v lz,p---vlz,nzr

. li’l,l’ 1"1 Rk }
As we have established; the kernels of all-the operators present in the right-hand part
of expression (2.7) for the resolvent R(z) admxt in a sense of distributions over O(C®), the

analytical continuation on the domains H( of unphysical shects II; C R. Hence, the kerncl
R(P, P!, 2) admits such representation, too

THEOREM 12. The analytical continuation, in a sense of dzstrzbutwnc over O(CP), of the
resolvent R(z) on the domain H( D of unphysical sheet Il C R is described by the formula
R(z)|y, = R+ - S
Jo[l - VR}
J1¥[I — TMR,)!

Kernels of all the operators present in the rlght hand part of Eq. (6.11) are taken on the
physical sheet.

(6.11) +({I - RVIJE, Q- RoMTIWI)LAS L (

Note that in’their structure, the representations (6.11) are quite andlogous to that for

analytical continuation of the two-body resolvent (3.7). Proof of the expressions (6.11) are-

based on immediate using the representations (6.8) for M*(z).
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o .Hpencrannennn zmsr Tpexqacruqnon T—Mannum :
Ha He(pnanecxnx JIHCTAx’ :

: jo6nac*reu npnmenuMocrn nonyl{e}mmx npencrasnemm

j‘mooona OI’ISII/I

MOTOBIIOB A K. e e ERE ';,:ES-_‘95¥45.

. A - . - Ly _' .

(DOPMyJXpr}OTCSI SIBHbIC npeucrarmemm IIJISI ananwmqecxoro HpOIIOJI-
)KCHHSI l\O\lHOHCHT (Da;meesa Tpexqacmqnon T—ManHubI Ha HCQ)HBHHCCKHC
JIMCTBI pHMaHOBOH ﬂOBCpXHOCTH SHGpI‘HH Comacno STHM npencrasnennnm

‘T—Manuua Ha Hedmanecxux JIHCTAxX BEIPAXAETCS B TepMuHax €€ KOMIIOHEHT, ' |.

OTHOCSILUUXCS . JIMIIb - K (bnarmecxomy JHCTY. “Ha OCHOBE npencrannennn’
ans T-m anHum (popmynnpyrorcn AHAJIOrHUHBIE HpeIICTaBJIeHHSI IS anannrn— |
YECKOro' TIPONOJIKCHUSL: MaTpui paccc;nmsr M pCSOJXbBCHTbI Ilano onncamre _

A/
DES

Paoora BblﬂOJIHCHa B .IIaGopaToprm Teopernqecxou (bn:-mxn HM H H Boro-\

B ITpenpunt OGbEAMHEHHONO MHCTHTYTA SACPHBIX HCCEAOBAHMH. Jly6ua, 1995 -

-of the energy Rremann surface: Accordmg to the representanons the T—matnx’

3 on the phys1cal sheet only The representatlons for T-matrix are used thenﬂ .

o kof Theoreucal Phys1cs JINR e

MotovrlovA K : : . : g ’ E5 95- 45,’
Representatlons for Three Body T mamx on Unphysncal Sheets : SE :

Exphcu represemauons are'formulated for the Faddeev componentsr
of < three—body T-matrix * continued: andlyucally on unphys1cal sheets:

‘on unphysncal sheets is obv10usly expressed in terms of its components taken'| .

o _construct s1m11ar representanons for. analyucal continuation of three-body | .-
scattermg matrices and resolvents Domains on unphy51cal sheets are descrlbed A
where the representauons obtamed can be apphed

‘. The mvesugatlon has been performed at the Bogollubov Iaboratory
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