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1. The present paper launches a series of publications in which 
dynamic properties of classical localized solutions will be considered 
within a model of the 3-component "easy-axis" chiral field of unit 
isovector s.(x,t),a = 1,2,3,sasa = 1 (we· shall call it "the A3-field" 
for brevity to underline an anisotropy of this field in internal space -
on the unit sphere S2). The Lorentz-invariant" A3-field emerges, for 
instance, when going over to the continuous limit .in lattice models 

· of Heisenberg antiferromagnet (AFM) [1] and ferroelectrics [2], which 
have easy;axis anisotropy. Futhermore the A3-field (and possibly other 
anisotropic scalar isovector fields· taking their values on unit spheres 
sn) may prove to be useful side by side with vector gauge and spinor 
fields when developing theoretical schemes beyond the Standard Model 
ofthe high-energy physics; we mean by that the A3-field may be used 
f.S an alternative of the Higgs field. In particular, the Maxwell field 
becomes massive as a result of its "minimal" interaction with the A3-
field [3], and within the system of the interacting Maxwell and A3-
fields there exist non-one-dimensional particle-like solutions (in [3] two­
dimensional axisymmetric solitons have been found). Thus, to our 
opinion the A3-field model may be of interdisciplinary interest for the­
oretical physics. 

Note that in the A3-field model (ea-Sy-axis Heisenberg AF¥) there 
exist both one-dimensional (lD) [1,5] and two-dimensional (2D) [4] 
dynamic (having periodic dependence of the isovector s.(x) on time t) 
solitons with nonzero topological indices ("topological charges", for 
their definitions see, e.g., [1], [6]). . 

We shall start inve5tlgation of dynamic properties of localize'd A3-. 
field solutions within the framework of the 1D model, studying the 
stability and interaction under collisions of the DT solitons of the A3-
field. In this paper we put forward the hypoth~sis and present some 
arguments that the 1D A3-field model and its 1D generalizations are 
completely integrable. 
· 2.Lagrarigian and Hamiltonian densities of the A3-field model in 
standard field theory notation are as follows (recall that s.s. = 1): 
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1 2 1[ 2 2 2 )] () C = 2[8#sa8#s~ + (s3 - 1)] = 2 (8osa) - (OtSa) + (s 3 - 1 , 1 

'H =~[(8os.}'+ (8tsa) 2 + (1- s~)], (2) 

here a= 1,2,3,f' = 0,1, ... ,D(D = 1 in the present paper), Oo = 
a " _ a " <># 02 <>2 a' a' d · d &t~u1- az,up,u = 0 - u1 ~ Bt'l- 8:z:_2, an summation over repeate .. 
indices"' a is meant. The Euler-Lagrange equations derived from (1) 
under taking into account the constraint s.s;, = 1 have the form: 

8#f)#s; + (8#sa8#s.)s;- sa(t5;a- s;sa) = 0, (3) 

i=1,2,3 

(notice, that the second term in Eq.(3) may be rewritten as 
-s.(a.a#s.)s; ). 

Using representation of components _s; of the unit isovector s(x, t) 
in terms of angular variables (}, </> on the sphere 52

, 

s1 = sin(} cos </>, s2 = sin(} sin ¢,sa = cos(}, ( 4) 

and in terms of u, v variables (or equivalently in terms of z = u + i v ), 
arising as a result of stereographic projection of 52 to R~omp• 

. . s1 + is2 sin(} exp( i¢) (} (. "') (5) 
z = u + w = = (} = tan -2 exp '"' , 

1 +sa .1 +cos 

we derive from (1),(2) expressions for C and'}-{ in terms of(},</> 

C = ~[f)#()f)#() + sin2 08#¢8"¢>- sin2 OJ = 

1 {(8())
2 

(8())
2 

[(8¢>)
2 

(8¢)
2

] . } = 2 ot - ox + sin2 (} ot - ox - sin2 (} ' (6) 

1 { (8(}) 2 

. (8()) 2 [(aq,) 2 (aq,) 2

] } '}-{ = 2 ot + ox + sin
2 

(} ot + ox . + sin
2 

(} ' 

(7) 
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and in terms of complex z 

2(8.z'o"z- z'z) 
£= ' (1+z'z)2 

(8) 

'}-{ _ 2(8oz'8oz + OtZ'OtZ + z'z) · 
- · (1 + z'z)2 • 

(9) 

The dynamic system defined by relations (1),(3) possesses the fol­
lowing ·densities of momentum P, and of "isospin" S 3 

OS~ OS<i 
P, =-at ax'· 

8s2 OSt 
--s2-· Sa =; St ot . ot 

(10) 

(11) 

The Noether invariants of the system (1),(3) can be calculated by means 
of integration of the densities 'H, P, Sa: 

H = j 'Hdx, (12) 

P, = jPxdx, (13) 

. Sa= j Sadx. (14) 

In: particular 

Sa= 2 j sin2 (}~~ dx. (15) 

Euler-Lagrange equations which follow from (6) are: 

28.8"(} + sin20(1- f)#f)#<f>) = 

(
f)2() f)2()) [ (8¢>)/ 

2 

(8¢>) 
2

] 
_= 2 . f)t2 - 8x2. + sin 20 1 - Bt + ox = 0, . 

(16) 

2cos ()f)"()f)#<f> +sin 08#8"</> = 
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2cos0 ------ +smB --- =0. (
80 8¢> 8B 8¢) . (82¢ 02¢) . 
at 8t ox ox 8t2 8x2 

(17) 

These equations are equivalent to Eqs. (6) of the paper [5] (see a!so 
[1 ]). 

Notice that by setting ¢ = 0 (i.e., s2 = 0) we get the famous com­
pletely integrable sine-Gordon equation (SGE) [8-13] for 2B variable: 

8
2
(20) _ 8

2
(2B) +sin 2B = 0. 

8t2 8x2 (18) 

It is quite natural to put the question: is the system described 
by (16),(17) completely integrable as well? 

When varying Lagrangian defined by (8) we arrive at ari equivalent 
equation for the complex variable z(x, t) (it was apparently written out 
first in [7]): 

(1 + z"z)o,.o"z- 2z"8,.zo"z + (1- z"z)z = 

= (1 + z"z) (()2z-:- ()2z)- 2z" [(8z)2._ (8z)2] + (1- z"z)z = 0. 
8t2 8x2 . at ox 

(19) 
Making substitution z = uexp(i¢),u =tan£ and setting¢>= 0, we 

find once again the SQE for B(x, t). Therefore, Eq.(19) may be viewed 
as complexification of the SGE emerging in the quasi classical models of 
theoretical physics. Moreover, the model under consideration possesses 
soliton solutions which prove to be direct generalizations of the SGE 
solitons. Zero-velocity soliton of the model can be easily found in terms 
of z (denote it zo(x, t)): 

z0(x, t) = exp [~ (1- w2)tx] exp(iwt + i¢o), lwl < 1, (20) 

in terms of B, ¢: 

B(x, t) = 2 arctan { exp [ ~ (1 - w2)!] }, 
¢(x, t) = ¢o + wt, ¢o = const, 
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and finally by using (4),(21) in terms of si(x, t), i = 1,2,3 
Making Lorentz transformation 

x-> 7(x- vt),t-> 7(t- vx),"f = (1- v2)t, (22) 

we can find from (20),(21) the soliton moving at velocity v, -1 < v < 
+1. To illustrate this; we write it down in z(x, t) terms: 

zv(x, t) = zo["t(x- vt),7(t- vx)] =. 

= exp[~ P7(x- vt)] exp[iw7(t- vx) + i¢0] = 

= exp(Pot- PIX+ i¢o) = exp(p,.x,. + i¢o), 

P=(1-w2 )!, 

where we use notation 

Po= iw7 + 7vP, PI = iw1v + 7P. 

The values p0 and PI are related by the identity: 

p,.p" = p~ _:_ p~ = -1. 

(23) 

' (24) 

(25) 

Notice that the !-soliton solution in the easy-axis Heisenberg AFM 
has been first found in [5] (see also [1]). However as far as we know the 
issue of complete integrability of the system (1 ),(3) was not till now 
discussed in the literature. 

· 3. One of the most important characteristic properties of com­
pletely integrable PDEs is that if such systems possess 1-soliton so~ 
iution, then they possess N-soljton solutions as well. These N-soliton 
solutions can be found [8-13]: ' 

1) by inverse scattering method (ISM), if Lax or zer<rcurvat;,_re 
representation is available for the system under consideration, 

2) by means of the Backlund transformation if it is known for the 
system under study, 

3) by the direct Hirota technique, which allowed to find N-soliton 
solutions to the SGE [14]. 
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Below we show that Eqs.(3), describing the A3-field, admit Hirota 
representations which are the generalizations of the bilinear Hirota 
representation for the SGE [14]. Here we use the saine ansatz 

G 
(26) z=·-, 

F 
as was used for the SGE, but for the A3-field model we assume func­
tions G(x, t) and F(x, t)to be complex-valued. By using 'DP operators, 
defined by the relations [i5,16] 

V![G(X) * F(X)] = 

= {(a~#- a~) (a~#- ai,#) [G (X) F(X') 1 L=x· = 

= Fa#a#a - 2a#Ga# F + aa#a# F, _ 

X = (x, t), X'= (x', t'), 

we obtain from Eq. (l9):. 

V!(F *G)+ FG = o; 
F*G'D;(F ~F)= G*F'D~(G *G), 

or in standard notation: 

Fapa#G- 2apFa#G + Gap a# F + FG = 0, 

. (27) 

(28) 

{29) 

. (30) 

F*G( a#F'a#F- Fapa# F) = G* F( a#GaPG- G8pa#G). . (31) 

In contrast to Hirota form of the SGE, the representation (30), (31) 
is not bili~ear due to complex-valuedness of F(X) and G(X). However 
by introducing H(X) and E(X) functions which satisfy equations: 

'D~(F,..F)=FH, 

V!(G ~G)= GE, 
6 

(32) 

(33) . i 

we obtain a bilinear representation of the Eq.(l9) and hence of the 
Eq.(3): 

'D~(F *G)+ FG = 0, 

'D~(F*F) = FH, 

'D~(G *G)= GE, 

F*H = G*E. 

(34) 

(35) 

(36) 

(37) 

The search for N-soliton solutions of the A3-field model by using 
representations (28), (29) a~d (34)-(37) is presently in progress. . 

4. In order to investigate dynamic properties of localized solu­
tions to Eqs.(3) and ·in particular the issue of complete integrability 
of the Eqs.(3) by means of computer experiments we have elaborated· 
a numerical technique which is based on using independent variables, 

. arising as a. result of stereographic projection of the unit sphere S2 to 
the plane R2 • Namely, we made the following substitution of variables: 
if sa~O , 

s1 + is2 
(38) z = 1 +sa ' 

and 
s1 + is2 

(39) w = - ' 1- sa 

if sa < 0, and solved numerically Eq. (19) (if sa~ 0) or the identical 
equation for the w variable, 

(l+w*w) (82w- a2w) -2w* [(aw)2- (aw)2] +(1-w*w)w = 0 
at2 ax2 at ax · I ' 

. (40) 
(if sa < 0). To do this we employed a stable explicit finite-difference 
scheme of the second accuracy order, which ensured conservation of 
the motion invariants H, Px and Sa with high accuracy. This numerical 
algorithm was thoroughly checked in test experiments with initial data 
set at t = 0 by known analytical soliton and bion (breather) solutions of 
the SGE and by more general soliton solutions (20)-(24). Our computer 
experiments confirmed that lD solitons of the A3-field are stable [5]. 
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Then we considered head-on collisions of kink ( k) moving at veloc­
ity v1 = v and anti kink (a) with v2 = -v (in 'contrast to the case of 
SGE only kink-antikink (ka) collisions are admissible in the case of the 
A3-field model). We accomplished computer experiments on heac!,on 
ka-collisions for various sets of parameters characterizing ka-pair, and 
we have not seen generation of small-amplitude waves under these in­
teractions; this supports our hypothesis that the Eqs~(3) are completely 
integrable. More detailed presentation of these experiments supplied 
with graphical computer output will be given elsewhere. 

In the next section we ·describe some results of search for zero­
curvature representation for a more wide class of models, comprising 
the A3-field model as a particular case. 

5. Consider N-compon~nt field s.(x, t), s.s. = l, a = 1,2, ... , N, 
with the Lagrangian density · · 

1 . . . . . . 
C = 2 { ( aps.aP s~) + J.c.6[sb(x, t)s.(x, t) - s6( co, t)s.( co, t)]} = 

1 
== 2 [(aPs.aPs.) + (Js,s)- JN], (41) 

here J is the diagonal matrix,J = diag(Jh h, ... ,JN ); we assume that 
< < . ' J, = Jz = ... < J N, here Cob is the Kronecker symbol. 
. Consider the chiral field g(x,t) defined by 

9ik = C;k- 2s;sk, i, k = 1, ... , N. 

It is easy to Check that 

-1 . i: 
9ik = 9ik = Uik - 2SiSk, (g-1g)lm = (gg-1)1m = Clm· 

Define "left" currents [8],[13] 

Io(x,t) = gtg-',I,(x,t) = grg-1, 

ag ag 
gt = at , gr = ax. 

These currents satisfy the ide~tity [8]; (13] 

llt -lor+ [I,, lo]_;, 0. 
8 

(42) 

(43) 

(44) 

(45) 

Then it is straightforward to check that 

(lot - l1r + (J, g]);k = Sk( Sitt - Sirr) - s;( Sktt - Skrr) + Sks;( Jk - J;) = 

= E(s,J). (46) 

Multiplying the r.h.s. of Eq. ( 46) by Sk, summing over k and 
equating the result to zero, we .find 

(a
2
s· a

2
s·) (a2s . azs) (N ) . \. at; - ax; -Sk .· atzk - . ax: s;+s; E JkSkSk - J; = 0. ( 4 7) 

On the other hand, Eq.(47) i~ the Euler-Lagrange equation derived 
from Eq. ( 41 ). Note that Eq.(3) describing the easy-"l(is A3-field arises 
from Eq.(47) in the particular case N = 3,J1 = J 2 <J3 after simple 
scaling transformation of x, t : x' = (.f:l.J)h, t' = (f:l.J)h; f:l.J = J3-J,. 

· Our goal is to find a· zero-curvature representation for the equation 
· E = 0 (see(46)), because if E = 0, then Eq. (47) is valid . 

.Introduce the matrix N: ' 

N;k·= 2s;sk = C;k- g;i,. 

It is easy to check that 

(J, g];k = 2s;sk( Jk - J;) ·,: (N, J];k . 

(no summation over i, k!). 
Hence Eq. E = 0 can be rewritten as follows 

lot -I,,;+ [N,J] = 0. 

Notice also that 

and 

· (an; ank ) 
(Ia)ik = 2 axa nk -" axa n; ' 

[N,la] = _2 aN 
dXa 
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(48) 

(49) 

(50) 

(51) 

(52) 



Assume that tpe zero-curvature representation 

8U _ 8V [U.V] =O 
8t 8x + ' 

of the Eq.(47) can be found by setting 

U = al0 + bh + cJ + dN, 

V = elo + fh + qJ + hN, 

(53) 

(54) 

where a,b,c,d,e,J,q,h are, generally speaking, matrix-valued functions 
of spectral parameter>.. First we considered the possibility that a(>.), 
b(>.), c(>.), d(>.), e(>.), J(>.), q(>.), h(>.) are commutative (complex­
valued) functions of .X. Substituting (53) in (52) we find 

a81o+b8h+iN -e81o_lh-h()N+ 
8t 8t · 8t 8x 8x 8x 

(be- af)[h,lo] + (ce- aq)[J,lo] + (cf- bq)[J,h]+ 

(de- ah)[N,lo] + (df- bh)[N,h] + (dq- ch)[N,J] = 0. (55) 

Note that an equation 

b 81, 81o 
8t -eat+ (be- af)[l,, lo] = 0 . 

is equivalent to Eq.( 45) if the following Eqs. are valid: 

if 

b= e, 

b =be- af. 

Then, Eq.(50) is equivalent to 

8lo 81, · 
a--J-+(dll-ch)[N J]=O 

8t 8x . · ' 

a= J, a(>.) # 0, 

a= dq- ch. 
IO 

(56) 

(57) 

(58) 

. (59) 

(60) 

(61) 

Then by means of Eq.(52) we obtain that 

8N · 8N 
d7ft +(de- ah)[N, 10] = 7ft[d- 2(de- ah)], (62) 

and 
8N 8N . · 

-h Bx + (df- bh)[N,h] =- Bx [h + 2(df- bh)]. (63) 

Equating to zero square brackets in the r.h.s.cif (62) and (63} and 
the coefficients at [J,l0].and [J,h]in Eq.(55) we find 

d- ~(de- ah) =0, 

h+2(df-bh)=O,. 

ce- aq = 0, 

cf -bq= O. 

(64) 

(65) 

(66) 

(67) 

One can easily prove that the set of Eqs. (57), (58), (60), (61), 
(64), (65), (66), (67) does not h'ave solutions with a(>.) # 0. Therefore 
it is quite natural to consider matrix-valued functions A(>.), ... , H(>.) 
instead oJ a(>.), ... , h(>.). Having in mind that the SGE can be repre­
sented in the form of Eq.(53) with 2 x 2 matrices U, V {8-13], we shall 
look for U, V matrices of zero-curvature represent.ation of Eq.( 4 7) in 
the form· 

( 
Uu U12) . u.= tJ2, U22 ' 

·v = ( vu· v,2 ) , 
Vn V22 . 

U 11 = a,(>.)lo + b,(>.)h + ~,(>.)J + d,(>.)N, 

· U 12 = e,(>.)lo + J,(>.)h + q,(>.)J + h,(>.)N, 

Vu = a2(>.)lo + b2(>.)h + c2(>.)J + d2(>.)N; 

(68) 

V,2 = e2(>.)lo + h(>.)l1 + q2(>.)J + h2(>.)N~ (69) 

i.e., we shall assume additional symmetries of U, V matrices (riote 
that the [U,Vj matrix retains the symmetries set by Eq.(68)),trying 
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to find a zero-curvature representation of Eq.(47), which comprises the 
least possible number ofunknown functions of the spectral parameter 
a,(>.), ... , h,(>.), az(>.), ... , hz(>.). 

From (53),(68) we get: 

auti aVn -~---a-+ [U11, Vu] + [U,z, V12] = 0, 
~ X . 

(70) 

au,z av,. . at- Bx + [Utz, V11] + [U11, Vl2] = 0. (71) 

·By using of Eqs. (69) we get from (70): 

8lo ai, aN 8lo ai, aN 
a1- + b1- + d1--a:j-- bz-. - dz-+ 

at at. at ax . ax .ax 

+(btaz- a,~+ ftez- e,f2)[I,, lo] +(c,az- a,cz + q,ez- e,q.)[J, lo]+ 

+(c,bz ;_ b,cz + qtfz- ftqz)[J, I,]+ (d,az- a1d2 + h,ez- e,hz)[N, lo]+ 

+(d,~-b,dz+ht/2- fthz)[N,I,]+(d,cz-Ctdz+htqz-q,hz)[N,J] = 0, 
. . (72) 

and from (71 ): 

8lo ai, aN 8lo · ai, aN 
e,-+ f,- + h,--ez-- /2--hz-+ m m m ~ ~ ~ 

+(f,az- e1b2 + b,ez- iztfz)[I, lo) + (q,az- e,cz + c1e2- a,qz)[J, lo]+ 

+(q,bz- ftcz + ctfz- b,qz)[J, I,)+ (h1az- e1d2 + d,ez- a,hz)[N, lo)+ . 

+(h,~-f,dz+dtf2 ~b1 hz)[N, I,]+(h,cz-qtd.+d1qz-Cthz)[N, J) = 0, 
(73) 

Eqs. (72), (73) may be satisfied in the same way a.s Eq. (55) wa.s. 
As a result we arrive at Eq. (50) if the following Eqs. are valid: 

b1 = a2 = b1a2 - a,bz + ftez- edz, 

a1 = ~ = d1c2 ·- c1d2 + h,qz- q,hz, 

c1a2- a1c2 + q,ez- e,qz = 0, 

c,b2- b,cz + qr/2- ftqz = 0, 
12 

a1(>.) # 0, 

I 

d, 
d1a2 - a,dz +h,ez- e,hz -.2 = 0, 

dz 
d1b2 - b1d- 2 + hdz- fthz + 2 = 0, 

/ 1• = ez = ftaz- e,bz + b,ez- adz, 

e, = h = htCz- q,dz + d,qz- c;hz, 

q1a2- e,cz + c,ez- a,qz = 0, 

q,bz- f,cz + ctfz- b,qz = 0, 

e1(.>.) # 0, 

. . . h, 
h1a2 - e,d2 + d,ez- a,hz- 2 = 0, 

· . . hz 
h1b2 - ftd2 + d,ez- a,hz- 2 = 0. (74) 

We have not yet found the solutions a1(.>.), ... hz(>.) to Eqs.(74), 
the investigation of this problem is in P!ogress. In the separate pa­
per we hope to present higher (non-Noether) integrals of motion of 
Eqs.(3), which are known [8-13) to be attributes of completely inte­
grable systems. Note in conclusion that Eq. ( 4 7) is the field extension. 
of equations of C.Neumann problem [17), describing motion of a point 
particle on the unit sphere surface with quadratic potential set on. it. It 
is known that C.Neumann problem is completely integrable (see, e.g., 

[18) and Refs. therein). 
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