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1. INTRODUCTION 

Hesonances are one of the most interesting phenomena in scattering processes. 'The problem of 
defining and studying resonances in quantum mechanics is payed a lot of attention in physical 
and mathematical literature. In recent years, the investigations of resonances in few-particle 
systems attract a growing attention. The role of such resonances is well known in physics of 
nuclear reactions and astrophysics. · · 

Developing methods for studying resonances has a long history beginning from the paper 
by G.Gamow [1]. In this paper devoted to description of a-decay, it was discussed for the 
first time a relation of resonance states to complex poles 6f the scattering· matrix (it should 
be noted however that complex frequencies were considered much earlier, e.g. by J.J.Thomson 
in 1884). For spherically symmetrical potentials, the interpretation of resonances in two- body 
problems as· poles of an analytic continuation of the scattering matrix was rigorously based in 
the known papJr by R.Jost [2] (for further references in this direction sec e.g. the books [3] 
and [4]). _ ' · . ·. . 

Approaches to interpretation of solutions to the Schrodinger equation (so-called Gamow's 
vectors) corresponding to resonances are discussed in Refs;' [5]-(7] (see also literature cited 
therein). · · 

Idea to interpret resonances as poles of analytical continuation of the resolvent kernel 
for the Schriidinger operator ( or matrix elements of the resolvent between suitable states) is 
realized in [8]-[16] (see also Refs. cited in these papers and in the books [17], (18]). Such 
interpretation became 'a basis for the perturbation theory for two-body resonances which is 
well developed now (see. (11], (12], (17]). 

In the case when support of interaction in -a system of two particles is compact with 
respect to relative coordinate, the approach (19] by P.Lax and R.Phillips 'may be applied (this 
approach was created initially for acoustical problems). The Lax-'-Phillips approach allows to 
describe resonances as a discrete spectrum of a dissipative operator representing generator of 
contracting semigroup. At present, the Lax-Phillips scheme is realized only in those scattering 
problems which generate the energy Riemann surface2 with two sheets of the complex energy 
plane (see Refs. (20); (21]). In multichannel scattering problems, the approach above is partly 
realized in [22]. · 

Beginning from 1970-es, the complex scaling method (10], (14] is applied to investigation 
of resonances (see also Refs. [15] and (18]). This method gives a possibility to rotate the 
continuous spectrum. of Hamiltonians in such· a way that ·certain· sectors become accessible 
for observation on unphysical sheets neighboring with physical one. Resonances situated in 
these sectors turn into a part of the discrete spectrum of the Hamiltoriian transformed. The 
complex scaling method may be applied in the cases when p<lte.ntials are analytical functions 
of coordinates. This method allows to compute location of resonances in_ concrete physical 
problems (see, e.g.· Refs. (15], (23]). As regards the structure of the scattering matrix and 
resolvent continued on unphysical sheets, this method gives not to_o large capacities. 

Many important conceptual and constructive results (see (24]-(29]) for the physical sheet 
in three-body scattering problem are known to have been obtained on the base of the Faddeev 
equations (24] and their modifications. In particular the structure of resolvent and scatter­
ing operator was studied in details, completeness 6f the wave operators was proved and the 
coordinate asyinptotics were studied in the case of quickly decreasing as well as Coulomb 
interactions3 (24], (28], (29], (32]. Analogous results were obtained also for singular interactions 
described by the boundary conditions of various types (32], (33]. On the base of the Faddeev 

2The latter is understood usually as the Riemann surface of the resolvent kernel considered as a function of 
energy or as that of the resolvent bilinear form restricted on certain subsets of Hilbert space. Such operator­
valued functions as the T- and scattering matrices have usually the same Riemann surface since these functions 
are closely related to the resolvent. , . 

3The new approaches (30], (31] (see also literature cited in (31]) have been developed recently in abstract 
scattering theory for N-body systems which allow to prove existence and asymptotical completeness of the 
wave operators in the case of pair interactions decreasing at the infinity as r-e, {! > v'3 - 1, i.e. substantially 
slower than Coulomb potentials. 



equations, the methods of investigation of concrete physical systems were developed [29], [32], ~.~. . 
As to the unphysical sheets, the situation is rather different. Here, when solving a concrete 

N-particle problem one usually restricts himself with developing some approximate numerical 
,algorithm to search for resonances on unphysical sheets· neighboring with physical one. A 
survey of different physical approaches to study of three-body resonances in the problems of 
nudear physics can be found in Ref. [36). A number of rigorous results (see [18]) is obtained 
in framework of the complex scaling method [10], [14], [15). These results touch first of all 
the proofs of the existence of analytical continuation of resolvent in the N-body problem with 
potentials holomorphic with respec_t to the scale transforms. In Ref. [37], a proof is given for 
the existence of analytical continuation for the amplitudes of processes 2-> 2 in the N-particle 
system across the branches of continuous spectrum below the first breakup threshold of the 
system into three clustern. J • 

A goal of the present work consists in analytical continuation and investigation of the 
structure of three-hody T-matrix, scattering matrices and resolvent on unphysical sheds of 
the energy Riemann surface. The interaction potentials are supposed to be pairwis<! and 
decreasing in coordinate space not slower than exponentially. When constructing a theory of 
resonances in the two-body problem -with such interactions one can use the coordinate a-, well 
as momentum representations. However, it is clear a priori that the analytical continuation 

-of the'three-body scattering theory equations [24], [29] on unphysical sheets becomes a very 
difficult problem if the equations are written in configuration space. . Thing is that. there 
exist i10ncompact (cylindrical)· domains where interactions do not decrease. Meanwhile, the 
kernels of the integral equations continued increase exponentially. Their solutions have to 
increase exponentially, too. This means that the integral terms become divergent one, and 
the coordinate space equations lose a sense. In the momentum space, the integral terms of 
the scattering theory equations, e.g. the Faddeev equations for components of 7'-matrix, are 
actually the Cauchi type integrals analytical continuation of which (in a sense of distributions) 
is a solvable problem. A continuation of such kind on unphysical sheets neighboring with 
physical one was already realized for the s-wave Faddeev equations in the paper [38/ (se~ 
also Ref. [36]) for the case of separable pair potentials. In the present paper, we construct a 
contimiation.ofthe Faddeev equations in.the case of sufficiently arbitrary1pair potentials not 
only on the neighboring unphysical sheets but also on all those remote sheets of the three· body 
Riemann surface where is possible to guide the spectral parameter (the energy z) going around 
two-body thresholds. . . 

Main result of the paper consists in a basing of existence of analytical continuation on 
unphysical sheets of z for the Faddeev components MatJ(z ), a, /3 = 1, 2, 3, of the operator T(z) 
and a construction of representations for them in terms of the physical sheet [see formula (6.8)]. 
According to· the representations, the continued matrix M(z) of the Faddeev components, 
M =""{M0 /J}, is explicitly expressed on unphysical sheets in terms of this matrix itself taken 
on the physical one and some truncations· of the scattering matrix. Kind of the truncation 
is determined by the index (number) of the unphysical sheet concerned. Note that structure 
of the representations is quite analogous to that of the representations found in the author's 
recent works [39] and [40] for analytical contin_uation of T-matrix in multichannel scattering 
problems with binary channels. Representations for analytical continuation of. three- body 
scattering matrices follow immediately.from the representation aboye for M(z} [see Eqs. (6.9) 
and (6.11)]. Asfollows from ihe explicit representations (6.8), (6.9)and (6.11) obtained by us, 
the singularities of T-matrix, scattering matrices and resolvent on unphysical sheets differing 
from those on the physical one (poles at the discrete spectrum eigenvalues of the Hamiltonian), 
are actually singularities of the operator-valued functions of z inverse with respect to suitable 
truncations of the scattering matrix. Consequently, the resonances (i.e. the poles of T-matrix, 
scattering matrix and resolvent on unphysical sheets) are zeros of certain truncations of.the 
scattering matrix taken on the physical sheet. 

Results of the present paper were announced in the report [41]. 
The paper is organized as follows. 
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111 Src. 2. the main notations arr describrd. Sec. 3 contains an information on anal_\·tical 
prop,·rt ics of the two body T and scat.t.ering mat rices which is necessary in subsequent sec­
t ions. Sec. I is derntcd lo description of properties of the Faddeev componc-nts of three- body 
T matrix and scattering mat rices on the physical sheet of energy. In particular, the domains 
011 ti1<' physical sh<•et arc established where the half- on-shell Faddeev components and different 
t.ru11cat.ions of the scattering matrices included in the representations (6.8). (6.9) and (6.11) 
111a_1' b<' ronsidered as holomorphic functions. \Ve justify these representations only on a n·rtain 
part of tlw thr<'<' body Hiemann surface which is described in Sec. 5. Analytical continuation 
of th<' Fadden equations on unphysical sheets is described in Sec. 6. Also: in this se~t io11. 
th<' n·1m•sc11tat.io11s ( G.8). ( G.!J) arc ( G. I I) formulated for analytical continuation oft he matrix 
J/(.::). scattering matrices and resolvent respectively. 

2. NOTATIONS 

\Ve consider a syst.<'m of t.hr<'c spin less non relativistic quantum particles. :\lm·cm<·nt of th<' 
mass cc11t<'r is assunwd to bP sPparated. For description of the system we use standard sets of 
t hr relative momenta l·". 1'<> [29]. For example 

(2.1) 
k, 

/II 

1/2 

[
m2 + tn:,] . m 2p;1 - m:,p2 
2rn2rn:, 1112 + m:1 

[
lllt + m2 + ll13] I/

2
. (1112 + lll3)Jl1 - lll1(P2 + JJ:1). 

2m1(m2 + m:i) m1 + 1112.+ 1113 

wh<•n· ma, p" arc masses and monH·nta of part.ides. Expressions for k.,. ]',, with n == 2. ;! 
nrny l,p obt.ainrd from (2.1) by cyclic perm11t.ati011 of indic<'s. l'sually 1\·e co111bi11<' r<'lat in· 
tnorn,·111.a k.,, I'<> into six-vectors /' = { k", /lo}. A choicP of cnt ain pair { k.,, Pc,} fix<'s earl Psia11 
coordinate system i11 R6 . Transit.ion from onr pair of moment.a to a not her one nH·ans rot at io11 
in R\ k" = c"11k11 + 8a/l/l/1, p,, = -,,<>fJk11 + c.-,f/Pfl, with corfliciPnts c.,a, ., 0 .1 depending 011 th,• 
parl.ick masses only [2!J], such t.hat. -I < c",1 < 0, -'~ii= I - c~,ii• r,1:, = ,."d and -',i,, = -.,,,.!• 
:i # 0. 

In moment.um representation. the llamiltonia11 // of th,· three body syst,·111 11nd<'1 co11-
sidcrat.io11 is given by (IJJ)(I') = l'2J(l') + L~=1(1\J)(l'), 1'2 = k,; + p~. f E Ho= /.2(R';). 
wit.h 11,,, t.hr p_air pot.ent.ials which arp integral op<·rat.ors in l·., with kernels 1·.,(k,,. k'., ). 

For the sake of ddinit<·11css all the potentials v.,, n = I, 2, ;!, an• supposed to he local. This 
means !.hat. the kcrn<"l of v 0 depends 011 the diffnrr1<·<• of variables k" and k' onh·. 1·,(l·,. k') 
= u,,(k" - 1.:;,). We consider t.wo variants of the pol.<'11tials l'n• hi the fir;t 011;,_ 1:,,(l-l a\\. 
holomorphic functions of the variable /,; E C'1 which satisfy the est imaf<' 

(2.2) Iv (.i,)/ < C e"oilmkJ Vl, E CC! 
" - (I+ /lc/)Oo 

with some,.> 0, a0 > 0 and 00 E (:l/2, 2). In th<· s<·rnncl variant. t.hc polcntials ,-,,(.i·) an· 
holomorphic functions with respect. t.o l, in the st.rip ll'2h = {k: k E G'. llmkl < 2b} onl_,· ,111d 
obey for /,; E W2b tlw rnndition (2.2) with a0 = 0: 

(2.:1) lvn(k)j :S (I+ /l:/)Oo Vl·: / hnk/ < 2b. 
{' 

It. is supposed tha.t i11 both variants v.,(-k) = 1-',,(A:). The la.ti.er nmclition guarant,·,·s self 
,uljoint.n<•ss of the llarniltoni,rn 11 011 the set. 'D(J/) = {J: .{(I+ /'2

)
2 //(/')12d/' < :x:) [21]. 

Not.<• t.hal i.l!P first. variant. n·q11in·mc11ts of holomorphtu•ss of 1-.,(k) in all C" and 11,, 111un· 
lha.11 expo11c11t.ial innca.sing (2.2) in / llll k/ nwa11 I.hat. t ll<'s<' potent ialsha\·<' a con1pa<"I support 
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in the coordinate space. In the second variant, the potentials v0 (k) rewritten in the coordinate 
representation, decrease exponentially. · 

By h0 , (h 0 f)(k0 ) = k~f(k0 )+(v0 f)(k0 ), we denote the Hamiltonian of the 'pair subsystem 
a. The operator h0 acts in L2 (R3

). Due to conditions (2.2) and (2.3) its discrete spectrum 
ad(h0 ) is negative and finite [18]. We enumerate the eigenvalues Ao,j E ad(h0 ), Ao,j < 0, 
j = 1, 2, ... , n0 , n0 < oo, taking into account their multiplicity: number of times to mC'd an 
eigenvalue in the numeration equals to its multiplicity. Maximal of these numbers is denoted 
by Amax, Amax= ma_x A0 ,j < 0. Notation 1/;0 ,;(k0 ) is used for respective eigenfunctions. 

O,J 

By ad(H) and ac(H) we denote respectively the discrete and continuous components of the 
spectrum a( H) of the Hamiltonian H. Note that ad( H) = (>.min, +oo) with Amin = min ,\0 ,1 • 

O,J 

Notation H0 is used for the operator of kinetic energy, (Hof)(P) = P 2 f(P). Ro(z) and 
R(z) stand for the resolvents of the operators H0 and H : Ro(z) = (Ho - zl)- 1 and R(z) = 
(H - zl)-1 where in this case, I is the identity operator in 1l0 • 

Let M0 a(z) = 80 av0 - v0 R(z)va, a,f) = 1,2,3, be the Faddeev components [24], [29] of 
the three-body T-matrix T(z) = V - V R(z)V with V = v1 +v1 +v3 • Operators M0 /l(z) satisfy 
the Faddeev equations [24], [29] 

(2.4) Moa(z) = Oo/lto(z) - t.,(z)Ro(z) L M-ya(z), a= 1, 2,3. 
•,#co 

Here, the operator t.,(z) has the kernel 

(2.5) ta(P, P', z) = t.,(k.,, k:, z - P!)o(p., - p~), 

where t.,(k,k',z) stands for the kernel of the pair T-matrix ta(z) 
r.,(z) = (ha - z)- 1

• . 

Va - v.,r.,(z)v0 with 

It is convenient to rewrite the system (2.4) in the matrix form 

(2.6) M(z) = t(z)-t(z)Ro(z)YM(z), 

with t(z) = diag{t1(z), t 2(z), h(z)} and Ro(z) = diag{Ro(z), Ro(z), R0 (z)}. By Y we denote a 
number 3x3-matrix with the elements Yao= l -oa/l· M(z) is the operator matrix constructed 
of the components Ma/l(z), M = {M.,/l}, a,f) = 1,2,3. The matrices M, t, Ro and Y 

3 
are considered as operators in the Hilbert space 90 = EB L2 (R6 ). By Q(k)(z), Q(k)(z) 

o=l 

(-t(z)Ro(z)Y/t(z), we denote iterations of the absolute term Q(O)(z) = t(z) of (2.6). 
The resolvent R(z) is expressed in terms of the matrix M(z) by formula [29] 

(2.7) R(z) = Ro(z)- Ro(z)l1M(z)ntRo(z), 

where !1, l1: 9o-, 1l0,stands for the matrix-row, l1 = (1, 1, 1)'. At the same time nt = n• = 
(1, 1, l)t. The symbol "t" means transposition. 

Throughout the paper we understand by ~' z EC, A ER, the main branch of the 
function~- A)112

; _By q we ~enote us.ually the unit _vector in the ~irectio? qE RN, q = q/lql, 
and by S; .. - 1 the umt sphere m RN, qE 3N- 1

• The mner product m RN 1s denoted by ( •, · ). 
Notation ( •, •) is used for inner products in Hilbert spaces. 

Let rt"·'> = L 2(R3 ) and rt•> = EB rt"·'l. By \fl., we denote operator acting from rt"J 
j=l ,: 

to 1{0 as (Waf)(P) = :t 1Pa,1(ka)f;(p.,), f = (!1 , h, ... ,!n0 f Notation iv: is used for the 
j=l 

operator adjoint to \fl.,. By. \fl we denote the block-diagonal matrix operator IV = diag{w 1, '112, 
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lf/ 3 } which acts from 1{1 = EB 1f(<>) to 9o and by \fl*, the operator adjoint to 1V. Analogously 

o=l 
to \l! 0 , w;, Wand iv• we introduce the operators <I>.,, <I>:, <I> and <I>*, which are obtained.from 
the former by replacement of the eigenfunctions 1/;0 ,;(k0 ) with the form-factors <f>0 ,;(k0 ) = 
(v0 ,j.,0 ,;)(k0 ), a= 1, 2,3, j = 1, 2, ... , n 0 • 

The pair T-matrix t.,(z) is known [24],[29] to be an analytical operator-valued function 
of the variable z E C\[O, +oo) having at the points z E ad( h.,) simple poles. Its kernel admits 
the representation 

(2.8) t.,(k,k',z) = - :t <l>o,;?)~(k') + i.,(k,k'z), 
j=l 'o,J 

where to(k,k'z) is a function holomorphic in z E C\[O,+oo). Therefore 

(2.9) t.,(z) = -<I.>0 g.,(z)<I>; t t0 (z), 

where the operator t0 (z) has the kernel t0 (ka, k~, z-p;)o(pa-P~) and ga(z), ga(z)=diag{ga,1(z), 
... , 9.,,n

0
(z)}, is the block-diagonal matrix with elements 9a.;(z), the operators in 1f(a,j) with 

singular kernels g.,,1(z)(pa,P~, z) = o(pa - p~) / (Aa,j - z + p;) . 
Below, we consider restrictions of different functipns on the energy shell 

(2.10) k = vzk, k E s2, 

in the two-body problem and on the energy shells 

(2.11) p = vzP, j, E s5, 

and 
(2.12) Pa= ✓z-A.,,jTJa,j, Pa,;ES2

, a=l,2,3, j=l,2, ... ,n,,, 

in the problem of three particles. In the last case the sets (2.11) and (2.12) ..re ailed rcsp('.t:-
tively three-body and two-body energy shells. , 

Let O(Ci") be the Fourier transform of the space Ccf'(RN) (we deal with N = 3 or J\i = 6 
only). Any f(q) E O(CN) is a holomorphic function in variable q = (q1, q1 , ••• , qN) E Ci': 

satisfying the estimates I aq;n•~'-~~q;N J(q)/ ~ co(!)· exp(aj Im qj)(l + jq)t', with a, the rn.dius 
of the ball centered in the origin and containing the support of the Fourier pre-image of this 

function in RN, jmj = m1 + ... + mN, and I Imqj = Jr:,f:1 I Imq;j2. As 6 one can take 
arbitrary positive number. For fixed f and m = (m1, ... , mN), the coefficient c0 > 0 depends 
only on 0. . 

Let j(z) be the operator restricting functions f(k), k E R3
, on the energy shell (2.10) at 

z = E ± iO, E > 0, and continuing them if possible, on the domain of complex values of the 
energy z. On the set O(C3 ) the operator j(z)acts as · 

(2.13) j(z)J(k) = J( vzk). 

Its kernel is the holomorphic generalized function (distribution) [42] j(k, k', z) = 8( vzk - k'). 
By jt(z) we denote the operator "transposed" with respect to j(z). Acting on 'PE L2 (S2) 

the operator jt(z) gives as a result the generalized functions (distributions) over O(C3), 

(2.14) (jt(z)ip)(k) = I dk o(k - vzk') ip(k) = o(lkl; vz) ip(k), 

S2 
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1.e. 

(2.15) (jt(z)<p,f) = J dkf(vzk)<p(k), f E O(C3
). 

S' 

Remember that in terms of the operators j(z) and jt(z), the pair scattering matrices su(z), 
s0 (z): L2(S2)-+ L2(S2), look as (index of pair is omitted) (39): 

(2.16) s(z) = i + ao(z)j(z)t(z)/(z), 

where ao(z) = -1rivz and j is the identity operator in L2 (S2
). Analyticity domain of s(z), 

z E C, is determined in a general way by properties of the pair potential v (see e.g., (3), [4), 
and also [39), (40)). ' · 

Let J0 ,i(z), a= 1,2,3, j = l,2, ... ,n0 , be the operator of restriction on the energy 
shell (2.12). Its action on O(C3

) is defined as 

(Ja,i(z)f)(fia) = f(✓z->.a,j fia), a= 1,2,3, i = 1,2,, .. ,na. 

Operators J 0 ,;(z) have the kernels Ja,;(Pa,P~,z) = o(✓z - >.a,;Pa - p~)-
By J 0 (z) we denote operator of restriction on the shell (2.-11). On O(C6

) this opera­
tor is defined as (Jo(z)f)(P) = f(vzP). Its kernel is Jo(P,P',z) = (vz)- 58(,/zP - P') = 
o( vz - IP'l)o(P, P'). 

Notations J:,;(z) and J6(z) are used for respective "transposed" operators. Their action 
is defined similarly to (2.14),(2.15) as · 

(J:,;(z)<p)(Pa) = J dp~8(pa - Jz - Aa,iP~)<p(p~), <p E H(a,i), 

S' 

(J6(z)<p)(P) = J dP'8(P - ,/zP')<p(P'), <p E Ho, 

s• 

where H(a,i) = L2(S2) and Ho= L2(S5
). The generalized functions J~.;(z)<p and Jb(z):p are 

elements of the spaces O'(C3
) and O'(C6

) of distributions over O(C3
) and O(C6 ), respectively. 

Operators J 0 ,; and J~,j are then combined into the block-diagonal matrices J(<>l(z) = 

diag{J0 ,1(z), ... , J.,,n0 (z)} and J(<>lt(z) = diag{J:,1(z), ... , Jl,nJz)}. Latter are used to construct 
oper~torn J1(z) = diag{J(1)(z), J( 2l(z), J(3l(z)} and Jl(z) = diag{J(1lt(z), J(2lt(z), J(3lt(z)}. 

The action of J(<>)(z) and J1(z) on eleme~ts of the spaces respectively, o(a) = X (')(<>,J), 
. o=1 

3 

o<a,i) = O(C3
) and 0 1 = X 0<0

) can be understood by the definition of the operators J 0 ,;(z). 
o=l 

The operators J(0 H(z) act from H(") = EB H.(a,j) to the space of analytical distributions 0( 0
)' 

i=1 

over 0(0 l. In its turn the operator J; (z) acts from H1 = 61 H(a,i) to the space of analytical 
o=l 

distributions 0~ over 0 1 • 

At last, we use the block-diagonal operator 3x3-matrices J0(z) = diag{.J0 (i), J0 (z), J0 (z)} 
and J6(z) = diag{J6(z ), J6(z), J6(z )}, constructed of the operators .J0(z) and J6(z ), respectively 
as well as operators J(z) =·•diag{Jo(z),J1(z)} Jt(z) = diag{J6(z),.J;(z)}. Action of these 
operators is clear due to definitions of the operators .J0 , .J1, .16 and JI. In particular the 

. • 3 • 3 
operator Jt(z) acts from the space 90 = EB 1{0 to the space X O'(C6 ). 

o=l o::::::l 

The identity operators in the spaces Ho, 9o, H 1 and Ho EB H1 are denoted by f0 , i0 , f1 
and i respectively. 
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3. ANALYTICAL CONTINUATION OF THE T- AND SCATTERING 
MATRICES IN THE Two:...BODY PROBLEM 

In this section we remember some analytical properties of the pair T-matrices which will be 
necessary further when posing the three-body problem. Note that above properties ar<' well 
known (see e.g., Refs [4], [3) and also [36)) for a wide class of the potentials r 0 (,:). As a matter 
of fact we want. to expose here only an explicit representation for the two-body T-matrix on 
unphysical sheet. which is a particular case of the explicit representations constructed in the 
author's work [39] (sec Theorem 2 in [39) and comments to it) for a rat.her more general situation 
of analytical continuation of T--matrix on unphysical sheets in the multichannel problem with 
bi1rnr\' channels. 

·hroughout. the section we shall consider a fixed pair subsystem. Therefore its index will 
IJ<' omitted in notations. Statements will be given for the first variant of the potentials (2.2). If 
it. will h,~ necessary, different. assertions for the second variant (2.3) will be written iu brackets. 
Also. WC' use tlH' notation 

(:LI) A={::: Rez>-b
2 +,

1
~2 (lmz)2

}. 

Remember I.hat the energy Ri('maun surfac<' in t.lw two body problem coiuci<les with that 
of t.bC' function z 1!2

• On t.hP physical sheet, z 1l 2 = .,/i, and on the unphysical one', :: 112 = -.,fi. 
For these sheets we use the notations respC'ctively, H0 and 111. 

Representation for continuation of t(z) 011 unphysical sheet which will be Us<'d further. is 
described by the following statement which is one~channel variant of Theorem 2 of Hef. [:!9]. 
TUF.OIU:M 1. The two-body T-ma/.rix t(z) allows annlytical continuation in mriablf'::: 1•11 /hr 
sheet 11 I (on the domain P,, n n l J as n bounded operator in f,2(R3 ). Result of the co11tin11atio11 

t(z)l11, ( /(z)Jp,n11J is rxpr-cssrd by T- and S· mafriccs on tht: phyi,im/ shed: 

(:1.2) t(z)J 11 , = t(z)- ao(z) r(z) 

where r(z) = (tjls- 1jt)(z). The kernel t(k, k', z)J
111 

is a holomorphir /1111clion of l'(ll'i"bfr.< 

A:,k' E C'1 and z E 111 \ (a,.,.LJad(h)) (k,k' E wb (Ind::: E An 11, \ (a,. .• LJa'.i(h)') )- /!,,.,, 

a, . .,, is a. sci of the point., z EC\ a(h) (z EA \a(h)) whcff the opernlor [8{:::)J- 1 do,.s n,;t 
exist. 

Emphasi✓,e that for the second variant of potentials (2.:1), the exist.C'nn' of t.ht• cout.inuat iou 
of l(:::) 0_11 unphysica.l sheet is guaraut.ecd by Theorem I for t lw domain ,Pb n II I hound,·d b.,· 

the parabola Im .,/i = b, inside of which lhP fund ion 1• ( .,/i(ic - i-')) is holomorphic in ::: 

for arbitrary kJ' E 8 2
• Not.P also that. t.h,, 01>C'rat.or (jtjl)(:::). inclu,l<-tl in Eq. (2. l(i). is a 

compact operator in C(S2
) [39). Consequcnt.ly on t.he domain of it.s analyticity 11 11 \ ;,,0) 

( Pb n !lo\ a(h)) Oil thP physical sheet., one can apply to t.hc <'<jllilt.ion 

(:1.:1) .,(z)A = O 

the Fredholm alternative [18] (sec Ref. [39)). This means that. t.he set. a,. .• being rn1111tabl,·. has 

not. concentration points in C \ a(h) (A\ a(h)). 

On tlu, physical sheet 11 0 , t.hc pair T matrix admits tlw n·pr<'S<'lltation (2.8). It follows 
from the Lippmann Schwinger equation for</>;, j = I, 2, .,., 11, 

(:l.l) <?i(k) = -Jdq P(k,q)-.-
1
--,<PJ(q). \ < 0. 

qi - /\j 
R.3 
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that form-factor <Pj(k) admits analytical continuation in k on C 3 (on W2b) and at. the same 
time, it satisfies the type (2.2) estimate where one has to replace 00 with a number 0, 1 < 0 < 00 • 

which can be taken in any close vicinity of 00 [24]. Hence the eigenfunction 

(3.5) 1/Jj(k) = _ <Pi(k) 
k2 - A 

J 

of h'admits also an analytical continuation on C3 (on W2b) with the exception of the set 
{k E C3 ; k2 = Aj} where 1/Jj(k) has singularities (turning fork= ..jzk, k E 8 2

, into a pole in 
energy z at z = Aj ). 

The regular summand i(k,k'z) of the kernel of t(z) is holomorphic function in var·,ablcs 
k, k' E C 3, z E flo ( k, k' E Wb, z E An IT0) and admits the estimate 

lt(k, k'z)I < c(l + lk - k'l)-0 
· exp[a(/ Im kl+ I Imk'I)], 

with arbitrary OE (l,00 ). 

As to continuation of t(zlln1, it follows from Eq. (3.2) that the points z E <Td(h) give to 
it generally speaking, poles of th~ first order. One can easily check however that if eigenvalue 
A E ud( h) is simple then' the respective singularities of the both summands of (3.2) compensate 
each other and the pole of t(zlln1 does not appear at z = A. It follows from the Fredholm 

analytical alternative [18] for Eq. (3.3) only that poles of t(z)ln1 at z E <Tres are of a finite 

order and 'no more. It is easily to show that if A(k) is a nontrivial solution of Eq. (3.3) 
at z E <T,es, z if_ <Td(h), then the Schro&nger equation (-6x + v#(x)) ijJ#(x) = z~#(x) has 
at this,z a nontrivial (resonance) solution ijJ#(x) with exponentially increasing asymptotics 

e-•vzlxl 
ij)# (x) = (A(-x) + o(l))-

1
-

1
-. The function 1/J!'e.(x) is so--called Gamow vector corre-

res x-oo X 

sponding to resonance at the energy z (see e.g., Refs. [3], [6], [7]). The function A(k) m,,kes a 
sense to the breakup amplitude of resonance state4 • 

The formula for analytical continuation of the scattering matrix on unphysical sheet IT 1 

(on the set An fl1) follows immediately from Eq. (3.2) (see Ref. [39]), 

(3.6) s(z)ln1 = £[.s(z)r1£, 

where£ stands for the inversion in L2(S2
), (t'f)(k) = f(-k). 

Utilizing (3.2) one can easily to get the explicit representation in terms of the physical 
sheet as well for analytical continuation on IT1 ( on An Ih) of the resolvent r(z) kernel 5: 

(3.7) r(z)ln, = r + il-0(1- rv)jfs- 1j(I - vr). 

The continuatioi-i has to be understood in a sense of generalized functions (distributions) over 

O(C3 ): one has to continue the bilinear fo;m <I>(z) = (r(z)fi,h) = J dq fi(q)J2(q) with Ji, 
R' q2 -.z 

h E O(C3
). 

4 Analogous assertion takes place as well in the multichannel scattering problem with m binary channels: 
solution .4 = (.4,, .42, ... ,Am) to the equation s1(z)A = 0 at resonance energy z Eu!., (in notations of Ref. (39]) 
represents amplitudes (i.e. coefficients at spherical waves in coordinate asymptotics of the channel components 
of solution to respective Schri:idinger equation) .4,(kt),.42(.h), .. ,,Am(km) of resonance on the sheet II, ·to 
breakup into channels 1,2, ... ,m, respectively. 

5Similar representations take place as well in the case of the multichannel problem. In notations of R;,f. [39] 
read them as r(z)/

01 
=r+(I::.,v)J'ALs11J(I-vr). 
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4. MATRIX M(z) AND THREE-BODY SCATTERING 
MATRICES ON THE PHYSICAL SHEET 

At the beginning, remember shortly principal properties [24], [29] of the Faddeev equations (2.6) 
for the matrix M(z) and properties of the kernels M013(P, P', z) at real arguments P, P' E R6 • 

To formulate these properties we cite here the following definition [24]. 
The operator-valued function Q013(z) of variable z EC, Q013(z): 1{0 -+ 1{0 , is the type 

D0 13 function, a, fJ = 1, 2, 3, if it admits the representation 

Q013(z) = fap(z) + <I>ag0<(z)Ia13(z)+ 
(4.1) +.:Tap(z )gp(z )<I>p + <I>aga(z)Kap(z )g13(z )<I>p. 

The operator-valued functions r 013(z): 1i0 -+ 1io; I 013(z) : 1i0 -+ 1{("), ,:T013(z) : 1{(/3)-+ 
1i0 and K013(z): 1{(/3)-+ Ji(a) are called components of the function Q013(z). IfQ113(z) is an 
integral operator then its kernel is called kernel of the type D013 . · 

Let N(P,O) = L (1 + Jpa/)-9(1 + IP13/f9
• A function Q(z) of the type D013 is called 

o,/3,otf3 ' 
the class D013(0,µ) function if its components F013, I 013, ,:T0 13 and K:013 are integral operators 
and for the kernels r 0 13(P,P',z) at P, P', 6P, 6P' E R 6 , the e~timates 

(4.2) 

(4.3) 

IFap(P,P',z)/ S N(P,0)(1 + Pµ 2r1, 

IF013(P + 6P,P' + 6P',z + 6z)-F(P,P'z)/ S 

s N(P,0)(1 + ~µ2r 1
(J6PI" + l6P'/" + l6zl") 

with certain c > 0 take place and at "the same time, the kernels I 0,j;i3(p0, P', z), .:Ta;/3,k(P,pµ, z) 
and Ka,i;/3,k(Pa,p'13 ,z) satisfy inequalities which may be got from (4.2) and (4.3) if to take 
respectively, k0 = 0, kµ = 0 or simultaneously, k0 = 0, kµ = 0. · 

Let Q(n)(z) be an iteration of the absolute term of Eq. (2.6). In a contrastto Q(?l(z) = t(z) 
kernels of the operators Q(n)(z) at n > 0 do.not include a-functions. Moreover, it follows from 
the representation (2.9) for t 0 (z) explicitly manifesting a contribution of the discrete spectrum 
of pair subsystems, that mahix elements Qi1(z ), a, fJ = 1, 2, 3, ~f the operators Q(n)(z) with 

n 2 1 are actually functions of the D013 type. Their components rl1(z), Il1(z), .;;!;\z) 

and Ki1(z) at ~ E. C \ [Xmin, +=) are bounded operators depending on z analytically. In 
the case of potentials (2.2) and (2.3), the Holder index of smoothness µ for their kernels 
with respect to variables P,P',p0 and Pµ at z if_ [Amin,+=) equals to). If n S 3 then as 

Imz-+ 0, Rez E [Amin,+=) the kernels rl1 Iij;/3> .:T~],k, and Kt];/3,k have so-called 
minor (three-particle) singularities (see Refs. [24] and [29]) weakening with growing n. At 
n 2 4 such singularities do. not appear at all and these kernels become Holder functions in 
all their variables including the limit values z = E ± iO, E E, (Amin,+=). More precise 
statement [24] is following: the operator-valued functions Q~i(z) O:t n 2 4 belong to the type 
D013(8,µ), 0 < 0 < Oo, 0 < µ < k, uniformly with resp~ct to z changing on arbitrary 
bounded set in·the complex plane C with cut along the ray [Amin,+oo). One can take as 0, 
0 < 00 , any number as close as possible to Oo. Thus, instead of M(z) it is convenient [24] to 
come to the new unknown W(z) = M(z)- I:!=o Q(n)(z), satisfyi~g the equation· 

(4.4) W(z) = w(0>(z) - t(z)Ro(z)TW(z) 

analogous to Eq. (2.6) but with another absolute term w<0>(z) = Q<4>(z). 
Immersion of Eq. (4.4) in the Banach space 8(0,µ) (a description of the latter see in 

Refs. [24], or [29]) leads one to the following important · 
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THEOREM 2 (L.D.Faddeev [24]). Eq.' (2.6} is uniquely solvable at z ff_ ad(H). Its solution 
M(z) admits the representation ' 

3 . 

(4.5) M(z) = L Q(nl(z)+ W(z), 
n=O 

where the operator-valued function .W(z) is holomorphic. in variable z at z ff_ a(H) and its 
components W0 11(z) belong to the classes V 0 11(0,µ), 3/2 < 0 < 00 , 0 < µ < !, uniformly 
with respect to z changing in arbitrary bounded· set of the complex plane C with cut along the 
ray [>.min, +oo) and remo'ved neighborhoods of the points of ad(H). 

Remember now structure of the scattering operator S [24], [29] for the system of three 
particles. For this purpose we introduce the operator-valued function T(z), T(z): 1t0(f/H1 --, 

'Ho ff! 'Hi, of z EC\ <r(H), 

1 . . . _ ( f1M{z)f1t .. OM(z)Tll! ' ) . 
(4-6) . _ T(z) =. w~T M(z)nt w*(Tv + T M(z)T)w ' 

. ' 
with v = diag{v1,v2,v;}. Note that Too(z)' = OM(z)nt' = T[z), Too(z) : 'Ho -+ 'Ho-· The 
rest cif the components To1(z) : 'H1 -+ 'Ho; 'Tio(z) : 'Ho -+ 'H1 and 7i1(z) : 'H1 -+ 'H1 is 
expressed by the transition operators [29] (see also [34]) U0 (z) = OM(z)T, UJ =TM(z)nt 
and U(z) = Tv + T M(z)T; Toi= U0 \JJ., 'Tio= l]l_*UJ and 7i1 = \]l*Ul]I. The operator T(z) 
is a matrix integral operator with kernels Too(P,P';z), Ta,,;o(p0 ,P',z), To;11.J(P,pp,z) 1:nd 
Ta,i;/1,i(Po,Pp,z), a= 1,2,3, i = 1,2, ... ,no, (3 = 1,2-,3, j = 1,2, ... ,n/J, properties of 
which are determined including the limit points .z = E ± iO, E > Amin, by Theorem 2.-

. By T(z), T(z) : Ho ff! H1 -+ Ho ff! H1, we denote analytical continuation in c;±, (see 

Theorems 3, 6 and 7) of the ~perators T(E ± iO) having the kernels 

(T(E ± i0))
0
p', P') , 

(T(E ±_io))0 ;113 (P,f,p). 

(T(E ± io)t,i;ifio, P1
) 

(T(E ±iO)) ,r, (Pa,Pp) , 
Ot,i,µ,J 

Too(±yEP,' ±v:EF', E ± iO), E > O; 

= To;t1,i(±../EP,· ±J E-, >.11 ,;f,p, E ± iO),. E > O; 

Ta,,i;o(±JE- Ao,iPo, ±../EF',E ± iO), E > O; 

Ta,i;/1,j(±JE - Ao,iPo, ±✓ E - >.11,iP/J, E_ ± iO), 
E > max{>.o,i, >.11,;}. 

We assume by d~fi1ition that the produc_t (JTJt)(z) ,coincides with T(z), 

(4.7) T(z) = (JTJt)(z) = ( (JoTooJp_(z) (J0To1JP( .. z) ) . 
. · (J1'Ti,0J0)(z) (J1'Ti1J1){z) . 

El~~ents of the matrix (JTJl)(z} ~re ~xpres_sed in terms of amplitudes of. diffe~e~t processes 
taking place in the three-body system under consideration [29] (see also Sec. 7 of [43]). ' · 

The scattering operator .S is unitary one in the space 'Ho ff! 1t1 and as well as T, it has a 
natural block structure.· Its corriponents Soo, So;/1,i, So,i;o, Sa,i;/1,i have the kernels, respectively· 

(4.8) 

(4.9) 

(4.10) 
(4.11) 

Soo(P, P'.) 

So;11,;(P,p'11 ) 

So,,;o(Po, P') 

So,i;/1.i(Pa,Pp) 

6(P - P') ~ 2r.i 6(P2 - P12 )To0 (P, P', P12 + iO), 

-21ri 6(P2 - p'J -· >.11,;)To;11,;(P,p'11, >.11,i + P1 + iO), 
' .'. . 2 '~ ,2 . 1 ,2 · 

-2r.i 6(>.a,i + Pa - P )To,i;o(Po, P, P + tO), 
'""116,;6(p"' - ]111 ) - . 

. -2r.i 6Po,i + ~; :-: >.11,i - P1)T~,i;JJ,i(Po,Pp, Af3,i,+ pf+ 'io).' 
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Scattering matrices arise from Sin the spectral decomposition for Has operators acting in 
the '"cross sect.ion" (at fixed energy) of the space 1t0 (fJ1t1 in the Neumann direct integral [28]. 
Extraction of the scattering matrix from S is related as a matter of fact to the replacements 
IPJ 2

_-> E, Ao,i + p';,-+ E, o = 1,2,3, i = l,2, ... ,n 0 , in expressions (4.8)-(4.11) and then to 
thc· factorization of dependence of the kernels of S on the energies E and E', 

( 1.12) S(E. E') = -r.io(E - E')J(E)S'(E + iO)iJ(E'), 

wher<' J(E) is a diagonal matrix-function constructed of the Heaviside functions iJ(E) and 

iJ(E- >.11,;): lJ(E) = diag{ iJ( E), iJ(E->.1,i), ... iJ(E-: >.1,n, ), iJ(E->.2.i), ... iJ(E- >.2,n,), v(E­
>.:i,i), ... i?(/1' - >.3,n, )}. At. z E C we understand by S'(z) the op~rator-valued function S'(z) = 

A- 1(.:)i + T(z). Herc and all over further, A(z) = diag{A0(z), A 1(z)} with A0 (z) = -r.iz2 

and Ai(.::) = diag{ A(l), A(2), AP)} where in its turn, A(0 ){z) = diag{A 0 , 1 (.: ), ... , A 0
.n

0 
(.:)} with· 

A0 ,i(z) = -r.iJz - Ao,j· 

Continuing the factorization, S'(z) = S(z)A- 1(z) = A-1(.:)Sl(z), corresponding to sep­
arating in (4.12) the niultiplier -r.iA-1(E + iO) as a derivative of measure in the Neumann 
integral above [28] for 'Ho EB 1t1, one comes to the scattering matrices 

(1.1:l) S(z) = i + (JTJ 1 A)(z) and S 1(z) = i + (AJTJ 1)(z). 

In a contrast. to Ref. [28] it is more convenient for us to use namely this, nonsymrnet.ric. form 
of the scattering matrices. Matrices S(z) and St(z) are considered as operators in Ho ,i;' i{1• 

At z = E + iO, E > 0, these operators arc ·unitary. At z = E + iO, E < 0, there arc 
certain truncations of S(z) and S1(z) determined by the number of, open channds which ,are 

unitary in Ho ff! H1, namely the matrices S(E) = i + J(E)(S(E + iO) - i)tj(E) and St(E) = 

i + J(E)(S1(E + iO) - i)19(E). It follows from Eq. (4.13) .that operator T may be considered 
as a kind of "multichannel T-rnatrix" (cf. Ref. [39]) for the system of three part.ides., 

Note that. the matrix T(z) may be replaced in Eq. (-1.13) with the matrix T 1(z) obtained 
from T(z) by the substitution iv-+ vi (respectively, U -+[fl= vT + T Afi) in th<' S<'cond 
component of the lower row of (4.6). To prove that (JT1J1)(z) = (.iTJ1)(z), it is suflici,·nt to 
observe that for z = H ± iO, E > >. 0 ,;, n = 1, 2, 3, j = I, 2 .... , n,,, 

(,1.J-1) (J1W'TvwJI){z) = (J1w*vTwJI)(z). 

Indeed, according to Eqs. (3.4) and (3.5), 

(-1.15) (ITl*ivl]!),,,,;{J,;(po,P;) = _ l - "; . ¢0,,(Mf\p,,,pp)) ¢,11 ,j(k1"\p~,p,,)) 

Jso{JJ [X,~1\p,,,p'11 )]2 -.A_,,,; 

(1.16) 
• · · 1-s ¢ (k<fil( ')) -<,,) 

(1], vTW)o,i;tJ,j(Po,P;) = ----1:!f. "·' " Po,P11 </>11,;(k,1 (p~.p,,)) 
Jso11J [X,1"\pp,Po)]2 - >.,1.j 

where 

( 1.17) k~6l(q,q')) = -c-,6q+q' 
, . S;5 ' 

,,o, = 1,2,3, 

q,q' E R3 (we shall suppose later that q,q E C 3
). One can easily to understand that. 011 the· 

energy shells !Pol= J E - \,,i, JPpl = J E - >.11,;, · E > >.,,,;, E > A,1,;. the• drnomi11ators 
of thr fractions {4.15) and (4.16) rnincide, 

(k~1l)2 
- >.°',' = (k1"l)2 - >.ri,; = 

(-1.18) = -
1
, 

1

12 (11'- >.o,i + E- AfJ,j -2c .. 11JE- A.,,;JE- >.,1.j(/i,,,71'.1) - -'~di:'). 
~'io(J 
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Meanwhile the expression ( 4.18) can not become zero at E > A0 .;, E > Aa.j (see Lemma 2). It 
follows now from Eqs. (4.15), (4.16) and (4.18) that the equality (4.14) is true. 

Along with S(z) and st(z) we shall consider also the truncated scattering matrices 

(4.19) S1(z)=i+(LJTJ1LA)(z) and Sl(z)=i+(ALJTJtL)(z), 

where the multi-index 

(4.20) / = ( lo, /1,1, ... , /1,n,, 12,1, ... , l2,n21 13,1, ... , /3.n,) 

has the components /0 = 0 or 10 = ±1 and /0 ,j = 0 or 10 ,j = 1, a= 1, 2, 3, 
L and L we denote the diagonal number matrices 

( 4.21) 

and 
(4.22) 

L = diag{ lo, 11.1, ... , 11.n,, 12,1, ... , 12,n,, /3,1, ... , 13,n,} 

L = diag{ llol, 11,1, ... , 11,n,, 12,1, ... , 12,n,, /3,1, •··, 13,n,}, 

j == 1,2, ... ,n.,. By 

corresponding to the multi-index I. The matrix L is evidently to be a projector in Ho EB H1 
on the subspace H\1

J if /0 = 0 or on the subspace Ho EB H\1l if 10 cf- 0. Here in both cases, 
H\IJ = EB H(o,j). • 

1.,,#0 

As can be seen from formulas (4.13) and (4.6) the scattering matrices S(z) and st(z) 
include kernels M 0 f!(P, P', z) taken on the energy shells: their arguments PE R6 and P' E R 6 

are connected with the energy z = E + iO by Eqs. (2.11) at E > 0 or (2.12) at E >, Aa,j• 
We establish below [see formula (6.8)) that analytical confomation of the matrix M(z) on 
unphysical sheets of energy z is expressed in terms of analytical continuation of the truncated 
scattering matrices S1(z) or Sl(z) and the half-on-shell Faddeey ~omponents M0 f!(z) taken on 
the physical sheet. More precisely, along with S1(z), the final formula (6.8} includes the matrices 
(L0J 0 M)(z), (L1J11lt*YM)(z) and (MJ6Lo)(z), (MYwJ;L 1 )(z). Here, I is a certain multi­
index (4.20) and L = diag{L0 ,Li} is the respective matrix (4.21) with L0 = 10 • 

In the,rest of this section we shall formulate some statements (Theorems·3-7) concerning 
the existence of the analytical continuation of the above matrices and their domains of holmor­
phness. In view of shortage of space we shall not give here full proofs. Note only that proofs 
are based on analysis [24] of the Faddeev equations (2.6f For all this, one has additionally to 
pay a special attention to studying the domains of holomorphness in z of the functions 

(4.23) [P! + Pp
2 

- 2caf3(Pa,Pp) - s!fizr, 

with one or both arguments p0 and Pp situating on the energy shells (2.11) or (2.12). Functions 
( 4.23) arise when iterating Eq. (2.6} because of the presence of the multiplier Ro in the operator 
-tRo Y. Also, the functions ( 4.23) appear as a display of singularities (3.5) of the eigenfunctions 
,f;0 ,i, a=l,2,3, j=l,2, ... ,·n0 : 

In the case when the a~guments p0 and/or Pp are taken on the shells (2.12), p0 = 
✓z - Ao,i p0 and Pp = ✓z - Af!,j p~, the holomorphness domai_ns of the functions (4.23) with 
respect to the variable z are described by the following plain lemmas. 

LEMMA 1. For any p 2 0, -1 ·~ T/ ~ 1, the domain 

(4.24) 
A c2 

Rez > 2 + 4s21Al(Imz)2 

contains no root8 z of the equation 

(,1.2-5) z - A + p + 2c~y'p T/ - s2 z == 0, 

12 

11 
j 

} ,, 

with A< 0, 0 < lei< 1 and s2 = 1- c2
• For any number z EC outside the domain (4-24) one 

can always find such values of parameters p 2 0 and T/, -1 ~ f/ ~ 1, that the left-hand part of 
Eq. (4-25} becomes equal to zero at the point z. 

LEMMA 2. Let the parameters of the equation 

(4.26) z - A1 + z - Az + 2c~ ~ T/ - s2 z = 0 

be such: 17 E [-1, l}, A1 ~ Az < 0, 0 < c < 1 and s2 == 1- c2
• Then the following assertions 

take place. 
1) If IA21 > c2IA11 then for all T/ E [-1, 1] Eq. (4,26) has a unique root z and this root is 

real. Moreover z == z+ if T/ 2 0, and z == z_ if i; ~ 0 with 

(4.27) 
(1 + c2 - 2c2712)(A1 + A2) ± 2✓c2 71 2 [A1A2 s4 - (A2 - A1)2c2(1 _:_ 712)] 

Z± == (1 + c2)2 - 4c2712 

When T/ runs the interval [-1, 1), the roots Z± fill the interval [zu, z,t] with the ends 

1 
(4.28) z11 == 2 [-IAd - IA2I - 2c✓1Ad · IA21) 

s 

and 

(4.29) 
1 . 

Z,t == 2 [-IA1I - IA2I + 2c✓IA1I · IA21), Zrt < A1-
s 

2) If IA2I == c2IA11 then Eq. (4.26} has two real roots: 
a) the root z == A1 existing for all T/ E [-1, l]; 
b) the root z == z_ given by (4.27) which exists for -1 ~ f/ ~ 0 only. 
For -1 ~ T/ ~ 1 these roots together fill the interval (z11,-Xi) with'zu == -IA1I (1 + 2c4 /s2). 

3) If IA2I < c2IA1 I then 
~~ IA2I 

a} for -:-1 ~ f/ ~ 71*, 71* =: c(l _ p) , p == N' Eq. (4.26} has two. real roots Z± 

given by (4.27}, which fill the interval [z11,z,1] with the ends {4-28} and (4.29}, z,1 < A1j 

b} for 71* < T/ '.::'. 0 Eq. (4.26} has two complex roots Z± described again by Eq. (4.27}. When 

T/ moves, these roots fill the. ellipse centered in the point Zc == -1>-il [1 + 2( (c
2 -)r )] . 

·. . sl+c2 l+p 
(c2 

- p)(l - c2 p) 
Half-axes of the ellipse are given by a == i>-il · ( 2) 2(l ) (along real axis) and b _== 

. 1 + C S, + p 
2 ' 2 ' ' , 

1>-il - (c - p)(l - c p) {along imaginary axis), The right vertex of the 
(1 +.c2)s2(1 - p)✓(l + c2)2 - 4c2r,•2 , 

. . . . . (eJ · 1>-il + l>-21 . . · · · ellipse is located m the point z,1 == Zc + a == -
2 

situated between >-1 and >.2 • Its left 
l+c ·· -

vertex is Z~e) == Zc - a < Zrt· 

Let rrifi,j) be the domain in the complex plane C with cut along the ray [>-min, +oo) where 
the conditions (4.24) with A= Af!,j, c == Cafi and the inequalities 

. 2 2 1 ( 2 
(4.30) Rez>Afi,j-s,,fib +

4
_2 bZ Imz) 
s,,fi 

are valid simultaneously for, all a= 1, 2, 3, a cf- /3. In the case of the potentials (2.2) one has 
to take b == +oo in (4.30). · 

By na,i;{!,j, a cf- /3, we denote domain complementary in C \ [>-min,+oo) to the set filled 
by the roots of Eq. (4.26) in the case when >-1 == min{>-,,,;, Af!,;}, >-2 == max{Aa-,i, Af!J}, c == lca-fil 
and T/ == (Pa,Pp) runs the interval [-1,1) .. 
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THEOREM 3. The .. matrix integral operator L;Ti.1(z)Lr, z = E ± iO, acting in H1, allows 
analytical continuation in z from rims of the ray E E (>., +oo ), A = ,max A--,,k, on the 

l..., k i- 0, 

l~,k -j. 0 

domain 
(4.31) Il(hol) _ [ 

l'l" - n 
l~,i t- 0 
IP.i # o 

Ra,i;/1,jln[ n rr[-y,k)l \ a(H) 

1;/ #0, 
1, .• # 0 

h /, d. (1' 11 11 11 l' 11 l' ) 111 d. (I" I" Z" 111 Z" W er~ 1 = tag o, 1,1,·•·1 l,n11 2,1,···, 2,n2> 3,t,···, 3,n3 , 1 = Iag o, 1,t,• .. , 1,n1 , 2,t,··•, 2,n2 , 

1{1, ... ,l{n,) , with lb = zi = 0. The nontrivial kernels ( L~ Ti.1 (z)Lr t,i; /1,i (Pa, Pp, z ), z:,, I 0, 

l¼,i I 0, turn into functions holomorphic concerning z E rrl~~I) and real-analytic with respect 
to Pa,Pp E 52

• 

REMARK 1. The domains rrl~~l) ~nd nl~~l) coincide, rrl~~l) = rrl~~l). 

If I' = /" = l, we use for rrl~~l) the notation rrlhol)' 

(4.32) rrlhol) = rrWol). 

THEOREM 4. Let L 0 =lo= 0. Then the matrices (MiwJjL1)(z) and (L1.J1 '1'*iM)(z), z = 
E±i0, allow analytical continuation in z from rims of the ray EE(>., +oo), A·= max Af3,j, 

(/3,1),l~.,#!l 
o_n the domain rrlhol\ a( H) as boun,ded for z (/; [Amin,+~) operato/-valued functions of variable 

z, (M1wJjL1)(z): H1-> Yo and (L1J1W*1M)(z): Yo-> H1, 

Continuing the half-on-shell ma.trices (JoM)(z), (MJb)(z), z = E ± iO, E > 0, into 
domain of complex z is considered in a sense of distributions over O(C6 ). For example of MJb 
we consider continuation of the bilinear form . . 

(F, (MJb)(E ± i0)) = L J dP J dP' F0 (P)Map(P, ±.JE P', E ± i0) f13(P') 
a,/1R6 S5 . • 

where F = (F1, F2, F3) with Fa E O(C6) and f = (!1, f2, h) with fa E Ho. 
When constructing continuation of this form and that for (J0 M)(E ± i0) we base on two 

simple statements concerning the domains of holomorphness of the function (4.23) in the case 
. when argument P' belongs to the three-body energy shell (2.11) and therefore Pp = ../zv'pp 
with v' E [0, l]. . 

LEMMA 3. Let in the equation p + zv' + 2c../z# -/PTJ - s2 z = 0, the parameters v' and 'I run 
the intervals O $ v' $ 1 and -1 $ TJ $ I respectively, and c > 0,. s2 = 1 - c2 , z E C be fixed. 
Then the roots p of the above equation fill the set consisting of the line segment [O, z] on the 
complex plane C and the circle centered in the origin, the radius of which being equal to c2 1zl. 

LEMMA 4. Let the parameters of lhe equation 

( 4.33) z - A+ zv + 2c../z~VVTJ - s2 z = 0, 

satisfy the conditions v E [O, l], TJ E [-1, l], A < 0, c E (0, 1) and s 2 = 1 - 2. Then if 11 and 
TJ run the above ranges, the roots z of Eq. {4,33) fill the ray ( ~oo, >./(1 + c4 )] and the circle 
centered in the point Zc = >./(l - c4

), radius of which equals to<? >./(l - c4 ). 
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Let f1(0l±, fi.toJ± c c±, be the domains complementary in c± to the totality of circles 
having radii r = c!13 l.\a,il/(1 - c!13 ) and centered in the points Zc = Aa,i/(l - c!11 ) where 

n, fJ :"" I, 2, 3, fJ / n, and j = 1, 2, ... , na: In the case of the potentials (2.3) the domains ntO)± 
must satisfy extra conditions 

(i.34) 
lsaal2b2 (1 + lcaal)2 

2 
Rez > ( I 1)2 + I 12b2 (lmz) . _l + Caf3 4 sa/3 

for all n, (3 = 1, 2, :l, (3 I a-. 
Ut.ili,,ing Lemmas 3 and 4 one can prove the following 

THEOREM 5. Kernels of thr. mafrices (MJb)(z) and (J0 M)(z), z = E ± iO, E > 0. allo1r 

analytical continuation in z on the domains, respectively fil°l+ and fi.(0
l-' f1t0 >± C c±. The 

continuation of kernels of the matrices ( Q(n)Jb) (z ), and (JoQ(n)) (z ), n $ 3, included in the 

repre.srntation (4.5) for M(z) ha.s to be understood in a ·sense of distributions over O(C6
). At 

th<: samr time the ·kcrnel.s ' · ·. • · 

(4.;35) 
F0 p(P, ../zP', z), Ia,j;fJ(Pa, ,/zi", z), 

Ja;/3,k(P, ../zW Pp, z) and Ka,j;/3.k(Po, ../z# P~, z) 

aJi =·l,2,3, j = 1,2, ... ,na, k = l,2, ... ,n13, 

of the matrices (Q(")Jb)(z), n 2'. 4, and (WJb)(z') as well as the kernels 

Foa( ..jzP, P', z), Ia.i;a( ../z-/v Pa, P', z), 

Ja;/3,k( ✓zj,, Pp, Z) and Ka,J;/3,k( ../zvv Pa, 1';1: ), 
(,t.;16) 

of the matrices (J0 Q<"l)(z), n 2'. 4, and (J0 W)(z) ran be contiiwed on the do111ai11s flb°)± 
as us1Lal'hoiomorphic functions of' 11ariable z. Being Ilolde~ functions of t'<Lri;blcs f'11 E S". 
or #{Jp, 0 $ v' $ 1, Pp E S 2 (f> E.S5 or ,/vp,,, 0 $ v $ I. p,, E .',2

) with indr:r 
/1' E (0, 1/8), the kernels (4.35) (kernels (4.36)) co,;sidcrcd a.s functions of PE R'S, p,, E R3 

(I" ER", Pp E Rl), can be embedded in their totality in !3(0,Jt) with O and /t. th<: arbitrary 
numbers such that OE (3/2, 00 ) and Jt E (0, 1/8). At \ Im zl 2: Ii> 0 on1c can /ah JI= 1. 

Let us comment the assertion of the theorem for example of the mat.rice's (MJ6)(=). llio1P 

in particular that. continuation Oil nio)± of the form (F, ( Q(0)J6)(z)f) = L,, ( J,~, (t.,Ji)(: )/.,) 
is described .by the equalities 

rr/2 

(U7) 
(l,:,,(ta.lb)(~)fa) = Idk,,j dt J d7i~ jdw~sin

2
"'•;,rns

2 "'•:,X 
R3 s2 s2 o 

x la(k,.,, ../z cosw:k:, z cos2 w~)Fa(k,,, ±../z sinw:p~) · fa(w;,),~, p~ ), 

where w:,k~,p: arc the hyperspherical coordinates [29] of the point. i11 E S 5
• w:; E [0.r./2]. 

k~,Ti~ E 5 2 • Note also that:f'" = {cosw~k~; sinw~p~} and di''= sin2 w;, rns 2 w~dw:,c1f:,d1i'., .is 
a measure on 5 5

• . ... . , 

The ~n~ly~i~~l continu~ti,~~l·Oll f1[:)±\t th~ forn; (F, ( Q(l)Jb)(R ± iO)f) is gi\'C'll by 

(4.38) (t, (Q(llJt)(=lf) = L Qt.,i=) + Qf.,,,(=) 
o,/-l,o:/:/1 
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where 

I I 

Qt"'a(z) = ± ~ Js:al j dk"' j dp"' j dk'a j dfa'a j dvvv · j dv'W~x 
R 3 S2 .52 S' O O 

(4.39) Fa,(ka,, ../zvvfao,). fa( v'1=7k'a, #fa'a) 
x-----,-;c=----=-.,.---"-x 

v + v' - 2c"'fJVV# (po,, fa'a) - s;a =f iO 

x t"'(k"')!f3l( VZVVP"', ../z#fa'a), z(I - v)) x 

X ta(k1")( ../zWfa'a,vzvvfao,), .,fi,/1= v'k'a,z(I - v')) 

and 

I 

Qi'.ana(z) = ±i · Js:al j dk"' j dp"' j dk'a j dfa'a j dp.Jp · j dv'W~x 
R 3 S' S' 52 rt O 

( 4.40) Fa,(ko,, ±.Jpp,,). ffJ( ./l=v'k'a, #fa'a) X ___ ....:..._ _____ ....c....__-.e..;_ X 

p + ZV
1 

- 2Co,fJVZ,/P# (pa,,pp) - s;az 

X ia,(ko,, k!!l(±.,fppa,, ../z#fa'a), z - p) X 

x tfJ(k1")(../zWfa'a,±.,fopa,),.,fi./l=v'k'a,z(I - v')). 

Here, by f; (r;) we understand a path of integration beginning at z and going clockwise 
(counterclockwise) along the circumference Ci,1 having radius JzJ and centered in the origin. 
After the path crosses the real axis, it goes further along this one so that the rest of r; (r;) 
consists of the points p = >. + iO (p = ,\ + i0), ,\ E (Jzl, +oo) . 

. Boundaries o_f the holomorphness domains fI(0l± of the form (F, (Q(l)Jb)(z)f) are found 

as a matter of the fact, from those requirements that the poles of T-matrices t"'( •, •, z(l - v)) 
and la(·, ·, ".(I - v')) which are present in the integral (4.39), have not to manifest itself 
in above domains. Also, we require the same from the poles of T-matrices t"'( •, . , z - p) 
which are present in the integral (4.40). If z </: (-oo, Amax] then the appearance conditions 
z(I - v) = Ao,,j, j = 1,2, ... ,n"', z(l - v') = AfJ,k, k = l,2, ... ,nfJ, for the poles of the T­
matrlces t"'( ·, ·, z(l -v)) and tfJ( ·, ·, z(l -v')), are valid for no v, v' E (0, l]. The appearance 
conditions z - p = .\"',i' j = 1, 2, ... , no,, of the poles oft"'(•, ·, z - p) may be realized if only 
the contours r; include into itself more than one fourth of the circumference q,

1
• However 

their contribution to Qt~(z) arisii:ig.when the points p = z - .\"'.i cross contours f;, may 
be always taken into account using the residue theorem. We shall not present here respective 
formulae. Note only that taking of residues in the points p = z - .\"',i transforms the minor 
three-body pole singularities of the integrand of Qt"'p(z) into those of t_he type (z - .\"',i + 
zv' - 2co,f3VZ J z - .\"',i#T/ - s;fJz )-1

• Location of such singularities is described by Lemma 4. 

The iteration QC2l(z) kernels F"'fJ(P,P',z), I"',i;fJ(P"',P',z), .J"';P,k(P,p'p,z), and 
>Ca,,j;fJ,k(P"',p'p,z), P,P' E R6

, pa,,Pp E R3, have more weak singularities (24], (29] than 

the. QPl(z) components. When continuing the form (F, (QC2)Jb)(z)f) we get for it the 

representations· which differ from ( 4.38)-( 4.40) mainly in replacement of the distributions 
{z(v + v' - 2c"'fJVV#(famflfJ) - s!fJ =f io)}- 1

, 0 '.S v '.S 1, 0 '.S v' '.S 1, with functions 
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singular as 

Js~-,(l - v2 ) + Js~-,(1 - v'2
) + Jca-,VPa - C(J-,v'fa'pl 

I 
• ,., 

1
-ln ✓ 

z Ca,-,vp"' - C(J-,V P(J ✓ s~,,(l - v2 ) +s~.,(1 - v'2 ) - Jc0 -,vp0 - C(J-,v'fa'fJI 
(4.41) 

The kernels Faf!(P,P',z) Ia,j;fJ(pa,,P',z), .Ja·/3,k(P,p'a,z), and Ka,j;fJ,k(Pa,Pp,z) of the iter­
ation QC3l(z) = (-t(z)R0(z)T)3 t(z) are still singular. Though their singularities are weak, 

continuation of the kernels ( Q(3)Jb) ( z) on the domains fI~O)± we understand as before in 

a sense of distributions over O(C6
). So, we re<1lize it following the same scheme as for the 

continuation of ( Q(1lJb) (z) and ( Q(2lJb) (z). 

THEOREM 6. The matrix (J 0 MJb)(z) (the operator (JoTJb)(z)} admits the analytical contin­
uation in z from the rims of the cut z = E ± iO, E > 0, on the domains fi~O)± E c± as a 
bounded operator in 90 (in H0 }. For all this (J 0 MJb)(z), z E fI~O)±, admits the representation 

3 

[cf. (4.5)] (J 0 MJb)(z) = L)J0 Q(n)Jb)(z) + (JoWJb)(z). The operators (JoQ(0)Jb)(z) and 
n=O 

(J
0
Q(llJb)(z) are bounded matrix operators in 90 with singular kernels. Having weakly singular 

kernels the matrices (J0 Q(n)Jb)(z), n = 2,3, are compact operators in 90 • To that end kernels 
of matrix (J0WJb)(z) are Holder functions of their arguments with the indexµ E (0, 1/8). 

As a comment to this theorem we present explicit formulae for the kernels of the operators 
(JoQ(0lJb)(z) and (JoQ(I)Jb)(z). 

The first of them have the form (JoQ(0lJbtp(P,P',z) = OafJ(Jot 0 Jb)(P,P',z), a,/3 = 

1, 2, 3, where 

(Jot0 Jb)(P, P', z) = t 0 ( ../z cos wa,t, ../z cosw1
0 k1 

"' z cos2 w0 ) X 

( 4.42) 
x 6(../zsinw"'p" -vzsinw'afa~). 

Here, w
0
,t,fa0 and w:):,fa~ are coordinates of the points P = {k0 ,p0 } and P' = {k~,p'0 } 

on hypersphere S5 • We mean here that · 

( ) 
c(·r::· • r::· ''') s· I 6(p,f/)6(w-w') 

4.43 v yzsmwp-yzsmwp = 1gn mz· ( r.;)3 • 2 , 
y Z Sill W COS w 

where o(p, fa') is the kernel of the identity operator in L2(S2
). The denominator ( .,fi)3 sin2 w cos w 

of the right-hand part of Eq. (4.43) represents analytical continuation of the Jacobian for re­
spective replacement of variables. 

Therefore the operator (J0t 0 Jb)(z) acts at Imz /- 0 on f E Ha as 

(( t) ) • Signlmz J· •, Joto.lo (z)f (P) = 3 • dk0 X 
. . (vz) . S' 

( 4.44) X ta(vzcoswako, yzcoswat, zcos2 wa)f(coswak:,sinwafac,), 

The operators (JoQ(I)Jb)(z), z E fI[0>±, have the kernels 

(JoQ(l)Jt) (PP' z) ~ ! . 1- OafJ. io(ka,k!f3>,z(l - v)) tfJ(k1">,k'a,z(l -v')) 
0 <>fJ ' ' Z JsafJI V + v' - 2CafJVV#(p0 ,f/fJ) - s!(J =f i0 ' 
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h k - r:; ~k· k' - r:; ~ 1k·1 k(/ll - k-(/ll( r:; r.;· r:; w·,) d ,_(oJ were o-vzv1.-Va, {3-yZy.1-v-{3, 0 - (l' yZyVPo,vzvv·p/3 an K.3 = 
k~"l(y1zv'v'f,~, y1zJvf,0 ). At the same time 11 = sin2 w0 and 11

1 = sin2 w~. 

Main singularities of the kernels (J0 Q(2)JbtiP, P', z) in P, P' are described by Eqs. ( 4.41 ). 

Singularities of the kernels (J0 Q(3)JbtiP, P', z) are more weak. 

THEOREM 7. The operators (J0 Mill!Ji)(z) : H1 -> 90 , (J11V*1MJ6)(z) : 90 -> H1 , 

Tcn(z): H 1 -> Ho, and Ti.o(z): Ho-> H1 admit the analytical continuation from rims of llH: 

cut z = E ± i0, E > o, onto the domains niO)± C c± including the points z E f1t0)± n I1f1•1 ) 

(J,_j 

satisfying the additional conditions 

isll-,1 2 (1 + ic!l-,1) 2 
2 

Rez > (1 + icll-,1)2 >../l,j + 4ls/l-,l 2 l>../l,il(Imz) · 

for any /3, 1 = 1, 2, 3, /J c/ 1 , and j = l, 2, ... , n/l. For all z E nio)± including the bounda,.y 
points z = E ± i0, E > 0, these operators are compact. 

Later, we shall use the notation 

( 4.45) Il(hol) = Il(O)± n Il(hol) 
/± - b ((l) ' 

where/±= (lt,I1,1, ... ,l1,n,,l2,1,•••,l2,n,,l3,1,•••,l3,na) with It= ±1, 10 ,i = 1, a= 1,2,3, J = 
l,2, ... ,n0 , and z(tJ = (0, l1,t,•·•,l1,n,, 12.1,••·, 12,n,, /3,1, ... , 13,na) with the same /0 ,i as/±. Re-

(ho!J - n(hol) d fi b ( ) member that the sets Il1c1> = /(l){(l) were e ned y Eqs. 4.31 . 
As follows from Theorems 3, 6 and 7, the total three-body scattering matrix S(z), z = 

E ± i0, E > 0, admits the analytical continuation as a holomorphic operator-valued function, 
S'(z): Ho \11 H1 -> Ho ffi H1, on the domain nlt0 'l Cc+. For any Z E nlt01l the operator S'(z) 
is bounded. In equal degree the same is true for st(z). 

5. DESCRIPTION OF. (PART OF) THE THREE-BODY 
RIEMANN SURFACE 

By the three-body energy Riemann surface we mean the Riemann surface of the kernel R(P, P', z) 
of the Hamiltonian H resolvent R(z) considered as a function of parameter z, the energy 'of 
three-body system. 

One has to expect this surface as well as that of the free Green function ll0 ( P, P', z) 
to consist of infinite number of sheets already because the threshold z = 0 is a logarithmic 
branching point. Actually the Riemann surface of R(P, P', z) is much more complicated than 
that of Ro(P,P',z) because besides z = 0 it has a lot of additional branching points. For 
example the pair thresholds z = >.. 0 ,j, a= 1, 2, 3, j = 1, 2, ... , n0 , become square root branch­
ing points of this surface. Also, the resonances of the pair subsystems turn into such points. 
Extra branching points arc generated by the boundaries of supports of the function (4.23) 
singularities which were described in Lemmas 1, 2 and 4. 

In the present paper we restrict ourselves to consideration of a "small" part of the tot.al 
three-body Riemann surface for which we succeeded to find the explicit representations ex­
pressing analytical continuation of the Green function R(P, P', z), the kernels of the matrix 
M(z), as well as the scattering matrix S(z), in terms of the physical sheet [see the formulae 
respectively, (6.8), (6.9) and (6.11)]. Namely, in the Riemann surface of R(P,P',z) we con­
sider two neighboring "three-body" unphysical sheets immediately joint with the physical one 
along the three-body branch of continuous spectrum [0, +oo). Besides, we examine all the 
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I 
"two--body" unphysical sheets, i.e. the sheets where parameter z may be carried if the rounds 
of t.wo--body thresholds z = >.. 0 ,j, o: = 1, 2, 3, j = 1, 2, ... , n 0 , are permitted but the crossing 
of the ray [0. +oo) is forbidden. Evidently, the part of the three-body surface described in­
cludi·s all the sheets neighboring with physical one. The above sheets are of most interest in 
applications. 

A concrete description of the part under consideration we give using the auxiliary vector­
function f(z) = (f0 (z), f1(z), f2 (z), f3 (z)), where f0 (z) = lnz and f0 (z), o: = 1,2,3. are again 
vector functions, f 0 ( z) = ( ( z - >.. 0 .i) 1l 2

, ( z - >.. 0 ,2)
112, .... , (z - >.. 0 ,n. )

1l 2
). 

The Riemann surface off( z) consists of infinite number of the copies of the complex plane 
C' cut along the ray [>..m,n, +oo). These sheets a;c sticked together in a suitable way along rims 
of the cut segments between neighboring points in the set of thresholds >.. 0 ,j, a = 1, 2, 3, j = 
I, 2, ... , 11

0
, and >..0 = 0. The sheets fl101,1,1, of this surface are identified by the indices of 

branches of the functions f0 (z) =In;;; and f0 ,j(z) = (z - >.. 0 ,j)1l 2 in such a manner tha1 /0 is 
integer and /0 , o: = I, 2, 3 are multi-indices, /0 = (/0 ,1, 10 ,2, ..• , / 0 ,nJ, 10 ,j = 0, 1. For the main 
branch of the function f0 ,j(z), o: = 1,2,3, j = l,2, ... ,n0 , we take /0 ,j = 0, and otherwise 
/

0
,i = I. In the casP if there exist coinciding.thresholds i.e. >.. 0 ,; = >../l,j at o: # fJ and/or i # j 

(this means that discrete spectra of the pair Hamiltonian coincide partly though for two pair 
subsystems or though one of the pair subsystems has a multiple, discrete spectrum) then on 
the each sheet. II1;1,1,1, indices lo,,·and l/3,j coincide, too, lo,,=l/3,j· As /0 we choose the number 
oft.he function In z branch, In z = In lzl + i<po + i21rlo with 'Po, the argument of z. :; = lzlt>'"0

• 

'Po E [0
1
21r). Sheets Il1

0
1,1,1, arc sticked together (along rims of the cut) in such a way that 

if parameter z going from the sheet Il10 1,1,1, crosses segment of line between two neighboring 
thrcsholds'>.. 0 ,, and A/J,j, Ao,i < >../l,j (or Amax and >..a) than it comes to the sheet II1~1;1,1;- with 
indices l~,k corresponding to >..-,,k::; >.. 0 ,, (>..-,,k::; Amax) which change.by 1. For all this if l~.k = 0 
then l~,k = I; if 1-,,k = I then l~.k = 0. Indices l~.k for >..~.k > Aa.i and /0 stay unchanged: 
l~.k = l~.k, l~ ~ /0 • In the case if parameter z crosses the cut. on the right from the _three- body 
threshold )..0 (at E > >..0 ) then all the indices l~."k change as was described above. Besides, 
the index /0 changes by 1, too. If at that, z crosses the cut from below up then /~ = /,; + I. 
Otherwise/~= /0 - l. Further, by I we denote the multi-index I= (/0, 11 , 12, /3). 

Thus, we have described the Riemann surface of the auxiliary vector--function f(z). 
As mentioned above we shall consider only a part of the three-body Riemann surfacp which 

will be denoted_ by~- We_include in~ all the sheets Il1 of the Riemann surface of !ht• function 
f(z) with 10 = 0. Also, we include in~ the upper ha.If-plane, lmz > 0, of the sheet 111 with 
/ 0 = + 1 and the lower half--plane, Im z < 0 , of the sheet ll1 c lo = -1. For these parts we keep 
the previous notations Il1, 10 = ± 1, assuming additionally that cuts arc made on them along the 

• , , _ 
3 

r (o) , (o) _ _ . • _ _ _ (<>) 
rays bclongmg to the set Z,cs - LJ Zres. Ilcrc, Zrcs - { ... - - ~rP, I ::; p < +oo. -r E <Trcs} 

o=I . 

is a totality of the rays beginning at the resonance points :;, E. a/~,! of the subsystem o and 
going to infinity along the directions Zr= z,/lzrl• 

The sheet Il1 for which all the components of the multi index I arc ,:ern, /0 = I,,,_; = 0. 
o: = 1,2,3, j = l,2, ... ,n 0 , is called the physical sheet.. The unphysical shcl't.s II 1 with 
/ 0 = 0 are called the two-body sheets since these ones may be reached rounding the two- bod~­
thresholds only and it is not necessary to round the three- body threshold >.. 0 • Tl1" sh,•,·t s 11 1 

at /0 = ±1 arc called the threC-:body sheets. · 
On the base of Sec:. 4 results one can prove the following 

LEMMA 5. For each two-body unphy;i~al sheet 111 of the surf a.cc~ thcrr c.risl.s .surh ,1 pa//, from 

the physical sheet 110 to the domain njhol) of II1 going only on the two- body 1111physirnl .,hrcl.s 

11 1, that moving by this path, the parameter z slays always in rcsprcliuc domain.s 11t•1
l C 111'-
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6. CONTINUATION OF THE FADDEEV EQUATIONS AND 
REPRESENTATIONS FOR MATRIX M(z), SCATTERING MATRICES 
AND RESOLVENT ON UNPHYSICAL SHEETS 

In the present section we formulate main results of the paper. In view of space shortage their 
proofs will be given in the following paper [43]. Here we outline only schemes of the proofs. 

We begin with description of continuation on unphysical sheets of the Faddeev equa­
tions (2.4 ). 

Let L(o) = diag{ /0 .1, lc,,2, ... , /0 ,n.} be the diagonal number matrix constructed of the 
components /0 ,1, / 0 ,2, ... , /0 ,n0 of the multi-index l identifying a certain sheet ll1 C R. For all 
this L 1 (l) = diag{ L{l), L<2J, L(3)} and L(l) = diag{ Lo, Li} c Lo = 10. 

Let s0 ,1(z) be the operator defined in 'Ho by 

(6.1) s 0 ,1(z) = io + Jo(z)t 0 (z)Jb(z)Ao(z)Lo, z E IIo, 

It follows from Eq. (6.1) that s 0 ,1 = i 0 at lo= 0. If 10 = ±1 then according to Eqs. (4.42)-(,1.44), 
the operator So,1( Z) is defined for Z E An c± and acts on f E 'Ho as 

(6.2) (s 0 ,1(z)f)(P) ~ J dk1
s0 (t,k:,zcos2w)f(cosw0 k:,sinw0 p0 ), 

S2 

where P = {cosw0 k0 , sinw0 p0 } and s0 is the scattering matrix (2.16) for the pair subsystem 
a. We take into account here the fact .. that lo · Sign Im z = l for lo = 1 as well as 10 = -1. 
Remember that for 10 = 1 the sheet II, is actually the upper half-plane c+ and for /0 = -1, 
the lower one, c+ (in accordance with our choice in Sec. 5 of the part R of ·the total three-­
body Riemann surface). Therefore one can see now that on the both three-body sheets II1, 
/0 = ±1, the operators s 0 ,1 are described by the same formula (6.2). As a matter of fact. the 
operators s 0 ,1(z) represent the scattering matrix (2.16) for the pair subsystem a rewritten in 
the three-body momentum space. 

It follows immediately from Eq. (6.2) that if z E An c± \ zf;:j then there exists the 
bounded inverse operator s;;Yz), · • 

(s~_\(z)f)(P) ~ J dk's: 1(k 0 ,k:,zcos2 w0 )J(cosw0 k:,sinw0 p0 ) where s;1(k,k 1
,() stands for 

S2 
the kernel of the inverse pair scattering matrix s0 ( (). 

The operator s~.~(z) becomes unbounded one at the boundary points z belonging to rims 

of the cuts ("resonance" rays) included in zJ;:,>. 
THEOREM 8. The absolute terms t 0 ( P, P', z) and kernels (t 0 Ro)(P, P', z) of the Faddeev equa­
tions (2.4) admit the analytical continuation in a sense of distributions over O(C6 ) both on 
two-body and three-body unphysical sheets !11 of the surface R. The continuation on the sheet 
fI1 with l = (lo, 11,1, ... , 11,n,, /2,1, ... , 12,n,, /3,1, ... , 13,n,), lo= o;· lfJ,i = 0, 1, or lo= ±1, lfJ,i = 1 
(in both cases /3 = l, 2, 3, j = 1, 2, ... , nfJ) read as ' 

(6.3) 

(6.4) 

t~(z) = ta(z)/n = ta - L0Aot0 J0ts-1
1J0t 0 - <I> J(o)tL(o)A(0 JJ(0 lq,• 

l a, a a' 

[t0 (:)Ro(z)Jln, = t~(z)Jl;;(z) 

where RUz) = llo(z)/n, = Ro(z) + LoAo(z)Jb(z)Jo(z) is the continuation {39} on 111 of the 

free Green Junction Ro(z). If /0 = 0 (and consequently, Il1 is a two-body sheet) then the 
continuation (6.3), (6.4) can be made on the hole sheet IT,. For lo = ±1 (i.e. in the case 
if II1 is a three-body sheet) the form (6.3), (6.4) continuation is possible only on the domain An JI1. Al the kernels in r.h. parts of Eqs. (6 .. 'J) are taken on the physical sheet. 
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Proof of the theorem is based on utilizing the properties of the Cauchi type integrals (see 

Lemma from Sec. 2 of Ref. [39]), which are the integral terms of Eqs. (2.4). · 
Using Eqs. (6.3) and (6.4) one can rewrite the Faddeev equations (2.6) continued on the 

sheet II, in the matrix form 

(6.5) 

with 
(6.6) 

(6.7) 

M 1(z) = t 1(z)- t 1(z)~(z)Y M 1(z) 

t1(z) = t - LoAotJbs11Jot - <I>JiL1A1J1<I>*, 

~(z) = Ro(z) + LpAo(z)Jb(z)Jo(z). 

Here, s1(z) = diag{s1,1(z),s2.1(z),s3,1(z)}. By M 1(z) we denote a supposed analytical continu­
ation of the matrix M(z) on the sheet !It. 

THEOREM 9. The kernels of the iterations Q(n)(z) = ((-tRoYtt)(z), n ~ 1, allow, in a 

sense of distributions over O(C6 ), the analytical continuation on the domain rr/hol) of each 
unphysical sheet II1 CR. The continuation is described by Q(n)(z)/n, = ((-t1~Ytt1)(z). 

REMARK 2. The products L1J\ \Ji*YQ(m), Q(m)yl]iJiL1, LoJoQ(m), Q(m)JbLo, 

L1J1 \Ji*YQ(m)y1jiJiL1, LoJoQ(m)JbLo, L1J1 \Ji*YQ(m)JbLo and £0JoQ(m)yl]iJiL1, 0 ~ 
m < n,' arising at substitution of the relations (6.6) and (6.7) into Q(nl(z)/n,' have to be 

understood in a sense of the definitions of Sec. 4. 

REMARK 3. Theorem 9 means that.one can pose the continued Faddeev equations (6.5) only 

in domains II)hol) C II1. 

Construction of the representations for M 1(z) consists actually in an explicit "solving" the 
continued Faddeev equations (6.5) in the same way as in Refs. [39], [40] where the type (3.2) 
explicit representations had been found for analytical continuation of T-matrix on unphysical 
sheets of the energy Riemann surface in the multichannel scattering problem with binary 
channels. Utilizing the expressions (6.6) for t1(z) and (6.7) for ~(z), we begin with transfer 
of all the summands including M 1(z) without J0 and J 1 to the left-hand part of (6.5). Then 
[for z rfc u(H)] we inverse the operators I+ t(z)Ro(z)Y, using the relation (I+ tRo Y)-1 = 
I - MYRo (see Ref. [29]). Introducing the new unknowns 

xg> = ILols,1 Jo(I - tRo)Y M 1
' 

x~') = -L1 [J1<I>*Ro + AoLoJ1<I>*Jblo] YM1
, 

we obtain for them a closed system of equations which was succeeded to solve explicitly. 
Expressing then M 1(z) by xg> and X~1

) one comes to the desired representations for M1(z). 

THEOREM 10. The matrix M(z) admits in a sense of distributions over O(C6
), the analyt­

ical continuation in z on the domains II)hol) of unphysical sheets II1 of the surface R. The 
continuation is described by 

( 
t t t) 1 - ( JonM ) (6.8) M'=M- MntJo, <I>J1+MYIJiJ1 LAS,- L J1\Ji*YM.+J1<f>• 

where S1(z) is the truncated scattering matrix (4.19), L = diag{lo, 11,1, ... , '1,n,, /2,1, ... , 12,n,, 

/3,1, ... , /3,n
3

} and L = diag{llol, /1,1, ... , 11,n,, /2,1, ... , /2,n., /3,1, ... , la,n3 }. Kernels of all the 
operators in the right-hand part of Eq. (6.8) are taken on the physical sheet. 
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Note that LA St(z)L = L[S/(z)J-1 AL. Thus, the relations (6.8) may be rewritten also 
in terms of the scattering matrices S/(z). It is clear that these relations may be rewritten i11 
terms of symmetrized (truncated) scattering matrices [28], too. 

The representations for continuation of the (truncated) scattering matrices S1( z ). S1(.::) : 

Ho (J) H1 --> 'Ho (J) H1 and S1t(z), SJ(z) :·Ho (J) 'H.1 --> Ho (J) H1, follow from the representations 
(6.8) for M 1(z). Before writing final formulae we make some remarks. 

First of all, we note that the function A0 (z) is univalent. It looks as A0 (z) = -r.izi on 
all the sheets Il1. At the same time after continuing from Il0 on Il1, the function Ar1,1(z) = 
-1riJz - Af3,i keeps its form if only lf3,i = 0. If lf3,i = 1 this function turns into A'.1 ,1(z) = 
-Af3,i(z). Analogous inversion takes (or does n,ot take) place for the arguments 1\ I'', p" an<l Pri 
of kernels of the operators Jo!1M!1tJt J0 !1Mi\JiJ;, J 1 \Ji*Y M!1tJ6 an<l J 1 \Jl*(iv+ i AH)\JiJl. 
too. Remember that on the physical sheet Il0 , the action of J0 (z) (J6(z)) transforms PE R6 i11 

vzP (P' E R 6 in -,J.iP'). At the same time, Po E R3 (Pp E R 3
) turns under J;,,,(z) (Jj_;(z)) 

into Jz - >. 0 ,;p0 (Jz - AfJ,iPp)- Therefore we introduce the operators[([)= diag{£0 • £i} 

where [ 0 is the identity operator in 'H.0 if 10 = 0, and £0 , the inversion ([0 f)(P) = f(-1') if 
lo= ±l. Analogously, £1(/) = diag{£1,1, ... ,£1,n,; £2,1,•••,£2,n,; £3,J,···,£3,n,} where Er1,_; is the 
identity operator in i(_(f3,j) if 1(3,j = 0, and £(3,j, the inversion (£f3,;J)(fif3) =· f(-pf3) if lf3,J = 1. 
By e1(/) we denote the diagonal matrix e1 (1) = diag{e1,1 , •.. , e1,n,; e2,1 , .•. , c2,n,; e3 ,1, .•. , c:1,,,J 
with the elements ef3,i = 1 if lf3,i = 0 and e(J,j = -l if lf3,i = 1. Let e( /) = diag{ e0 , ei} wlwn· 
Co= +l. 

THEOREM 11. If there exists a path on the surface lR such that at moving by it fmm the 
domain nlhol) ~n Do to the domain n[hol) n nt?1 on II1,, the parameter Z stays on intcrmcdialc 

sheets Il1n always in the domains nlho]) n nt:i, then the truncated scattering matrices 81( z) 

and sl (z) admit analytical continuation in Z on the domain nt01
) n Ilf1?1 of the sh eel II1,. The 

continuation is described by ' · 

(6.9) 

(6:10) 

S1(z)ln,, 

sl(z)Jn,, 

£(/') [i + Lt L Ae(l') - Lt L' A s1-;
1 L't L Ae(f)] £(1'), 

£(1'J[i + e(l')A LtL- e(l')A LtL' [S1~r1 A utL] [(/') 

where Li= {I~, t; 1 , .•• ,t;n, 1; 1 , ••• ,t;n, 1; 1 , ••• ,l;n} andL'= {ll~I, 1; 1 , •.• ,l;n, 1; 1 , ••• ,1'2 , , , l , , 2 , , 3 , , t , ,n2 

t; 1 , •.. , L; n } • 
' ' 3 

As we have established, the kernels of all the operators present in the right hand part. 
of expression (2.7) for the resolvent R(z) admit, in a sense of distributions over O(C6 ), t.hc 
analytical continuation on the domains n/hol) of unphysical sheets II1 C lR. Hence, the kernel 
R(P,P',z) admits such representation, too. 

THEOREM 12. The analytical continuation, in a sense of distributions over O(C6 ), of the 
resolvent R(z) o_n the domain nt01l of unphysical sheet Il1 C lR is described by the formula 

R(z)Jn, = R+ 

(6.11) ([ l t "[ Y]•T• t) ,-1 - ( Jo[J - VR] ) + I - RV J0 , "I- RoM -.,J1 LAS1 L Ji\Ji*[I-YMRo]!1t · 

Kernels of all the operators present in the right-hand part of Eq. (6.11} are taken on th.r: 
physical sheet. 

Note that in their structure, the representations (6:11) are quite analogous to that. for 
analytical continuation of the two-body resolvent (3.7). Proof of thr, r,xpressions ((i. I l) an•· 
based on immediate using the representations (6.8) for M 1(z). 
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MoTo~HJIOB A.K; . . . ES-95-45 
11peJJ,CTaB.nemrn JJ;JHI TpextiaCTHlIHOH T-MaTpHU:bl 

. Ha HeqJH3HlleCKHX ,,ncTaX . , . 

,Cl>opMyJinpyIOTC51 5IBHbie npeJJ,CTaBiiemrn ]:lJl51 aHaJIHTH'leCKOro npO]:lOJI:.. 
)KeHH51 KOMnoHeHT Cl>aMeeBa TpexqacTHlIHOtt T-MaTJ)HU:hl Ha Hecpn3nqecKne 
JIIICThI · pnMaHoBoii noBepxHOCTn :meprnn: Cornactto 3THM npeiicTaiinemrnM 
. T-MaTpnu:a Ha necpi13nqecKn}:( JincTax Bblpa)KaeTC51 B TepMnHax ee KOMnoHeHT, · 
oTHOC5Illl,HXC51 mm1h K cpn3nqecK0My JIHCTy. Ha ocHoBe npeJJ,cTailJleHntt · 
,i],Jl51 T-~aTpHU:bl cpopMy JIHPYIOTCSI aHaJIOrHlIHhie npe]:lCT3BJieHH51 ]:lJl51 ami.JIHTH­
qecKoro npo~OJI)KeHn5i. MaTp.uu: pacce5IHH51 n. pe3o~hBeHThi . .llaHo onncamie 
o6Ji:acTett npm.teHHMOCTH nony'IeHHblX npe;1paBJieHHH. 

> 

Pa6oTa Bh!IlOJIHemi B Jia6opaTOpmi Teopen11IeCKOH cpn3nKn nM. H.H.Eoro-
mo6mia Ol1.5II1. · 

" llpenpHHT 06-he;i11~el1HOI'O micnrryTa 11,riepHbIX HCCJI~OBa1111tt.' ,Uy6ua, J 995 . - . . . . 

Motovilov AK. , , . ES-95.:.45 
Representations f~r:Three-Body T-matrix on Unphysical Sheets' 

Explicit representations arc 'formulated, for the , Faddeev components 
of, three.:body T-matrix continued, analytically on, , unphysical 
of the energy Riemann surface; According to the representations, the T-matrix 
on unphysical sheets is obviously expressed in terms ofits co.mponents taken 
on the physical sheet only. The rep.resentations for T-matrix are used then. 
.to construct similar representations for analytical continuation of three-body 
scattering matrices and resolvent! Domains on unphysical sheets are described 
where the representations obtained can be applied: · 

The investigation has been performed at the Bogoliubov . Laboratory 
of Theoretical Physi~s,,JINR. 
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