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1 Intro ductlon

" The stablhty propert1es of the numerrca.l method are essentra.l in the nu-

. merical solution of time-dependent partial differential equations, Here, .
~we will consider the stability of difference approximations of first order .-
. systems.. We focus on stability verlﬁcatron, i.e. how to perform the B

stability analysrs in practwe

_The general stability theory [1]-[3] is ba.sed on norma.l ‘mode (NM) ISR
. aua.lysrs To actually perform such an analysis is very difficult even for..-
" small problems and low order accurate approxrmatlons Most of the
: ~cases reported in the hterature concern problems that are smallenough - -
to be treated analytlcally, mostly with con51derable effort. The authors -
. that treated more difficult cases ( e.g.,[4],[5]) used numerical techniques -
-~ “that do not’ ta.ke advanta.ge of the spec1a.l propertles of the NM ana.lysrs S
problem S ERCRERRT
. Thuné [6] presented a numerlca.l a.lgorlthm for sta.blllty verrﬁca.tron, e
9 fwhrch by being. specrally,ta.rlored for the task,’is much more efficient -~
. 'than previous attempts. -Moreover, he sketched a software env1ron-~f Lol
" . ‘ment for stability analysrs ‘where the numerical a.lgorxthm is combrned S
_“f,»fWIth symbollc algebralc ma.nlpula.tlons [7] In particular, the sta.blhty i
% verification is to be performed ‘completely symbollcally, for classes of T

5 problems SImple enough to allow for this. -

Ea Attempts with genera.l symbohc algebra.lc a.lgorlthms for the solu-
S tion of algebrarc systems have indicated that such approa.ches are. not»"' ,
. " viable for the problem of stability, verification [8]. Instead, evenin' '
the symbohc case, specially tailored algorxthms are needed Promlslng R
. results in this direction have been- presented in [9]-[11].- A number of re-
o allstlc dlfference methods for a scalar model problem has been’ trea.ted b
AL spec1al method for solvmg the algebralc systems analytlcally, usmg:j

‘f_computer algebra systems on PC, is under development.

i Here, we discuss the a.pphca.tlon of Serdyukova. s a.lgorlthm to two
'concrete and nontrivial cases.’ The Rusanov scheme [12] and the Gary = -
- scheme [13] are consrdered ‘These schemes are used in airflow simula- -

tions (14]. Dxfference problems with initial, complementa.ry boundary.
and overla.p COIldlthIlS are studied. Such problems arise when domains

of complex geometry are substructured and dlfferent overla.ppmg grlds o

are used.

Fll‘St we cons1der the Rusanov scheme of the thrrd order a.ccura.cy' SR

T

intended for numerical solution of nonlinear hyperbolic systems.
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As usually the stability is studied in the case.of constant coefficients.

The hyperbolicity means that the matrix of F, has real different eigen-

values in the region of (w, z,t) under consideration. Such a matrix can

be reduced to diagonal form. So we study stability for the primitive

hyperbolic equation u; = u,. In this case the Rusanov scheme has the
form

+ f(w;z,1).
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Here a = 7/h, where 7, h are the step sizes in ¢,z respectrvely The
corresponding Cauchy problem is stable in space Ly if a,w he in the
region [12] :
0<a<l, 4a*-o <w<3

Inside of this region there is stability in space C[15].

Here we discuss a problem with initial, complementary boundary
and overlap conditions. The considered substructured domain [16] con-
sists of two semi-infinite overlapping intervals with different grrds Gl
and G2, having steps hl h2in z respectrvely

Xo,c1 - X Gl
l Y A i !“l Il ] ] [}
| d}
d2 - |
1 Y Ly, 1 1
G2 X_nN2,62 Xo,c2
I " Fig.1

Xo,c1 and Xg,g2 are boundary points of G1 and G2 respectively. Xy1,61
is the rightmost point on G1 to the left of Xo,g2. Let dl denote the
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distance between these points. We suppose, that'dl < hl. Symmetri-
cally X_pn2,62 is the leftmost point on G2 to the right of Xoc1 and d2
is the distance between these points, d2 < h2.

On this substructured domain a problem with initial data is solved.
Let G be the operator of transition from the layer with ¢ = nr to the
layer with ¢t = (n + 1)7. What is G here? On G1 the left boundary
problem for u; = wu, is solved. This is an outflow problem. Using
the Rusanov scheme with a = 7/h1 we can find u?*! for v > 2. The
value of u}*! is found: from the complementary boundary condition
(the Lax- Wendroﬂ' scheme of the second-order accuracy) ‘

o?

10%
n+1 n n n n
U =up —u0)+ (2“2'“1'*’“0-

2 g
The value of u3*! is found by interpolation of solutlon values in points
of G2 closest to Xo1 :we use the points X_n2 G2, X_n2-1,62 in the
case of linear interpolation and in addition the point X_n241,62 in the
case of quadratic interpolation. On G2 the right boundary problem is
solved for u; = u,. This inflow problem can be interpreted as the left
boundary problem for v; = —v,. Values of v»*1, » > 2, are found by the
Rusanov scheme with « replaced by & = —7/h2 = —¢a, ¢ = h1/h2.
The value of v}*! is defined by the second complementary boundary
condition, which is obtained from the first one by replacing u with v
and « with &. The value of v3*" is found by interpolation of solution
values in the points of the grid G1 closest to the considered boundary
point Xo gs. Put B1 = d1/h1, B2 = d2/h2. The overlap conditions are

ugtt = (1 - By)upt! + ﬂzvm}rp vpt = (1= B)upt! + Pruiis

in the case of linear interpolation; and they are
ugtt = —ﬂz(ﬂz — Dot + (1 - ﬂz) M+ ﬂz(ﬂz + Doptha,

vptl = _ﬂl(ﬂl — Dt + ( ,31 ﬂ+1 + ﬁl(ﬂl + Dupfia-

in the case of quadratic 1nterpolat10n. So the operator G is presented.
The considered problem with initial, complementary boundary and

overlap conditions (i.b.o. problem) is stable if there exists a positive

constant ¢ > 0 such that ||G"|| < ¢ for all n' > 0. '

Ral

It is necessary for stability, that the spectrum of G lies in the unit
disk |z| < 1. The classic spectrum definition is used: a point of the
complex plain zo is a spectrum point of G, if a nonzero sequence wyq
is found, such that Gwe = zowo. Here, w consists of two semi-infinite
sequences {u,}, {v,},v > 0, satisfying complementary boundary and
overlap conditions. When the stability in L; is studied these sequences
are supposed to be from Lz. And when the stability in C is studied, we
suppose that all elements of these sequences are bounded uniformly in
v. :
The spectral problem for the considered i.b.o. problem is a system
of ordinary difference equations with spectral parameter z :

(8%
+ _("'uu+2 + 8uu+1 - 8u,_1 + uu—2)+

1 2)u, +

o? o | '
+—§'(uv+2 - 2uu-+ uu—2) + E(uu+2 - 2uu+1 + 2uu—l - uu-2)""

w .
—Zi(uu+2 - 4uu+1 + 6u, —4u,_; + uu—2) =0, v2 2;

(¢4 . .
(1 - Z)‘U,, - ¢']3(_vu+2 + 8vu+1 —8v,-1 + vu—2)+
a? o .
+¢2§(vv+2 - 2vu + 'U,,_.2) - ¢3ﬁ(vu+2 - 2vu+l + 2vu—l’ - ’vu—Z)_’

w .
—ﬁ(vu+2 - 4‘Uu-}-l + lel —4v,_, + vu—‘z) = 01 v 2 2;

2

o (84
(1-=2)u; + 5(112 — uo) + ":2—(“2 — 2uy + uo) =0,

. a ,al '
(1 ="2)vr = g (v2 — o) + ¢*—-(v2 — 201 +v0) = 0

in the case of linear interpolation

up = (1 — B2)vnz + BavN241, Vo = (1 = Br)unt + Bruni4a;

in the case of quadratic interpolation
1 ' . 1
Up = '2‘,52(ﬂ2 — onz-1 + (1 — B2ons + 5,32(,52 + 1)vnatr,

v = %ﬂl(ﬂl — Duni-1 + (.1 — B)unz + %ﬂl(ﬂl# Dunisr.



The solution of the spectral problem can be represented by the roots
of the characteristic polynomials:

2
Pi(z,r) = (1 - 2)&" + 15 n4+8n3—8n+1)+%-(n4—2fc2+1)+

2(

3
+‘112(n —2x° +2n—1)——4(n —4K3 + 657 — 4k + 1),
2

Py(z,k) = (1~ 2)R% — ¢>%(—fs4 + 8% -8k +1)+ ¢>’*’98—(fc4 -2 4+1)-

a3

3
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It is necessary for the stability of the considered i.b.o. problem that

the corresponding Cauchy problems on infinite grids with the steps
hl, h2 are stable. So we suppose that a,w, ¢ satisfy inequalities

a? <1, 4a? —a* < w < 3; #a? <1, 44%a® — ¢la? < w < 3.

Then [1] for z with |z| > 1 each characteristic equation, Pi(z,x) =

0, P(z,k) = 0 has exactly two solutions with absolute value less than

1: &y, &7 and &y, &, respectively. In the general case (when &1 # k2,

and &1 # k) the solution of the considered spectral problem has the

following form:

RY 28342 1) — 1 4R 4 6R% — 4R + 1).

. .y
u, = c Ky + Ky, v, = c3k] +caky, v 20.

On introducing these into the boundary and overlap conditions we
get a linear homogeneous system for the definition of ¢, ¢, ¢s, c4. This
system has nonzero solution, if the determinant is equal to zero. Asa
result we have the determinant equation: ‘

-1 -1 el(k) el(kz)
D(e) = det(E) = det 62(0n1) e2(0n2) 63?;1) 63—(;2) =0.
ed(k1) ed(x2) 0 - 0

where

(K) — (1 ",B )KN2+,3 AN2+1, » 62(5) — (1‘—,31)51\” +,31RN1+1,

in the case of linear interpolation, and in thecase of quadratic inter-
polation

61(&) = %:32(,82 _ i)kNZ—l + (1 _ ,Bg)sz + %,32(,82 + l)sz-H,

62(\'9) = %ﬂl(/Bl - 1),‘.61*1—1 +*(1 - ,B:)ICNI + %IBI(IBI + I)K,N1+l.

The elements of the last two rows are defined by
e3(R) = (1 = )k = $ (¥ = 1) + ¢* (R~ 1)%,

ed(k) = (1 - 2)r + 9(7,&’ 1)+ 9-2-(,: ~ 1),

To summarize: we have shown that the spectrum of the considered
i.b.o. problem is described by a system of five polynomlal ‘equations
with five variables:

D(Z9K'1,K'2rv,klyk2);:‘09 IZI Z _17

Pi(z,61) =0, Pi(z,52) =0,
‘PZ(ZLRI):O, PZ(zvk'Z):'.‘O'

2 Solving for the spectrum symbolically

In the following, we describe the steps in Serdyukova’s algorithm for
symbolically solving the polynomial equations above. First, reduce
this system to a system of two polynomial equations in two: vari-
ables £ = K1kq,y = KRy, First det(E (&1, k2, k1, R2;2)) = 0 is trans-
formed by a number of elementary manipulations with the columns of
E into det(E(zl,z,;%1,y,z ) =0, z1 = k) + k9, £1 = &; + k2. Then
by using the Vieta relations for the characteristic equations, we get
xl = zl(z),z = z(r) and Z1 = £1(y), 2 = 2(y). All'these functions are
simple ratios of polynomials. After substituting them into the trans-
formed determinant equation we get oné of the polynomial equations.
Another equation is obtained from the relation z(z) = z(y) :

P(z,y) =num(z(z) — z(y)): 0



Q(z,y) = num(det(E(z1(z), z, #1(y), v, 2(z)) = 0.

This system automatically describes the spectrum points z,|z] > 1,
when xk; = k; or K&y = k. This follows from the structure of the
solution in the case of multiple roots of P(«, z), Py(, 2).

Solving this system by using REDUCE [17]:
solve({P,Q}, {z,y}), gave no result. After this we used the resultant
method. The reduction to the resultant leads to false solutions. An-
other reason why false solutions arise is the following. We cannot say a
priori in the program, that the new variables z1, z, £1, y are symmetric
functions of «; and &;, with absolute value less than 1. Thus, in the
program, zl,z depend on two arbitrary «; and £1,y depend on two
arbitrary £;. An algorithm for separating the false spectrum points was
developed and implemented on a PC, using REDUCE. The separation
has two steps. o ‘

In the first step, for each z, |z| < 1, (the solution of the resultant) we
find all solutions y, |y} < 1, of P(z,y) = 0 (the first polynomial equa-
tion). For each such pair (z,y) the values z1(z), Z1(y), 2(z) are calcu-
lated. For the following analysis-are kept only the sets (z,z1, %1, z,y),
satifying the natural inequalities

z1] <2, |£11<2, |z|>21-c

In our program e = 107!°. The points z,1 — € < |z] < 1 + ¢, from the
e— vicinity of the unit circle are replaced by z/|z|, the closest points
of the unit circle. After this we separate.the false spectrum points,
arising in the reduction to the resultant. We must simply verify if
the selected (z,y) satisfy Q(z,y) = 0 (the second polynomial equa-
tion). But z,y were found numerically and Q(z,y) has many terms
with rather big coefficients. In order to avoid numerical difficulties we
solve the resultant equation with high accuracy, put in our REDUCE
calculations PRECISION 15. Consequently, the solutions z,|z| < 1,
lie at a distance less than 107!° from the corresponding exact solutions.
In our program zq, yo are assumed to satisfy the second equation if the
following inequality holds

Pr(z0,y0)|
Py(l'o,yo) ’

The absolute value of the derivative of () with respect to z is of correct
size, since it is reasonable to assume that in such a small (107?®) vicinity

IQ(-’E%yO), <2x 10—15 Qr(z(h yO) + Qy(xo,yo)

8
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of the exact solution, the absolute value of the derivative can change
not more than twice. This completes the first step of the separation.

In the second step the selected sets (z,z1,Z1,z,y) are analysed.
For each set k1, k2, k1, K2 (the roots of Py(k, z), Py(%, z) characteristic
polynomials with z from the considered set less than one in absolute
value) are found. We check if z1, #1 from the considered set are really
the sums of the computed x;, £ and &, 52 respectively. In our imple-
mentation, this is considered to be the case if the following inequalities
hold:

|zl — (k1 + k2)] < 1073z1|, |21 — (&1 + R2)| < 1073|21].

All constants and inequalities were chosen in the process of numerical
experiments. In what follows we present the results of concrete studies
produced on a PC, using REDUCE and MAPLE.

I. The first example is the i.b.o. problem for the Rusanov scheme
with the following parameters: o = 1/2, w =2, N1 =2, N2 =
1, $=1/2, B =1/2, B, =1/4. The quadratic interpolation is used.
The substructured domain here is the following

Xoc1 - Xga1 G1
2 a '
d2 ,
$ ;—-—“-u i
G2 X-1,62 - Xogz
Fig. 2

Here, u3*! is found by interpolation of v™3!,v™1! v3*! values. The

last one is the solution value in the boundary point Xo,G2. But we can
find first v37! by interpolation of uf*!,uf*! ui*! solution values in
the inner points of G1.

Here P(x,y) is the polynomial of the sixth order with respect to y,
while Q(z,y) - of the fifteenth. So we prefer to use P to find y.

The resutant (the polynomial of 106 order) in factored form is

R(z) = 196742722255200000000z%(z? — 7)*(z® + 632% — 9z — 7)S5(z).

9



The last factor is the polynomial of 77 order with huge coefﬁcrents
The maximal one is the coefficient of z37 :

+23776275738933848749928920812229736190814717991598426600493
' 4853326.

The characteristic equations have not zero solutions for z,|z| > 1. So
only nonzero z,|z| < 1, are interesting. The second factor gives two
such solutions and the last - 37. For each of 39 selected z we find

nonzero solutions y, |y| < 1 by solving P(z,y). After the first step of
separation only three'sets were kept:

[z, 21, 21, =z, ]
[1.037038162i219 1. 46132552723516 1. 05246335761816,
0. 417550457853634 0. 158337807785756],
[1,1.4107123111035, 1. 17793091226657, 0. 410712311103496
0.177930912266573], -
1, Q.73007d495734075, 1.17793091226657, -0.269929504265927,
0.177930912266574).

On the second step all sets were rejected. Let us consider, for instance,

why the sets with z = 1 were rejected. Py(k,1) ( the first characteristic

polynomial with z = 1) has roots
Kl =—0.2605., 2 =0410.., K3 =1, xd = —63.14..

The third root is the limit value of x3(z), greater than one in absolute
value, when z — 1,being outside the unit disk. The sum &, + k2 =
0.140... is not close to =1 = 1.140... from the second set and not close to
z1 = 0.730... from the third set. But it’s clear that zl from the second
set is close to k2 + k3 and zl from the th1rd set is close to nl + Ka.
As a matter of fact these values coincide in all 10 digits printed, which
guarantees the correctness of the results computed mdepedently on
the PC. The values zl in the sets were obtained at the end of long
analytical and numcrlcal calculations. To conclude, we have shown
that z = 1 is not a spectrum point. Thus, it has been proved that there
-are no spectrum points outside the unit dl_sk and on its boundary. For

.10

the parameter values under consideration, the corresponding Cauchy
problems are stable in L, and in C. Then the considered i.b.o. problem
is stable in L, [1] and in C [3].
I1. The same result was proved in the case of linear interpolation.
IIL. The third example is i.b.o. problem for the Gary scheme [13].
The multistage form for u, = u, is

« * n [ 2, n
a4, =u, + EAOUE =u, + '2‘(uu+1 - uy-—l)’

. 04 .
u=u, + ZAO(u: + 1),
W =l + Tho(ul +1), a=T/h

Here, Ay denotes the second order centered difference operator in
space. For @ < 2 the corresponding Cauchy problem is stable in L.
The Gary scheme has second order accuracy. It is well known that all
schemes of even order accuracy are unstable in C (see, e.g., [18]). We
consider J )

a=2 Nl=2 N2=1, ¢é=1/2, pl =2 =20.In con-
trast to the prevxous case (Rusanov’s scheme), there is no displace-
ment here (d1 = d2 = 0.) The overlap condltlons here are 31mply

ult! = ot vt = 43t The Gary scheme

. V -
e o o o o o O
requires two complementary boundary conditions [16] to define u}™, u2

« T
Wt = + SO + ),

«@ n', 3 C
ult! =l + ZAo(ui' +i),
=i = 2uptt — uptt,

The complementary boundary COIIdlt]OIlS, deﬁnmg v"‘*'l,v;'_}'"1 are ob-

tained from above by replac1ng u with v and a with —¢a. The Rusanov
scheme has on the low layer 5 pomt the Gary scheme 7. This comph-
cates studying. In partlcular, the resultant R(z) is here a polynomial
of order 900. REDUCE was not able to ﬁnd it. MAPLE did thls and

11
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factored R(z) in approximately 4 hours. The factored R(z) has 10
different factors-polynomials with maximal order .68 and sufficiently
small coefficients. The resultant has 96 nonzero solutions z,|z| < 1.
For each computed z the polynomial equation P(z,y) = 0 of fifteenth
order is solved with respect to y. So we have to solve a lot of polyno-
mial equations with complex coeflicients. All polynomials were solved
and all the selected solutions were analysed. As a result the unique ( in
the region |2| > 1) spectrum point z = 1 was found. Here «1(1) = 1.
This leads to a power instability in space L,. Thus, for the considered
problem with initial, complementary boundary and overlap conditions
[IG™|| grows as /n when n — co. This is in agreement with the results
of numerical experiments {16]. It is an example of an interesting in-
stability phenomenon: the instability is observed in calculations only
in the case of an even number (N1) of full steps (A1) on the overlap-
ping interval for the outflow problem. This phenomenon was explained
theoretically in [19].

3 Conclusion

We have presented stability analyses of two difference methods, the Ru-
sanov scheme and the Gary scheme, for a nontrivial case with initial,
boundary, and overlap conditions on a substructured domain, with two
overlapping, structured grids. The analyses were performed analyti-
cally, by means of symbolic algebraic manipulations, using REDUCE
and MAPLE on a PC. Previous attempts to study the stability of
these schemes, under such nontrivial conditions, have been based on
numerical approaches.

The conclusions of the analyses are that the Rusanov scheme of
third order accuracy is stable in L, and in C, whereas the second order
Gary scheme (which uses centered differences in space and a Runge-
Kutta type time-marching scheme) exhibits an interesting instability
phenomenon, for special choices of parameters.

The key to the analyses presented here, is the algorithm invented
by Serdyukova. In this paper, and in Serdyukova’s previous work,
the algorithm was applied to concrete difference problems. In ongoing
work, we aim at expressing the algorithm in a general form, and to
1mplement (primarily in MAPLE or REDUCE) of a general software

tool for symbolic stablhty analy51s

12
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