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1 Introduction 

A Lie algebra Lis an algebra over the commutative ring Kwith unit .. !'{on-commutative 
and non-associative multiplication. in Lie algebra. is called Lie 'product: and denoted 
usually by commutator [ , ). The Lie' product satisfies the following aJl'.ioms for any 
u,v,w E,L . ' , .· . . ,, 

[u, v) = -Iv, u), s_kew - symnietry, 
. [u, [v, w]] + [v, [w, u]) + [w, [u, v]] = 0, . Jacobi identity. 

, ' ~ , ' : > • " ' ' • \~ •• ~ • 

{1) 
(2) 

A Lie superalgebra is Zrgraded aigebra L = L0 EB.£°1 with product"['; ], i.e.· if u E 
L~;· v·e Lp,·o:,/3 E Z2 = {0,1},then [u,v] E La+fJ':' The elementsof,L0 and'Lr are 
called even and odd, respectively. The Lie prodti~tsatisfies Ilow the modified it,xioin:s 

'- ,.,, ' t. . .,, \ 

[u,v) = -(~1)"/J[v,u), . 
[u, [v, w]) = [[u, v], w) + (-1 )"/J[v, [u, w)), ,· 

U E La, VE Lp. 

(3) 
(4) 

These definitions can be generalized in the following way (Ba~turin, Mikhale_v, Petro­
gradsky and Zaicev, 1992). Let G be an abelian acfditive group grading certain algebra 
L = EB9eaL9 • Let e be a bilinear alternating form 

e:GxG-I<* 

satisfying the following properties 

e(a_ + /3, ,) =,, e(a, ,)e(/3, ,), e(a, /3 + ,) = e(a, f3)e(a, ,), e(o? /3) :::. e(/3, a)-1
, 

where a, /3, 1 E G; I(* is the multiplicative group of invertible 'elemeqts in J(. If 
we replace {-1)"/J by e{a,/3) in (1.3-1.4), we ob_tain the definition of(e~)colour Lie 
superalgebra combining generally more th~n two (even and odd) features in t4e same 
structure. If G = {0}, then L is· an ordinary Lie algebra. The cas~ of ordinary Lie 
superalgebra corresponds to G ='Z2 , e(O, 0) = e(O; l)·'= e(I, 0) = 1, e(l, I) = ..;.1. . 

Note that if ~e consider an ordinary or colour Lie superalgebra over a field of 
characteristic 2 or 3; we have to add some extra axioms .. Characteristi~ 2 requires also 
the existence of certain quadratic operator (see Ufnarovsky, 1990; Bahturin, Mikhalev, 
Petrogradsky and Zaicev, 1992): . . - · •· ' "' · ·. . ·· . · 

Finitely pr~sented_ algebra ~s determined. by ~ ~n_ite. ri~}Ilber of some· its elpm~r,1:ts 
called generators subject a fimte number of relations havmg a form of polynomials 
in the algebra. Any finite-dimensional algebra is, obviously, finitely presented one. 
Nevertheless, the concept of a finite presentation covers also a wide classes of infinite­
dimensional algebras. Some of these algebras have a natural constructive definition. "in 
terms of a finite number of generators and relations. 



Some examples of infinite-dimensional finitely presented Lie (super)algebras: 

1. Kac and Kac-Moody (super)algebras (Kac, 1990) with their generalization known 
as Borcherds algebras (Gebert, 1994). 

2. Lie ( super )algebras of the string theories: Virasoro, Neveu-Schwarz and Ramond 
algebras (Leites, 1984). · 

3. · Any simple finite-dimensional Lie algebra can be generated by two elements only 
with the number and structure of relations independent of the rank of the algebra. This , 
allows to define such objects as Lie algebras of matrices of a complex size sl(,\), o(,\) 
and sp(,\), where ,\ may be any complex number or even oo (Grozman and Leites, 
1995a). In a similar way, one can define som,e Lie superalgebras of supermatrices of a 
complex size (Grozman and Leites, 1995b). · 

Below we describe an algorith~ and its C' i~plementation for determining the 
explicit structure of finitely presented Lie (super)algebra from the defining relations, 
i.e., for constructing its basis and commutator table. In fact; ~Ur alg~rithm produces 
the Grobner basis (Ufnarovsky, 1990) for non-commutative and non-as~ociative case 
of Lie (s~per)algebras.' The algorith~ and its actual impleme~tation is illustrated by 
rather simple example arising in investigation of some supersymmetric model equation 
of mathematical physics. ,We also present the table containing,computational statistics 
for the standard r~lations of all simple Lie algeb~as up to rank 10. 

2 •Algorithm 

Let us explain, first of all, some terms used in the text. 
The set X = {x1,x2, ... ,xk} of generators is a set of Lie (super)algebra elements 

from which any other element may be constructed by Lie product, addition and mul­
tiplication by elements in /( (scalars). 

A basis B(X) of Lie (super)algebra is a minimal set of elements such that any other 
element is their'linear combination. ' 

AL1e ~onomial("word") m(X) is any element of L constructed from the generators 
x; by Lie products. A Lie polynoi:i:iial. P(X, C) is a sum of Lie monomials. multiplied 
by scalar coefficients C.= {c1, ... ,c,}, e; EK, . , 

,The set of defining relations R is the .~et of Lie polynomial equalities of the form 
P(X,C) = 0. . 

Lie (super)algebra L is called finitely presented one if the both sets X and R are 
finite.•, · . , · · . . , , . , 

The finite!y'pr~sented Lie (super)algebra LF with~ut defini~g relations, i: e., ~.ith 
the empty setR, is called free Lie, (super)algebra. 

Any finit~ly p;~sented Lie (super)~lg~bra c~~ be considered as the quotient algebra 
of LF by th~ two-sided i~eal ge,nerated by relation.s R. Thus, it makes sense to deal 
wtth only those Lie mono1;11ials which.constitute a basis of the free Lie (super)algeb~a, 
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i.e., a set of Lie ·monomials which are not expressible in terms of others by means of 
(1.1-1.4). 

It is known that a suitable basis of free Lie (super)algebra can be formed by regular 
(ordinary Lie algebra), s-regular (Lie superalgebra in characteristic 0) and ps-regular 
(Lie superalgebra in characteristic p) Lie monomials (Bahturin, Mikhalev, Petrogradsky 
and Zaicev, 1992). 

Monomials are regular if they are either generators or commutators of the form 
[u, v] or [w, [u, v]], where u, v, ware regular·and u < v and w 2:". u with respect to some 
linear ordering of Lie monomials. Depentling on the ordering chosen, one obtains a 
particular basis for a free Lie algebra. Among the whole variety of bas.es, the mo~t 
often used ones were introduced by Hall and Shirshov (Ufnarovsky, 1990). Without 
getting into details, we remark op,ly, Shirshov and Hal~ orderings are analogous, in some 
sense, to the pure lexicographical and graded lexicographical orderings for associative 
words. In the present algorithm we use Hall ordering because it is compatible with the 
natural grading generated by Lie product. The use of Shirshov ordering may give, as 
we hope, an additional information about the structure of Lie algebra but, as well as 
in the associative case, decreases the efficiency because a Lie monomial may contain a 
greater, w.r.t. the ordering, submonomial that complicates the structure of data and 
algorithm, So we put its consideration off for the future. 

To get a full set of s-regular monomials, we have to add only Lie squares. of odd 
regular monomials. 

The set of ps-regular monomials contain also pth associative (in the sense of uni­
versal enveloping algebra) powers of s-regular monomials. In this work we consider the 
case p = 0 only and we shall use below the term "regular" assuming any of the above 
prefixes. 

In general terms. to reduce a given set of Lie polynomials to Grobner basis, we 
should compute all possible consequence~ of .these polynomials and remove all ,depen­
dencies among them. The problem is to do that in the most efficient w~y. There 
were elaborated a number of optimizing criteria to avoid unnecessary reductions in 
computation of associative (Ufnarovsky, 1990) and commutative (Buchberger, 1985; 
Becker, Weispfenning and Kredel, 1993) Grobner bases. Unfortunately, similar criteria 
have not been found yet for the non-associative case. Nevertheless, .we use some sim­
ple methods to decrease the volume of computation. Most important of them are the 
following: 

1. It is sufficient to multiply the relations by generators only to obtain all .the 
consequences. It is clear from Jacobi identity [[u, v], r] = ±[u, [v, r)) + ±[v, [u, r]] that 
multiplication of relation r by commutator of Lie.monomials u, vis equivalent to the 
linear combination of the subsequent Lie products with the components of a commu­
tator. Using this formula recursively, we come to generators. 

2. There is no need to multiply the relation by the generator which form a regular 
monomial with the leading monomial of relation since all such· consequences are au­
tomatically reduced to zero. Let relation have the form u + a = 0 with the leading 
monomial u and a contains other terms. Multiplying the relation by generator x, we 
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obtain [x, u] + [x, a] :::,, 0. If [x, u] is a regular monomial, we must replace 11 by -a in it 
that leads to -[x, a]+ (x, a] = 0. 

3. All computations, starting with processing the input relations, are e;recuted 
modulo identities (1.1-1.4) and the relations have been treated to the moment. This 
allows to minimize resimplification of the calculated structures and to keep the system 
of Lie monomials and relations as compact as possible all the time. 
'J;'he algorithm has the following input and output structure: 

Input: The set of generators X = {x1,x2, . .. } with prescribed parities a; E Z2 and 
positive integer weights w; ( = 1 by default); 
the set of scalar parameters P = {P1,P2, .. . } if they present in the relations; 
the set of defining relations R = {r1 , r 2 , ••• }, where r; are Lie polynomials with 
coefficients from the commutative ring Z(pi,p2 , ••• } of scalar polynomials; 
the limiting number for generated relations because it is necessary to stop com­
putation in _tbe case of infinite Grobner basis. 

Output: The reduced set of relations ( Grobner basis) R = { 1\, r2 , ••• } ; 

the list of basis elements E = { ei, e2, ••• }; 

the commutator table (e;, e;] = if;;ek, where if;; are structure constants; 
the table of expressions containing p; and considered as non-zeros during com­
putation. Particular values of p; may cause the branching of computation and, 
possibly, of the resulting algebra structure; 
dimensions of homogeneous components in obtained Lie (super)algebra. 

There are three principal steps in the algorith_m: 

I. Reduction of the initial set R to the equivalent Grabner basis R = {r1, r2 , ••• }. 

This step executes the subsequent multiplying of relations by generators adding 
non-zero results to the set of relations and substituting these new relations into 
the other ones. The process terminates if either all newly ari~ing relations are 
reduced to zero or the number ofrelations goes up to the limit fixed at input. In 
the first case Grobner basis consists of a finite number of relations 1 • The second 
case means that either algebra is infinite-dimensional or the input limiting number 
of the relations is too small. 

2. Construction of the Lie (super)algebra basis. Some basis elements obtained at 
Step 1 as Lie (sub)monomials of f;, but the basis must be completed by the 
regular commutators of already existing basis elements in the infinite-dimensional 
case and by the Lie squares of the odd elements in the case of superalgebra. 

3. Construction of the commutator table. Here the commutators of the basis el­
ements obtained at Step 2 are computed by the direct commutating with the 
further reduction of the resulting expression modulo the relations k 

1It does not mean, however, that algebra necessarily be finite-dimensional. 
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3 Implementation and Sample Session 

The algorithm has been implemented in C language. The source code has the to­
tal length about 7500 lines and contains about 150 C functions realizing: top level 
algorithms, Lie (super)algebra operations, manipulation with scalar polynomials, mul­
tiprecision integer arithmetic, substitutions, list processing, input and output etc. 

The following session file has been produced on a 25 Mhz 1\18-DOS based AT/386 
computer. We use here 32bit GCC compiler and G032 DOS extender, though for 
considered small example the 16bit Borland C++ 3.1 environment is ctuite sufficient 
(and takes twice smaller space for the calculated structures). The illustrative example 
given below yields relatively compact output and has been studied in (Roelofs, 1993). 
This example arises in investigation of supersymmetries of N = l superization of KdV 
equation (Manin and Radul, 1985). The relations contain two even generators X1 and 
x2 and odd generator y (prefixed by the sign "-" at the input description). We deform 
the original system by two parameters a and b to get a parametric ring and, thus, to 
illustrate the classification problem. 

Note that the program asks for the output form of Lie monomials. In this example 
we choose the standard one. Otherwise, one can choose the right-normed arrangement 
for non-associative monomials. It means, for instance, that Lie monomials [x, [x, [y, xl] 
and [[x, y], (x, (x, y]]] are presented in the output as x 2yx and (xy )x2y, respectively. Such 
notations are more compact and expressive especially for high degree Lie monomials 
and widely used by algebraists. · 

Input data can be entered from either a keyboard or a separate file. 

Enter name of existing or new input file-> skdvab.in 
Input data: 
Generators: x_2 -y x_l; 
Parameters: ab; 
Relations: 
[[[y,x_l],x_l],x_l]; 
[y ,x_2]; 
[y, [ [[y ,x_l] ,x_l] ,y]]; 
[y, [[y ,x_l], [y ,x_l]]] - a [[y, [[y ,x_l] ,y]] ,x_l]; 
[x_l,x_2] - [[y, [[y, [[y,x_l].y]].y]] ,y]; 
[x_1, [[y ,x_l] ,y]J + [[y ,x_l), [y ,x_l)] + [[[y ,x_l) ,x_l] ,y]; 
[x_l, [[y,x_l], [y,x_l]]] + b [x_l, [[[y,x_l] ,x_l] ,y]J; 
[x_l, [[y, [[y,x_l].y]].y]] - 3 [[y,x_1].y] - [[[y, [[y,x_l].y]].x_l];y]; 

Right-normed output for Lie monomials? (y/n) -> n 
Standard grading assumes unit weight for every generator. 
Do you want to use a different grading? (y/n) -> n 
Enter limiting number for relations-> 20 

Initial relations: 

(1) [x ,y] = o 
2 
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(2) (x , (x , (y, x ] ] ] = O 

1 1 1 

(3) (x , (y, (y, (y,x ]]]] = 0 
1 1 

(4) ((y,x].(y,(y,x]]] =O 

1 1 

(5) (2 b - 2) ((y,x]. (x , (y,x ]]] + b (x , (x , (y, (y,x ]]]] = 0 
• 1 1 1 11 1 

(6) (x ,(y,(y,(y,(y,x ]]]]] - 3 (y,(y,x ]] = O 

1 1 1 

(7) (y,(y,(y,(y,(y,(y,x ]]]]]] + (x ,x] = 0 
1 2 1 

Non-zero parametric coefficients: 

(1) a - 2 

(2) b -

2 
(3) b + b - 2 

Reduced relations: 

(1) (x- ,y) = o 
2 

(2) (x ,x ) = 0 

2 1 

(3) (y, (y,x )) = o 

1 

(4) (x , (x , (y ,x ]]] = O 

1 1 1 

(5) ((y ,x ]. (x , (y ,x ))) = O 

1 1 1 

(6) ((x , (y,x )). (x , (y,x ])) = 0 

1 1 1 1 
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J 

J 

Basis elements: 

(1) E = X 

2 

(2) 0 = y 
2 

(3) E = X 

3 1 

(4) E = (y ,y] 

4 

(5) 0 = (y ,x ] 

5 1 

(6) 0 =(x,(y,ic]] 
6 1 1 

(7) E = [(y,x].[y,x]] 
7 1 1 

Non-zero commutators of basis elements: 

(1) (0 ,0 ] = E 
2 2 4 

(2) (0 ,E ] = 0 
2 3 5 

(3) (E ,0 ] = 0 
3 5 6 

(4) (0 ,0 ) = E 
5 5 7 

(5) (0 ,0 ] = E 
2 6 7. 

Dimensions of homogeneous components: 

dim G = 3 
1 

dim G = 2 
2 

dim G = 1 
3 
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dim G = 1 
4 

Time: 0.05 sec 
Number of relations: 
Number of ordinals: 
Number of nodes: 
Total space: 1200 bytes 

15 Relation space: 
40 Ordinal space: 
50 Node space: 

120 bytes 
480 bytes 
600 bytes 

Here E; and O; are even and odd basis elements, respectively. In the case of infinite­
dimensional algebra the program prints out only those commutators which can be 
expressed in terms of the basis elements have been computed. 

In the above example the chosen ordering among generators x2 < y < x 1 provides 
the minimal number of the reduced relations in the output. As well as for the commu­
tative Grobner basis method the final structure of the reduced relations and even their 
number essentially depends on the ordering chosen. 

It can be easily seen that for the generic values of parameters a and b we have 
seven-dimensional nilpotent Lie superalgebra. The branching of the algebra structure 
is possible at the values of parameters a = 2, b = l and b = -2. The computations 
with these particu_lar values show that· the choice b _ = l or b = - 2 leads to the same 
algebra structure,-whereas at a= 2 the algebra becomes to be infinite-dimensional one. 
In (Roelofs, 1993) this algebra at a= 2 and b = l was identified with the product of the 
seven-dimensional nilpotent algebra and the positive subalgebra df twisted Kac-Moody 
superalgebra c<2>(2). . 

4 Standard Relations for Simple Lie Algebras -

In Table 1 we present the results of applying the program to the standard relations 
for all simple Lie algebras up to rank 10. The timings are presented for the above 
mentioned personal computer. 

Any (semi)simple complex Lie algebra L possesses Gauss decomposition L = E EB 
HEB F, where His commutative Cartan subalgebra, E and Fare positive and negative 
nilpotent subalgebras. This decomposition is compatible with the following relations 
containing Cartan elements h; and Chevalley genera.tors e;, /; corresponding to positive 
and negative simple roots of the algebra (Jacobson, 1962): 

[h;,hi) = 0, 

[e;, Ji) = b;jhi, 

[h;, ej) = aj;e;, 

[h;,/i) = -a;;/i, 
(ade;)l-a;;e; = 0, 

(adf;)I-a;;/i = 0, 

8 

(5) 
(6) 
(7) 
(8) 
(9) 

(10) 

where a;j is Cartan matrix, i,j = 1, ... , r = rank L. Note that for Kac-Moody algebras 
just the same relations hold with slightly more general Cartan matrix. 

Relations ( 4.5-4.6) are called Serre relations. One can see that these relations 
include only Chevalley generators corresponding to positive and negative subalgebras 
E and F carrying the principal part of information about algebra. Serre relations, 
being taken separately, define subalgebras E and F. · 

One can see that the calculation of exceptional algebra E8 is the most difficult 
task among those included in Table 1. The number of initial relations here is 290. 
The program generates the Grobner basis which contains 23074 relations involving Lie 
monomials up to degree 58 while Lie algebra basis elements go up to 29th degree. The 
task requires 15 miri 36 sec of computing time and 815516 bytes of memory. Note that 
a separate processing of Serre relations for this algebra takes 1 min 13 sec and 186096 
bytes. 

Content of columns in Table 1 is as follows: 
- Dim is dimension of the algebra, 
- N;n is a number of the input relations, 
- Na8 is a number of the relations in Grobner basis, 
- Naxrrm- is a number of the non-zero commutators, 
- DaB is a maximum degree of Lie monomial in Grobner· basis, 
- Space is maximum memory occupied by computed structures, 
- Time is the running time excepting input-output operations, 

5 Conclusion 

Unlike commutative algebra, where such an universal tool for analysis of polynomial 
ideals as Buchberger's algorithm for computing of the Grobner basis has been developed 
(Buchberger, 1985; Becker, Weispfenning and Kredel, 1993), its generalizations to non­
commutative (Mora, 1988; Kandri-Rody and Weispfenning, 1990; Ufnarovsky, 1990) 
and especially to non-associative algebras are still far from being practically useful. 
Moreover, because of very serious mathematical and algorithmic problems are still to 
be solved, there are only a few packages implementing the non-commutative Grobner 
basis technique, and no one of them so far is able to deal with non-associative algebras. 

It justffies the practical use of other algorithmic methods. Among them there is one 
based on the straightforward verification of Jacobi identities (Gragert, 1989; Roelofs, 
1991). Its implementation in the form of the Reduce package was successfully applied 
to a number of problems in mathematical physics. 

Our algorithm reveals some common features with the involutive techniques in 
commutative algebra (Gerdt and Blinkov, 1995), namely, combining prolongations by 
the generators with subsequent reductions. The involutive approach can h<' consid<'red 
as another efficient algorithmic method to the Grob1ier basis construction, different 
from Buchberger's algorithm. By this analogy we hope that the further analysis of our 
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Table 1. 

Algebra Dim N;n NGB N= 

A2 8 17 24 21 
A3 15 40 84 60 
A4 24 72 218 126 
As 35 113 473 225 
A5 48 163 908 363 
A1 63 222 1594 546 
As 80 290 2614 780 
A9 99 367 4063 1071 
A10 120 453 6048 1425 
B2 · 10 17 35 28 

B3 21 40 149 106 

B◄ 36 72 441 263 
Bs 55 113 1047 522 
Ba 78 163 2153 906 
B1 105 222 3981 1441 

Es 136 290 6792 2150 
B9 171 367 10904 3057 
Bio 210 453 16683 · 4185 

C3 21 40 138 106 

c◄ 36 72 411 263 
Cs 55 113 968 522 
c6 78 163 2007 906 

C1 105 222 3756 1441 

Cs 136 290 6439 2150 
Cg 171 367 10398 3057 

C10 210 453 15999 4185 

D4 28 72 283 179 

Ds. 45 113 726 389 

D5· 66 163 1573 713 

Dr 91 .222 3034 1174 
Ds 120 290 5355 1798 

D9 153 367 8817 2608 
D10 190 453 13762 3628 

G2 14 17 73 56 

F4 52 72 858 544 

E6 78 163 2186 1003 
Er 133 222 6389 2527 

Es 248 290 23074 7710 

10 

Dea Space, 
bytes 

4 1188 
6 3612 
8 8716 

10 . 18088 
12 33700 
14 57908 
16 93452 
18 143456 
20 211428 

6 1672 
10 6160 
14 17148 
18 39180 
22 78544 
26 142620 
30 240024 
34 381256 
38 578364 
10 5772 
14 '16032 
18 36304 
22 73320' 
26 134652 
30 227672 
34 363720 
38 554832 
10 11336 
14 27768 
18 58292 
22 109964 
26 190932 
30 310452 
34 479792 
10 3200 
22 32832 
22 80740 
34 230140 
58 815516 

Time, 
seconds 

< 1 
<l 

1 
2 
6 

13 
27 
51 
89 

< I 
1 
3 
9 

25 
59 

124 
241 
444 

I 
3 
9 

25 
62 

130 
248 
451 

I 
5 

15 
39 
87 

174 
328 
<l 

10 
27 

132 
936 

method could 'giv~ a new insight to generalization of fhe Grabner b~i~ approach to 
Lie (super)algebras. · · · 

The program can. be easily modified for working over finite fields and generalized 
to handle colour Lie superalgebras with finite grading groups. 
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