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1 Introduction

A Lie algebra L is an algebra over the commutative ring K with unit. Non-commutative

. and non-associative multiplication-in Lie algebra:is called. Lie iproduct:and denoted
usually by commutator |, ].. The Lie product satisfies the. followmg axioms for a.ny
uvv$w€L ; AT . S i e e L : o

[u v] = _[;”"]v ; o skew — symmetry, (1)
[u, fv,w]] + [v, [w u]] + [w, [u v]] = 0 Jacobz zdentzty o (2)

A Lze superalgebra is Zo- graded algebra L = L5 @ L1 thh product y ], i.e. 1f u €

Ly, ve Lp, ‘a,f € Zy = {0,1}, then [u,v] € La+g The elements of Ly and’ Ly a.re' :

called even a.nd odd, respectlvely The Lie product satrsﬁes now the modified 2 a.x10ms
bl

)

il= =%, @
bl = ol el (DBl @)
u € Ly, v € L.

These definitions can be generalized in the following way (Bahturin, Mikhalev, Petro-
gradsky and Zaicev, 1992). Let G be an abelian additive group gradmg certa.m a.lgebra
L= EBgegL Let € be a bilinear aIternatmg form . ,

€: GxG—»K'

satisfying the following propertles .
(a + :3’7) = 5( ’7)5(16’7)1 6(a B +7) = 6((!, :B)E(aa7)’ E(Q,ﬂ) = 6(,3,0)—1

where a,B,7 € G K*-is the multlpllcatrve group of invertible elements in K. 'If
we replace (—1)*? by e(a, f) in (1.3-1.4), -we obtain the definition of (¢-)colour Lie
superalgebra combining generally more than two (even and odd) fea.tures in the same
structure. If G = {0}, then L is an ordma.ry Lie algebra. The case of ordma.ry Lie
superalgebra corresponds to G'='Z,, €(0,0) = £(0;1)-= ¢(1,0) =1, 5(1 1)=-1. '

Note that if we consider an ordinary or colour Lie superalgebra over a field-of
characteristic 2 or 3; we have to add some extra axioms. Characterlstlc 2 requires also
the existence of certain quadratic operator (see Ufnarovsky, 1990 Bahturm Mlkhalev
Petrogradsky and Zaicev, 1992). ' ‘

Finitely presented algebra is determined by a finite niumber of some its el ments
called generators subject a finite number of relatiors havmg a form of polynomla.ls
in the algebra. Any finite-dimensional algebra is, obviously, finitely presenfed one.
Nevertheless, the concept of a finite presentation covers also a wide classes of infinite-
dimensional algebras. Some of these algebras have a natural constructive definition in
terms of a finite number of generators and relations. '
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Some examples of infinite-dimensional finitely presented Lie (super)algebras:

L. Kac and Kac-Moody (super)algebras (Kac, 1990) with their generalizatibﬁ known
as Borcherds algebras (Gebert, 1994). ‘ ‘

2. Lie (super)algebras of the string theories: Virasoro, Neveu-Schwarz and Ramond
algebras (Leites, 1984). ' ' D

3. Any simple finite-dimensional Lie algebra can be generated by two elements only

with the number and structure of relations independent of the rank of the algebra. This .

allows to define:such objects asiLie algebras of matrices of a complex size sl(A), o(X)
and sp(}), where A may be any complex number or even co (Grozman and Leites,
1995a). In a similar way, one can define some Lie superalgebras of supermatrices of a
complex size (Grozman and Leites, 1995b). - o

‘ ]?elow we describe an ‘algorithm and its C'implementation for determining the
faxkphciﬁ structure of finitely presented Lie (super)algebra from the defining relations,
ie, for constructing its basis and commutator table. In fact, our algc')‘rithm produces
the Grébner, basis (Ufnarovsky, 1990) for non-commutative and non-associative case
of Lie (super)a]_gebras. The algorithm and its actual implementation is illustrated by
rather simple example arising in investigation of some supersymmetric model equation
of mathematical physics. We also present the table containing computational statistics
for the standard relations of all simple Lie algebras up to rank 10,

2 iAlgorithm -

Let us explain, first of all, some terms used in the text. :

The fet X = {z1,22,...,%4} of generators is a set of Lie (super)algebra elements
from which any other element may be constructed by Lie product, addition and mul-
tiplication by elements in K (scalars). :

A basis B(X) of Lie (super)algebra is a minimal set of elements such that any other
element is their'linear combination. ‘ '

A L1:e monomial (“word”) m(X) is any element of L constructed from the generators
; by Lie products. A Lie polynomial. P(X, C) is.a sum of Lie monomials multiplied
by scalar coefficients C = {e1,...,a1}, c € K. . - RS . ,

‘The set of defining relations R is the set of Lie polynomial équalitieé of the form
P(X,C)=0. T R L
. Lie (super)algebra L.is called finitely presented one if the both sets X and R are

nite.. e L C
_The finitely presented Lie (super')a]gebraﬂLVFIWithoht defining relafidhs{., i. e., with
the empty set R, is called free Lie (super)algebra. . T

Any finitely pre§énted Lie (super)algebra can be considered as the quotient algébra
of Lp by the two-sided ideal generated by relations R. Thus, it makes sense to deal
with only those Liemonotﬁni‘als which constitute a basis of the free Lie (super)algebra,

i.e., a set of Lie monomials which are not expressible in terms of others by means of
(1.1-1.4). ‘

It is known that a suitable basis of free Lie (super)algebra can be formed by regular
(ordinary Lie algebra), s-regular (Lie superalgebra in characteristic 0) and ps-regular
(Lie superalgebra in characteristic p) Lie monomials (Bahturin, Mikhalev, Petrogradsky
and Zaicev, 1992). : ‘

Monomials are regular if they are either generators or commutators of the form
[u,v] or [w, [u, v]], where u,v,w are regular-and 4 < v and w > u with respect to some
linear ordering of Lie monomials, .Depentling on the ordering chosen, one obtains a
particular basis for a free Lie algebra. Among the whole variety of bases, the most
often used ones were introduced by Hall and Shirshov (Ufnarovsky, 1990). Without
getting into details, we remark only, Shirshov and Hall orderings are analogous, in some
sense, to the pure lexicographical and graded lexicographical orderings for associative
words. In the present algorithm we use Hall ordering because it is compatible with the
natural grading generated by Lie product. The use of Shirshov ordering may give, as
we hope, an additional information about the structure of Lie algebra but, as well as
in the associative case, decreases the efficiency because a Lie monomial may contain a
greater, w.r.t. the ordering, submonomial that complicates the structure of data and
algorithm. So we putits consideration off for the future. -~ = .- .

To get a full set of s-regular monomials, :we have to add only Lie squares:of odd
regular monomials. e L o ' RN

The set of ps-regular monomials contain also pth associative (in the sense of uni-
versal envéloping algebra) powers of s-regular monomials. In this work we consider the
case p = 0 only and we shall use below the term “regular” assuming any of the above
prefixes. S ' ' o o

In general terms to reduce a given set of Lie polynomials to Grobner basis, we
should compute all possible consequences of these polynomials and remove all depen-
dencies among them. The problem is to do that in the most efficient way. There
were elaborated a number of optimizing criteria to avoid unnecessary reductions in
computation of associative (Ufnarovsky, 1990) and commutative (Buchberger, 1985;
Becker, Weispfenning and Kredel, 1993) Grobner bases. Unfortunately, similar criteria
have not been found. yet for the non-associative case. Nevertheless, we use some sim-
ple methods to decrease the volume of computation. Most important of them are the
following;:

1. It is sufficient to multiply the relations by generators only to obtain all.the
consequences. It is clear from Jacobi identity [[u,v],r] = %[u,[v,7]] + %[v, [u,r]] that
multiplication of relation r by commutator of Lie monomials u,v is equivalent to the
linear combination of the subsequent-Lie products with the components of a commu-
tator. Using this formula recursively, we come to generators.

2. There is no need to multiply the relation by the generator which form a regular
monomial with the leading monomial of relation since all such consequences are au-
tomatically reduced to zero. Let relation have the form u + @ = 0 with the leading
monomial u and a contains other terms. Multiplying the relation by generator z, we



obtain [z,u] + [z,a] = 0. If [z,u] is a regular monomial, we must replace u by —a in it
that leads to —[z,a] + [z,a] = 0.

3. All computations, starting with processing the mput relations, are: executed

modulo identities (1.1-1.4) and the relations have been treated to the moment. This
allows to minimize resimplification of the calculated structures and to keep the system
of Lie monomials and relations as compact as possible all the time.

The algorithm has the following input and output structure:

Input: The set of generators X = {z1,z2,...} with prescribed parltles o; € Z, a.nd

positive integer weights w; (= 1 by default);

the set of scalar parameters P = {py,p;,...} if they present in the relatlons

the set of defining relations R = {r),rs;...}, where r; are Lie polynomials with
coefficients from the commutative ring Z[p;, pa, ...} of scalar polynomials;

the llmltlng number for generated relations because it is necessary to stop com-

putation in the case of infinite Grdbner basis.

Output' The reduced set of relations (Grdbner basis) R = {7‘1,7‘2, 1
the list of basis elements E = {ey, ea,...};
the commutator table (e;, e;] = cf,ek, where cfj are structure constants;
the table of expressions containing p; and considered as non-zeros during ¢om-
putation. Particular values of p; may cause the branching of computation and,
possibly, of the resulting algebra structure;

dimensions of homogeneous components in obtaxned Lie (super)algebra
There are three principal steps in the algorlthm

1. Reduction of the initial set R to the equivalent Grébner basis R = {y,74,...}.
This step executes the subsequent multiplying of relations by generators adding
non-zero results to the set of relations and substituting these new relations into
the other ones. The process terminates if either all newly arising relations are
reduced to zero or the number of relations goes up to the limit fixed at input. In

" the first case Grobner basis consists of a finite number of relations !. The second
case means that either algebra is 1nﬁn1te-d1men51ona.l or the input limiting number
of the relatlons is too small.

2. Constructzon of the Lie (super)algebra basis. Some basis elements obtained at
Step 1 as Lie (sub)monomials of #;, but the basis must be completed by the
regular commutators of already existing basis elements in the infinite-dimensional
case and by the Lie squares of the odd elements in the case of superalgebra. -

3. Construction of the commutator table. Here the commutators of the basis el-
ements obtained at Step 2 are computed by the direct commutating with the
further reduction of the resulting expression modulo the relations R.

1t does not mean, however, that algebra necessarily be finite-dimensional.

3 Implementation and Sample Session

The algorithm has been implemented in C language. The source code has the to-
tal length about 7500 lines and contains about 150 C functions realizing: top level
algorithms, Lie (super)algebra operations, manipulation with scalar polynomials, mul-
tiprecision integer arithmetic, substitutions, list processing, input and output etc.

The following session file has been produced on a 25 Mhz MS-DOS based AT/386
computer. We use here 32bit GCC compiler and GO32 DOS extender, though for
considered small example the 16bit Borland C++ 3.1 environment is duite sufficient
(and takes twice smaller space for the calculated structures). The illustrative example
given below yields relatively compact output and has been studied in (Roelofs, 1993).
This example arises in investigation of supersymmetries of N = 1 superization of KdV
equation (Manin and Radul, 1985). The relations contain two even generators z; and
z7 and odd generator y (prefixed by the sign “~" at the input description). We deform
the original system by two parameters a and & to get a parametrlc ring and, thus, to
illustrate the classification problem.

Note that the program asks for the output form of Lie monomials. In this example
we choose the standard one. Otherwise, one can choose the right-normed arrangement
for non-associative monomials. It means, for instance, that Lie monomials [z, [z, [y, z]]
and {[z, 9], [z, [z, ] are presented in the output as z2yz and (zy)z?%y, respectively. Such
notations are more compact and expressive especially for high degree Ll(’ monomlals
and widely used by algebraists.

Input data can be entered from either a keyboard or a separate file.

Enter name of existing or new input file -> skdvab.in -

Input data:

Generators: x.2 -y x_1;

Parameters: a b;

Relations:

[CCy,x_11,x_11,x_1];

[y,x_21;

y,(CCy,x_11,x_13,y11;

[y.[ly,x_1],(y,x_11]] - a (ly,[ly,x_1],y]],x_11;

[x_1,x.2] - ([y,CCy,Cly,x_11,y1,y1],y];

[x_1,C0y,x_11,y]1] + [ly,x.13,[y,x_13] + [[ly,x_11,x.1],y];
[x_1,[ly,x_1],[y,x_111] + b [x_1,[([y,x_1],x_1],y]]; ’
[x_1,[ly,C(ly,x_11,y1],y]] - 3 [[y,x_11,y) - [Cly,[Qy,x_11,y1],x_11,y];

Right-normed output for Lie monomials? (y/n) -> n
Standard grading assumes unit weight for every generator.
Do you want to use a different grading? (y/n) -> n

Enter limiting number for relations -> 20

Initial relatioms:

(1) x,yJ=o0
2



(2) [x,0x,[ly,x11]) =0 Basis elements:
1

1 1
(1) E =x
(3) [x,ly,ly,ly,x11J1 =0 1 2
1 1 .
(2) 0 =y
(9 [fy,x1,0y.0y,x 331 = 0 ! 2
1 1
(3) E =x
() (2b-2) [ly,x1,[x ,ly,x11] +b [x ,[x ,[y,[y,x 111D = 0 \ 3 1
1 1 1 1 1 1
v (4) E =T[y.,y]
() Ix ,0y,Iy,ly,[y,x 13331 - 3 Iy,[y,z 1] = 0 4
1 . 1 1
() 0 = [ly,x]
(7 Ly.Cy.0y, Ly, [y, [y,x 17311 + [x ,x 1 = 0 ! 5 1
1 2 1 :
(6) 0o =[x ,[ly,x1]
Non-zero parametric coefficients: 6 1 1.
(1) a-2 (1) E = [ly,x1,0y,x 13
7 1 1
(2) b~1
Non-zero commutators of basis elements:
2
(3) b +b -2 (1) 0,01 =E
2 2 4
Reduced relations: (2 o ,el=0
2 3 5
1) x,yl=0
2 (3) [E,0]l=0 "
3 b 6
(2 [x,x)=0
2 1 (4) [0,0]1=E
5 b 7
3) [y,ly,x11=0 .
1 () [o,01=¢E
. 2 6 7 -
@ (x,(x,(y,x]ll1=0
1 1 1 Dimensions.of homogeneous components:
() (ly,x1,[x ,[ly,x111 =0 dim¢ =3
1 1 1 1
(6) [Cx ,[y,x1),[x ,[y,x11) =0 dim6 =2
b 1 1 b 2 .
dimG =1
-3



Time: 0.05 sec

Number of relations: 16 Relation space: 120 bytes
Humber of ordinals: 40 Ordinal space: 480 bytes
Number of nodes: 60 Node space: 600 bytes

Total space: 1200 bytes

Here E; and O; are even and odd basis elements, respectively. In the case of infinite-
dimensional algebra the program prints out only those commutators which can be
expressed in terms of the basis elements have been computed. .

In the above example the chosen ordering among generators z < y < z, provides
the minimal number of the reduced relations in the output. As well as for the commu-
tative Grobner basis method the final structure of the reduced relations and even thexr
number essentially depends-on the ordering chosen.

It can be easily seen that for the generic values of parameters e and b we have
seven-dimensional nilpotent Lie superalgebra. The branching of the algebra structure
is possible at the values of parameters @ = 2, b = 1 and b = —2. The computations
with these particular values show that'the choice b ='1 or b = —2 leads to the same
algebra structure, whereas at a = 2 the algebra becomes to be infinite-dimensional one.
In (Roelofs, 1993) this algebra at a = 2 and b = 1 was identified with the product of the
seven-dimensional nilpotent algebra and the positive subalgebra of twisted Kac-Moody
superalgebra C(¥(2).

4 Standard Relations for Simple Lie Algebras -

In Table 1 we present the results of applying the program to the standard relations
for all simple Lie algebras up to rank 10. The timings are presented for the above
mentioned personal computer.

Any (semi)simple complex Lie algebra L possesses Gauss decomposition L = E &
H @ F, where H is commutative Cartan subalgebra, E and F are positive and negative
nilpotent subalgebras. This decomposition is compatible with the following relations
containing Cartan elements h; and Chevalley generators e;, f; corresponding to positive
and negative simple roots of the algebra (Jacobson, 1962):

[hi’ hj] =0, (5)
les, £ = sk, : (6)
[hi e5] = ajie;, ‘ (M
[hi fi] = —aj;if;, ' (8)
(ade;)"%e; = 0, (9

)

(ad fi)! 7% f; = 0, . (10

where a;; is Cartan matrizr, i,j = 1,...,r = rank L. Note that for Kac-Moody algebras
just the same relations hold with slightly more general Cartan matrix.

Relations (4.5-4.6) are called Serre relations. One can see that these relations
include only Chevalley generators corresponding to positive and negative subalgebras
E and F carrying the principal part of information about algebra Serre relations,
being taken separately, define subalgebras E and F.

One can see that the calculation of exceptional algebra Es is the most difficult
task among those included in Table 1. The number of initial relations here is 290.
The program generates the Grébner basis which contains 23074 relations involving Lie
monomials up to degree 58 while Lie algebra basis elements go up to 29th degree. The
task requires 15 min 36 sec of computing time and 815516 bytes of memory. Note that
a separate processing of Serre relations for this algebra takes 1 min 13 sec and 186096
bytes. -

Content of columns in Table 1 is as follows:

— Dim is dimension of the algebra,

— Nin is a number of the input relations,

— Ngg is a number of the relations in Grébner basis,

— Namm: 1s'a number of the non-zero commutators, ,
— Dgg is a maximum degree of Lie monomial in Grébner basis,
— Space is maximum memory occupied by computed structures,
— Time is the runnmg time excepting input-output operatlons

5 Conclusion

Unlike commutative algebra, where such an universal tool for analysis of polynomial
ideals as Buchberger’s algorithm for computing of the Grobner basis has been developed
(Buchberger, 1985; Becker, Weispfenning and Kredel, 1993), its generalizations to non-
commutative (Mora, 1988; Kandri-Rody and Weispfenning, 1990; Ufnarovsky, 1990)
and especially to non-associative-algebras are still far from being practically useful.
Morcover, because of very serious mathematical and algorithmic problems are still to
be solved, there are only a few packages implementing the non-commutative Grobner
basis technique, and no one of them so far is able to deal with non-associative algebras.

It justifies the practical use of other algorithmic methods. ‘Among them there is one
based on the straightforward verification of Jacobi identities (Gragert, 1989; Roelofs,
1991). Its implementation in the form of the Reduce package was successfully applied
to a number of problems in mathematical physics.

Our algorithm reveals some common features with the involutive techniques in
commutative algebra (Gerdt and Blinkov, 1995), namely, combining prolongations by
the generators with subsequent reductions. The involutive approach can be considered
as another efficient algorithmic method to the Grobuer basis construction, different
from Buchberger’s algorithm. By this analogy we hope that the further analysis of our



Table 1.

Algebra | Dim | Niw | Nap | Nown | Des | Space, | Time,
‘ bytes | seconds.
A; 8| 17 24 21 4| 1188 <1
As 15| 40 84 60 6| 3612 <1
Aq 241 72| 218 126 8| 8716 1
As 35(113) 473 225| 10}. 18088 2
As 4811631 908! 363| 12| 33700 61
Aq 63222 | 1594 | 546 | 14| 57908 13
Ag 80290 2614 780 | 16| 93452 27
Ay 99 | 367 | 4063 | 1071 | 18| 143456 51
Ao 120 | 453 | 6048.| 1425 | 20 |.211428 89
B; 10] 17 35 28 6| 1672 <1
B; 21| 40 149 106 | 10 6160 1
B, 36| 72 441 263| 14| 17148 3
Bs 5511131 1047 | 522 | 18] 39180 9.
B, 781163 | 21531 906 | 221 78544 25
B; 105 | 222 | 3981 ] 1441 | 26 | 142620 59
Bg 136 | 290 | 6792.{ 2150 | 30 | 240024 124 |
B, | 171 | 367 | 10904 | 3057 | 34| 381256 | .. 241
Bio 210 | 453 | 16683 | 4185 | 38 | 578364 | - . 444
Cs 91 [ 40| 138  106] 10| 5772 1
Cy 36{ 72| 411| 263| 14| 16032 3
Cs 55]113] 968 | 522| 18| 36304 9|
Ces 78 11631 2007 | 906 | 22| 73320 25| -
Cs 105 1222 | 3756 | 1441 | 26| 134652 62
Cs ‘136 | 290 | 6439'| 2150 | 30 | 227672 130
Cs 171 | 367 | 10398 | 3057 | 34 | 363720 248
Cro 210 | 453 |'15999 | 4185 | 38| 554832 | 451
D, 98 [ 72| 283 179| 10| 11336 1
D; . 45| 113 | 726| 389 | 14| 27768 5
Dg- 66 | 163 | 1573 | 713 | 18| 58292 15
D, 91 12921 3034 | 1174 | 22| 109964 39
Dg 120 {290 | 5355 | 1798 | 26 {190932°| 87
Dy 153 | 367 | 8817 | 2608 | 30 | 310452 174
"Dy 190 | 453 | 13762 | 3628 | 34 | 479792 328
G2 14| 17 73 56| 10| 3200 <1
I 52| 72| 858 | 544 | 22| 32832 10 |
Es 78 | 163 | 2186 [ 1003 [ 22| 80740 27
E; 133 | 222 | 6389 | 2527 | 34 | 230140 132
Es 248 | 290 | 23074 | 7710 | 58 | 815516 936

10
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method could g gwe a new insight to generahzatxon of the Grobner basxs apploach to
Lie (super)algebras.

The program can be easily modified for working over finite fields and. generahzed
to handle colour Lie’ superalgebras with finite grading groups. -
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