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A large number of nonlinear resonant phenomena in various physical media is 

described by the parametrically driven, damped nonlinear Schrodinger equation [1, 

2, 3]: 

(1) 

These include the Faraday resonance in fluid dynamics [4], the parametric generation 

of spin waves in ferro and antiferromagnets [1, 5], instabilities in plasma [6, 7] and 

the amplitude modulation in Josephson junctions [8]. In all these cases, a strong 

parametric excitation of the system can produce and sustain solitonic waves [2, 3, 9]. 

Stability of the parametrically excited solitons heavily depends on the dime!lsion

ality of space and geometry of the problem at hand. Solitons in three-dimensional 

unbounded systems were shown to be unstable and to collapse in a finite time [1, 10]. 

However, if the system is bounded in one or two directions (consider, for instance, 

a long narrow rectangular water tank [4]), a stable soliton can be experimentally 

observed. Provided this soliton is exponentially localised only in one direction, it 

behaves as an effectively one-dimensional object [2]. There are also a number of 

genuinely one-dimensional physical systems such as the one-dimensional ferro and 

antiferromagnets and long Josephson junctions where the. existence of the paramet

rically driven soliton was predicted [11, 3]. All this motivates the study of the one

dimensional version of eq. (1) which this Letter is devoted to. Our objective here is 

to explore the complexity in the internal dynamics of the parametrically driven NLS 

soliton, and to examine the existence of other (localised and extended) attractors. 

By means of a simple scaling we can always arrange that n = fin eq. (1): 

(2) 

Here h > 0 and , > 0 are the driver's strength and dissipation coefficient, respec

tively. Next the substitution t/J = e;1ef> produces an autonomous equation, 

(3) 

The simplest solution of eq. (3) is the trivial one, ef> = 0, which proves to be stable 
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for h < (1 + ,y2)1l2 and therefore, acts as an attractor in this region. Consequently 

we refer to this solution as to the zero attractor. 

Another explicit solution existing for h > 1 , is the soliton: 

Ao , ·o 
</>,(x,t)= hA e-•o, 

cos ox 

Ao= J1 + hcos20o, 

0 
1 . 1 

0 = 2 arcsm ,;,· (4) 

Stability of this solution was studied earlier and its stability domain was fully de

scribed (see the blank area in Fig. 1) (3, 12]. Above the curve h = (1 + 1 2
)
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soliton is unstable with respect to continuous spectrum waves which are excited by 

the parametric pumping. The soliton has two internal oscillation modes, the reso

nance of which produces the Hopf bifurcation and instability (line 1 in Fig. 1) (3]. · 

Hence, above the line 1 the soliton is unstable with respect to a localised mode. In 

ref. (3] it was suggested that this is the first bifurcatio~ in a sequence leading to a 

temporal chaotic behavior [13]. 

In this Letter we present numerical studies of nonlinear oscillations and chaotic 

dynamics of the soliton above the Hopf bifurcation curve (i. e. in the region where 

the stationary soliton is unstable). · We also uncover other attractors in that region 

and consequently, ·reconstruct the attractor chart on the ( h, 1 )-plane. 

The evolution of the (unstable) stationary soliton (4) was simulated by the split

step pseudospectral method. The method is a generalisation of the one proposed by 

Herbst and Weideman [14]. We took 1024 Fourier modes with the time increment 

6..t = 21r • 10-3 • The method imposes periodic boundary conditions -ip(-L/2) = 
-ip(L/2), VJx(-L/2) = VJx(L/2) where the interval length was chosen to be L = 50. 

The main results of our work are summarised in .Fig. 1. This is the attractor 

chart of the parametrically driven NLS on the ( h, 1 ) plane. The region where the 

stationary soliton is stable was discussed above, while in the unstable region, the 

following subregions were identified. 

First of all,,clearly seen,is the domain where the period-doubling .route. to (tern-

2. 

poral) chaos takes place. Above the line 1, in the domain marked by open circles, 

the nontrivial attractor is temporally periodic. Very roughly one may think of it as 

of a soliton with periodically varying amplitude and phase. (However, unlike the 

stationary soliton (4), this periodic soliton has undulations on its spatial "tails".) In 

the vicinity of the curve 1 the frequency o{ the periodic solution, w1 , was seen to be 

in a good agreement with Im,\ where ,\ is the complex eigenvalue of the operator 

arising in the linearisation of eq. (3) around the stationary soliton (4) (3]. In fig. 

1, attractors resulting from the subsequent period-doubling (2-periodic, 4-periodic, 

8- and higher periodic, and finally, complex cycles and strange attractors) occupy 

a narrow band of boxes, diamonds and white blobs. The curve 2 is a boundary of . . 

the period-doubling sequence and separates the region of strange attractors from the 

region where only the zero attractor exists. The latter region is marked by empty 

triangles. 

Crossing the bifurcation line 3, the limit cycle is replaced by the spatio-temporal 

chaos. As opposed to the period-doubling scenario, there are no intermediate attrac

tors here which corresponds to the quasiperiodic route. The line 4 is the interface 

between the spatio-temporal chaos and the r~gion of the. zero .attractor. The lines 

2, 3 and 4 meet at a "tricritical" point -Ye = 0.25, he = 0.81,.which separates the 

period-doubling and quasiperiodic routes. 

Details of the period-doubling transition are presented in Figs. 2 and 3. Fig. 2 

displays an enlarged portion of the attractor chart exhibiting the period-doubling 

sequences for the fixed I and varied h. (Note the appearance of odd periods and 

their doublings in the neighborhood of the upper boundary of the period-doubling 

sequence.) In Fig. 3, typical attractors are illustrated by their power spectra. As 

an ~xample, we have chosen the sequence arising along the line 1 = 0.26. In the 

vicinity of the curve 1 in Fig. 1 the main harmonic in the power spectrum of the 

period-I solution has the frequ~ncy W1 = 1.105 which practically coincides with 

Im,\ ( describ_ed above.) In this region internal oscillations of the soliton have _small 

amplitudes and a contribution of higher harmonics is negligible, As h is increased, 
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the main frequency decreases (Figs. 3, a-d) whereas the linearised eigenvalue grows. 

This implies the growth of anharmonic effects. (Note the growth of amplitudes of 

multiple harmonics in Figs. 3, b-c.) The period doubling can be seen from the 

appearance of subharmonics in Fig. 3. 

In order to emphasize the existence of the entire Feigenbaum sequence of direct 

and reverse bifurcations, we plot the phase portrait of a two-band strange attractor 

arising for 1 = 0.26, h = 0A539 (Fig. 4). The two-band structure is explicitly 

illustrated by a one-dimensional map Xn+ 2 = J(Xn) (Fig. 4b). Here {Xn} is the 

sequence of the maximum values of lmtt,(0, t) on the phase portrait (Fig. 4a). 

The band of strange attractors borders the region of the zero attril,ctor. As we ap

proach the border between the two regions, the structure of the strange attractor be

comes more complex. This is exemplified by the phase portrait and one-dimensional 

map of a complex strange attractor for , = 0.18 and h = 0.253 (Figs. 4, c-d). As h 

is increased, the strange attractors undergo a crisis (Fig; 4e) and we find ourselves in 

the zero attractor domain. ,Thus, the final stage of the soliton's instability following 

the period-doubling sequence, is its decay to zero. If we increase h for a. fixed 1 

(provided I is smaller than 'Ye = 0.25° so that we do not cross the upper part of the 

period-doubling band), the zero attractor becomes unstable and a spatio-temporal 

chaotic state emerges. 

For all 1 > 'Ye and h > he, the transition to chaos is via the quasiperiodic route. 

In terms of the equation (3) this implies the sequence "stati~nary soliton -t period-1 

soliton -t spatio-temporal chaos". In terms of eq. (2), the stationa1'.y soliton (4) 

becomes periodic with the frequency of the driver, n = 1, while the period-1 soliton 

becomes quasiperiodic with two frequencies, n and w1. (Hence the name of the 

route.) In the vicinity of the curve 4 (the curve of the quasiperiodic transition), 

an additional low frequency w is excited in the p9~e~ spectrum. Below the curve 
. ', 

the low frequency oscillation dies off as a transient. For example, for 1 = 0.34 and 

h = 0.994, the frequency w ~ 0.05 disappeared from the spectrum after t ~ 6000. 

Above the curve 4, thew is also nucleated in the spectrum at the first instance of time 
- together with combinations of w and w1, the main frequency of the cycle. Soon 
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after that a chaotic structure nucleates in the core· of the soliton and subsequently 

spreads over the entire axis. Fig. 5 shows a typical evolution of the soliton in the 

spatiotemporal chaotic domain. 

We conclude the discussion of the observations by mentioning a few curious phe

nomena the explanation of which will be _giv~n elsewhere. First, it is worthwhile to 

notice an unusual, "shark jaw" shape of the boundary be~ween the regions of. the 

zero attractor and spatio-temporal chaos. Second, we have simulated the evolution 
' ' 

of the unstable homogeneous solution of eq. (3) at some points of the zero attractor 

domain between the lines 2 and 4 .. Surprisingly, ,the result of this evolution was. an 

equidistant sequence of stati?nary solitons. Fin~lly for small I and several h, the 

soliton was seen to start travelling over a background radiation. This was observed 

e.g. for 1 ,= 0.Dl, h = 0.087. 

It is natural to expect that our resu_lts · will rema1n valid for small-amplitude 

breathers of the parametrically driven, damped Landau-Lifshitz and sine-Gordon 

equations [11, 3]'. In particular, we ,know that the sine-Gordon equation_ 

U-r-r + ,\ Ur - u~; + ( 1 - j COS 2WT) sin U = 0 , (5) 

with the driving frequency w s~ch that. 1 - w2 = 1:2 ~ 1, reduces [3] to eq. (3) 

with x = EZ, t = t:2,T/2, h = J/(21:2 ), .'Y = >i./1:2, and u(T,z) =:= -41:Re [i<p(t,x)e-iwr]. 

Note that the length of the sine-Gordon interval of integration, Lsa, and the NLS 

interval LNLS are related as Lsa = (l/1:)LNLS·' Consequently, our NLS results with · 

LNLS = 50 correspond to the integration of the sine-Gordon equation (5).with e.g. 

w = 0.98 on the interval Lsa ~ 250. 

At this point, it is interesting to make contact with two dosely related systems, 

namely the 1irectly driven sine-Gordon and NLS equations. Different groups re

ported observations of different scenarios of transition to chaos in_ the.se systems 

[15, 16, 17, 18, 19]. In the case of the driven sine-Gordon in the NLS limit, for 

instance, Taki et al [18] observed the period-doubling route while Bishop et al [16] 

reported the quasiperiodic transition. The difference in the observed scenarios has 

been generally attributed to the fact that the values of the driver's strength and 
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dissipation coefficient examined in [16] and [18], differ by order of magnitucle. Con

sequently, the question of the interface between the two scenarios did not arise. 

However transforming the sine-Gordon to the NLS as it was done above, one can 

easily verify that in terms of the NLS control parameters the period-doubling and 

quasiperiodic transitions occur in a cl~se proximity. (Namely, the line of the period 

doublings observed in [18] corresponds to 1 ~ 0.12 whereas the quasiperiodic transi

tion of [16] pertains to 1 ~ 0.16.) Therefore the finding of the inutualarrangement 

and interface betweeu the 'regioris of the two types of transition on the attractor chart 

of the abov~ equations, becomes an important problem. Figure 1 gives a complete 

solution to a similar problem in the case of the parametrically driven NLS. Given 

the fact that the two equations have the same mechanism of the soliton instability 

[20, 3], it would be interesting to check whether the period-doubling and quasiperi

odic routes meet at a "tricritical" point in: the directly driven NLS as well. This 

work is in progress. 
. . 

To summarise, we numerically studied nonlinear oscillations and chaotisation of 

the parametrically driven NLS solit<;>n in the domain where the stationary soliton is 

unstable. Using this unstable soliton as an initial condition, we found a variety of 

spatially localised and extended attractors, obtained their quantitative characteris

tics, and compiled the attractor chart on the ( h, 1 ) plane. 
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Figure Captions 

Fig. 1 

The attractor chart of eq. (3) on the (h, 1 )-plane. Below the line h <, there 

are no localised solutions, and the only attractor is ¢, = 0. Above the line h = 
(1 + 1 2 ) 112 the zero solution is unstable with respect to the excitation of continuous 

spectrum waves. In the area between these two lines, we used empty circles to denote 

period-I solutions and shadowed boxes for periods-2, 4, and 8. Small white blobs 

indicate period-6, period-7 and period-IO solitons observed at ( 1 = 0.262, h = 0.46), 

(, = 0.235, h = 0.355) and (, = 0.18, h = 0.251), respectively. Finally, shadowed 

diamonds stand for type-I and type-II strange attractors observed at (, = 0.18, h = 

0.253) and ( 1 = 0.26, 0.4530 < h < 0.4539), respectively, as well as for complex 

cycles. The region of stable stationary solitons is left blank; empty triangles mark 

the area where the only attractor is ¢, = 0, and the domain of spatio-tempora.l chaos 

is marked by black triangles. Note an unexpectedly complex, "shark jaw" shape of 

the interface between the regions of spatio-temporal chaos and zero attractor. 

Fig. 2 

An enlarged portion of Fig. 1 displaying the period-doubiing route to chaos. 

Notation is as in Fig. 1 with the exception that shadowed boxes,triangles, and circles 

stand for periods-2, 4, and 8, respectively. The black blob at 1 ~ 0.262, h = 0:46 

marks a period-6 solution. 

Fig. 3 

Power spectral densities. a-d: periods-I, 2, 4, 8. e: 2-band strange attractor. 

Fig. 4 

a,b: type-I (two-band) strange attractor, 1 = 0.26, h = 0.453974. c,d: type

II strange attractor, 1 = 0.18, h = 0.253. e: the crisis of the strange attractor, 

1 = 0.26, h = 0.453975. 

Fig. 5 

Spatio-temporal chaos seeded by the soliton. 
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. .. 
Eomurna M., EapawettKOB H.B., Eori1att M:M. •· ES-95-30 

· Tonorpa¢m1 aTTpaKTopoa ttemrneifttoro ypaa~em1si Illpei1I1ttrepa 
c napaMeTpHtICCKOtt HaKat1Kott 

... .' HeJIHHeftHOe ypaBHeHHe IllpeAHHrepa.. C napaMeTpHt1eci<0H~JiaKal1KO_H 
11 i1icc11nau;neif t111CJieHtt

0

0 HCCJie.n.oaatto B oKpecTHOCTH ero·Tot1ttoro coJIHTOHHO
. ro peIIIeHH;, honyt1eHa KapTa aTTpaKTopoa B o6nacTH tteycTOHtIHBOCTH coniI;o
Ha Ha n_JIOCKOCTH ynpaa.1fsnomii:x iiapaMe-rpoB. 06ttapy)Ketthl noi106nacTH; B ico
TOphrx· nepexoA K. xao_cy· npo11cxoi111T t1epe:i yi1aoe1me nep11oi1a 11 t1epe3 
KBa~HnCpMO.lI.HtIHOCTh,. H npo):leMOHCTpHpOBaHO cymeCTBOBaHHe. KpHTHtieCKOH .. 
TOllKII, ri1e ABa c.u;ettapm1 CMbIKaIOTc.si. 

. . 
Pa6oTa BblllOJIHeHa a Jia6opaTOJ)BH BbltIHCJIHTeJihHOH TeXHHKH 

MaTH3aU:1111 °0l15Il1 .. •·. 
_, I - • 

Bondila M., Barashenkov 1.V., Bo~dan M.M. ES..:95-30 
: Topography. of Attractors ofthe Parametrically Driven Nonlinear .. 
Schrod}nger Equation . . . 

. • 
0

:. The parametrically driven, damped NLS equation is nu~erically simulated 
ir1the neighborhood of its.exact soliton solution. We obtain the attractor chart 
on the_cont~ol parameter plane in the domaiii'of_thesolifoninstability. Regions 

.of the period-doubling and quasiperiodic:transitions to chaos are found, and 
the existence of a critical point where the two scenarios meet, is demcmstrated . 

. The investigation .has been performed at the Laboratory of Computing 
'.f.echniques arid Automation, JINR. · 

Pr~p;i~ior· the J()illt Institute f~r Nuclear Research. Dubna, 1995. 


