


1. The present paper launches a series of publications in which

- dynamic properties of classical localized solutions will be considered

within a model of the 3-component "easy-axis” chiral field of unit
isovector so(x,f),a = 1,2,3,8,8, = 1 (we shall call it "the A3-field”
for brevity to underline an anisotropy of this field in internal space -
on the unit sphere 5?). The Lorentz-invariant A3-field emerges, for
instance, when going over to the continuous }imit in lattice models
- of Heisenberg antiferromagnet (AFM) [1] and ferroelectrics [2], which
have easy-axis anisotropy. Futhermore the A3-field (and possibly other
anisotropic scalar isovector fields taking their values on unit spheres
5") may prove to be useful side by side with vector gauge and spinor
fields when developing theoretical schemes beyond the Standard Model
of the high-energy physics; we mean by that the A3-field may be used
as an alternative of the Higgs field. In particular, the Maxwell field
becomes massive as a result of its minimal” interaction with the A3-
field [3], and within the system of the interacting Maxweil and A3-
* fields there exist non-one-dimensional particle-like solutions (in (3] two-
dirhensional axisymmetric solitons have beén found). Thus, to our
opinion the A3-field model may be of interdisciplinary interest for the-
oretical physics.

Note that in the A3-field model (easy-ax:s He1senberg AFM) there ’
exist both one-dimensional (1D) [1,5] and two-dimensional (2D) [4]
dynamic (having periodic dependence of the isovector s,(x) on time t)
solitons with nonzero topological indices ("topological cha,rges”, for
their definitions see, eg., [1], [6])- ‘ C
‘ We shall start investigation of dynamic properties of 1oca11zed A3-.

field solutions within the framework of the 1D model, studying the -
stability and interaction under collisions of the DT solitons of the A3-
field. In this paper we put forward the hypothesis and present some
arguments that the 1D A3-field model and its 1D generalizations are
~completely 1ntegrab1e

2.Lagrangian and Hamiltonian densities of the A3-field model in
standard field theory notation are as follows (recall that 8,8q = 1)



1
£ = 21Busads, + (s}~ 1) = %[(aosa)2 (G ) (=1 (1)

) o

= 5[(Bosa)” + (81)” + (1 = s3)], (2)

};ere a —31 2,3, 4 = 0,1,...,D(D = 1 in the present paper), & =
8,00 = 8 — % = &5 — s, and

o &7 — 3, and summation over repeated

mdlces i, @ is meant. The Euler-Lagrange equations derived from (1)

under taking into account the constraint sgs; = 1 have the form:

: 3,,6'“5,- + (8,8.0"34)8i — 83(6is —sisa) =0, (3)
t=1,2,3 -

(notice, tha.t the second term in Eq.(3) may be rewritten as
—8,(0,0%8,)s¢ ).

‘ Using representation of components s; of the unit 1sovector s(x, 1)
in terms of angular variables 8, ¢ on the sphere S2, :

8y =sinfcos ,s; = sinfsin §, 53 = cosd, - (4)

and in terms of u,v variables (or equivalently in terms of z = u + iv),
arising as a result of stereogra,phlc pro;ectlon of 5% to Rfomp,

s —udiv= 51 4 ¢85 31n0exp(z¢)

I+ ss T 1+cosf = tang 2 exp(qu) 5)

we derive from (1),{2) expressions for £ and H in terms of 8, ¢

L= [3 05"8 + sin® 68,48"$ — sin® 8] =

10 (z—:n-sif'e} :
o IR R ) e}

(7)

and in terms of complex z

2(8,2°0"z — 2°z)

L= (14 2%z)? (8)
_ 2(802’602 + 312*612 + 2*2) - (g)
- {1+= z)? ) _—

The dynamic system defined by relations (1), (3) possesses the fol-

_ - lowing densities of momentum Py and of “isospin” &4

s, 08

z =,'8_t E» N -. - S (10)
8s; O
&wag—a§ | , (11)

The Noether mvanants of the system (1), (3) can be calculated by means
of integration of the den51t1es H,P,Sa: ' '

R
In particular o 3(,; , '
e M 2 —— -
Sa = ‘Zfsm Hat da;r. . _(15)

Euler—Lagranée.’equations which_follow from (6) are:

_ 20,00 + sin26(1 — 8,0"¢) =
(8 5 06\> (04
= 2 (3t2 3_,52) + sin 26 [ ('5{) + (6::) =0, | (1‘6)

2 cos 0,00"¢ + sin 00,0"¢ = ’




068¢ 880¢\ . (3 3\
2°Sa(maf'mm)*““%aw 62) 0. )

These equations are equivalent to Egs. (6) of the paper [5] (see also

[1])-
Notice that by setting ¢ = 0 (i.e., s, = 0) we get the famous com-
.pletely integrable sine-Gordon equa,tlon (SGE) [8-13] for 26 variable:

3(28)  9%(26)
o2 g2

It is quite patural to put the questlon is the system descnbed
by (16),(17) completely integrable as well?

+5sin26 = 0. | (18)

When varying Lagrangian defined by (8) we arrive at an equivalent

equation for the complex variable 2(z,t) (it was apparently written out
first in 7]): a

(1+ z'z.)aﬂa“z; — 22" 0,20%2 + (1 —2"2)z =

= (14 2*2) (g—if—-— g-;%) -2z [(%)2 (gz) } +(1-z "z)e =
(19)

Making substitution z = uexp(i¢),u == tan % and setting ¢ = 0, we
find once again the SGE for §(z,t). Therefore, Eq.(19) may be viewed
as complexification of the SGE emerging in the quasiclassical models of
theoretical physics. Moreovér, the model under consideration possesses
soliton solutions which prove to be direct generalizations of.the SGE
solitons. Zero-velocity soliton of the model can be easily found in terms
of z (denote it zo(z,1)):

ol 1) = exp [ F (1 = w)ba] explivt +ido) ol <1, (20)

in terms of 4, ¢:

8(z,t) = 2arctan {exp_[i(l - wz)%] },' | (21)

45(373 t) = QSO + Wt', QSG = const‘,
4

and finally by using (4),(21) in terms of s;(x,7), i=1273
Making Lorentz transformation

z — y(z —vt),t — ¥t — v ),y =(1 - v?)%, (22)

we can find from (20),(21) the soliton moving at velocity v, —1 < v <
+1. To illustrate this, we write it down in 2(z,1) terms:

(m £) = zoly(z — v1),7(t — va)] =
= exp[ Py(z — vt)] exp[zw*r(t —vz) +igo] =
= exp(pet — 1z + z<i’°) = exp(pue, + WSO), -
P=(-w, BRI
where we use notation o '
. : . _ . . -;-—‘ . 7\
o = dwy _t_'rvP,A' p=iwyo_ P (24)
The values po and p are related by the identity:

pup* =8 — 9} = 1. (25)
Notme that the 1-soliton solution in the easy-axis Helsenberg AFM

" has been first found in [5] (see also [1]). However as far as we know the

issue of complete integrability of the system (1) (3) was not till now
discussed in the literature.

.3. One of the most important characteristic properties of com-
pletely integrable PDEs is-that if such systems possess 1-soliton so-
fution, then they possess N-soliton solutions as well These N-sohton
solutions can be found [8-13]:

1) by inverse scattering method (ISM), if Lax or zero-curvature
representa,txon 1is available for the system under consxdera,txon,
2) by means of the Backlund transformation if it is known for the

-system under study,

3) by the direct Hirota techmque, which allowed to ﬁnd N -sollton
solut:ons to the SGE [14].




Below we show that Egs.(3), describing the A3-field, admit Hirota
representations which are the generalizations of the bilinear Hirota
representation for the SGE [14]. Here we use the same ansatz

,=Z
‘ TR
. as was used for the SGE, but for the A3-field model we assume func-

(26)

tions G(z,t) and F(z,1) to be complex-valued. By usmg D, operators

~ defined by the relations [15,16]

DIG(X) * F(X)] =
(9 N[ 8 , -
_ {(ax,‘ - ax;,). (ax» 5% ) (G (%) F(X)]}H,p _
= F0,0'G - 30,G0F+ GO,0°F, (1)
 X= (x,t),X’ (@, 1); '
. we obtam from Eq (19)

DXF +G) + FG =0; @)
F*GDY(F » F)= G"‘FD"’(G «G), (29)
or in standard notation: ‘ o
FO,8"G — 26“F3?G +GO,"F + FG=0,  ~ (30)

" F*G(8,FO"F — FO,0"F) = G*F(9,G6"G — G8,0*G).  (31)

' In contrast to Hirota form of the SGE, the represént?,tion (30), (31)
- isnot bilinear due to complex-valuedness of F(X) and G(X). However
by introducing H(X) and E(X) functions which satisfy equations:

DY(F+F)=FH, @

DHG+G)=GE,~ (33)
6 » - ‘

we obtain a bilinear representation of the Eq.(19) and hence of the
Eq.(3): -

- DAF*G)+FG=0, | (34)
D2(F+ F) = FH, ~ (35)
D.(G *G) = GE, (36)

F"H=G"E. (37)

The search for N-soliton solutions of the A3- field model by using
representations (28), (29) and (34)-(37) is presently in progress.

4. In order to investigate dynamic properties of localized solu-
tions to Eqgs.(3) and-in particular the issue of complete integrability
of the Eqgs.(3) by means of computer experiments we have elaborated
a numerical technique which is based on using independent variables,

_arising as a result of stereographic projection of the unit sphere $? to

the plane R?. Namely, we made the following substitution of variables:
1f83>0
. %+ 182

= ati %)

and + ‘ . _
S1 189

w= 1_33 y (39)

if 83 < 0, and solved numer:cally Eq. (19) (if 53>0) or the identical
equatlon for the w variable,

v (53-22) o [(8) (8] romeom-s

w0
(if s3 < 0). To do this we employed a stable explicit finite-difference
scheme of the second accuracy order, which ensured conservation of
the motion invariants H, P, and S5 with high accuracy. This numerical
algorithm was thoroughly checked in test experiments with initial data
set at ¢t = 0 by known analytical soliton and bion (breather) solutions of
the SGE and by more general soliton solutions (20)-(24). Our computer
experiments confirmed that 1D solitons of the A3-field are stable [5].

" -




Then we considered head-on collisions of kink (k) moving at veloc-
" ity v; = v and antikink (a) with v; = —v (in contrast to the case of
SGE only kink-antikink (ka) collisions are admissible in the case of the
A3-field model). We accomplished computer experiments on head-on
ka-collisions for various sets of parameters characterizing ka-pair, and
we have not seen generation of small-amplitude waves under these in-
teractions; this supports our hypothesis that the Egs.(3) are completely
integrable. More detailed presentation of these experiments supphed
_with graphical computer output will be given elsewhere.

In the next section we describe some results of search for zero-.

curvature representation for a more wade class of models, comprismg
the A3-field model as a particular case. = ‘

- 5. Consider N- component field sa(:c t) $¢8g = 1 a= 1 2,. N
with the Lagrang:an density ’ :

== {(a saau.s,,) + Tubalss{z, )salz,t) ~ s4(00, t)8a(00) 1f)]}

=%[(a,,saaﬂs;);y(.]s,s_)—ah,] | f '(41)

here J is the diagonal matrix, J = diag(Jy, Jo, ..., Jn); We assume that

J z‘Jg . < Jn, here 6, 1 the Kronecker symbol
_ Cons_lder the chiral field g(x,t) defined by

git = bk — 28i8, k= 1,-~-,‘N- - (42)

Itis easj' to check that

gl = g = bk~ 285k, (78)im = (88 Dim = 6im-  (43)

Deﬁné "left” currents 18],[13]

lo(z,t) = gg ™ i, t) = 887 - (49)
. _dg %%
3t’ 8= = oz’

_ These currents sa.tlsfy the identity [8]; [13]
—loz + [I1,1o] = 0. . (45)
8- ' D

Then it is straightforward to check that

(lot —hz + [J, 8))ir = se(Sigy = Siza) — Si(Skee = Shgw) + shsi(Jk — Ji) =
= E(s,3). (46)

Multiplying the r.h.s. of Eq. (46) by sk, surfiming over k a,nd
equatmg the result to zero, we find

(§%s;.  O? s,—) (823k 3231:) ( 7 ) |
AL PP 8+ Jispsy — Ji ) = 0. (47)
( ot Ozt ot 8x? g '

On the other hand, Eq. (47) is the Euler-Lagra.nge equation derived

from Eq. (41). Note that Eq.(3) describing the easy-axis A3-field arises
- from Eq.(47) in the particular case N = 3,J1 = J2 < Jy after simple

scaling transformation of #,% : ' = (AJ)z:z;, = (AJ)zt AJ = J3—J1.
" Qur goal is to find a ‘zero-curvature representatlon for the equation

" E =0 (see(46)), because if £ = 0, then Eq. (47) is valid. .

Int;:oduce the matrix N:
Ny = 2s;5k = bix — Gik- ] (48)
It is easy to check that ' -
- 3,8l = 2si8(J - J;) =[N,Ja (49)

. (no summation over i, k!).

Hence Eq. E = 0 can be rewritten as follows
tor — Lz + [N, 3] = 0. o (50)

Notice also that

(la)s'-k =2 (‘a&nk - %ni).s a=1,2, h | (51)

Oz = * 0z
and AN 7
[N la] = 28_ (52) -.
a .



Assume that the zero-curvature representation

oU v ‘
=~ g TUVI=0 (53)

of the Eq (47) can be found by setting
--alo+b11+cJ+dN
Vot flit gl 4 AN, Y

where a,b,c,d,e,f,q,h are, generally speaking, matrix-valued functions
of spectral parameter A. First we considered the possibility that a(}),

b(A), (), d(A), e(A), f(A)y g(A), h(A) are commutative (complex-

valued) functions of A. Substituting (53) in (52) we find

A 8L oN 41, .84 oN
St e %% e et

(be — af)fls, o] + (ce — ag){T, lo] + (cf — ba)[J, L1+
(de — ah)[N, 5] + (df — bR)[N, 1] + (dq ~ ch)|N, J] =0. (55)
Note that an equation '

b% 9o S5+ (be—af)l,lo] =0, (56)

is equivalent to Eq.(45) if the following Eqs. are valid:

b=e, | (57)
: b=1be—af. . (58)
Then, Eq.(50) is eqmvalent to
ol 61 |
| az,?"— 5 (g ~ch)[N =0 (59)
if o L
a=f, a(A)#0, ' (60)
= dg — ch. N (
=y L

~ Then by means of Eq.(52) we obtain that

d%~N~ + (de — ah)[N, 1} = ——Nt-[d - 2(de — ah)}, (62) |
and IN
—h— + (& — BR)[N, b} = —-——[h L o(df bR, (63)

Equatmg to zero square brackets in the r.h.s.of (62)- and (63) a.nd
the coeficients at [J,lo}.and {3, 1} in Eq. (55) we find :

d——Z‘(de—ah)lr-‘—-lO,rl, - (64)
ho(df —bh)=0, (65)
ce —aq =0, o N (66)
ef —bg=0." C - " (67)

‘One can easily prove that the set of Egs. (57), (58), (60), (61),
(64) (65), (66), (87) does not have solutions with a{)) # 0. Therefore
it is quite natural to consider matrix-valued functions A(A) S H(AN)
" instead of a(\), ..., A(}). Having in mind that the SGE can be repre-
sented in the form of Eq.(53) with-2 x 2 matrices U,V [8-13], we shall )
look for U,V matrices of zero—curvature representatlon of Eq. (47) in

the form
) Upn Up,
U=|[ & ,
L (.Un Us, )
. Vu: Viz ) S
- V= Ly : 68)
| __(Vn V‘-zz) @

’ Uu = 81()\)[0 + fl(A)ll + (h(A)J + hl(/\)N

Vu = ay( Ao + bg()\)ll + c2( AT + dz(A)N‘ - ‘
Vi = eo( M)lo + fz(’\)ll + 92('\)3 + hz()‘)N (69)

i.e., we shall assume additional symmetries of U,V matrices (note

that the [U,V] matrix retains the symmetnes set by Eq (68)) trymg .
11




to find a zero-curvature representation of Eq.(47), which comprices the
Jeast possible number of unknown functions of the spectral parameter
a1(2); ooy B1(A), @2(A), <oy Ra(A).

From (53),(68) we get:

duy; OV :
atn - a;l + [Ullavlll + [Un,vl.z] =0, (70)
au av - : p
3;2 _ axﬂ + [U12,Vn] + [Un,Vm] = 070 (71)v
-By using of Egs. (69) we get from (70): |
o | i 8N oy, , a4 N
™ bl~3?+d1-§t——“a"'3x.“bifé;—'d2_~3—x+

+(braz — a152_+ frez — e1fa)[ls, Jo] + (102 — a1z + quez 6191"2)[3, lo}+

+erb — bz + @1 fo — fg2)[, 1) + (draz —ardz + 51_6'2 - e1h)[N, lol+

+(dlb2 _—bidz fi'h;fz "flh2)[Na 11]+(d162;‘Cld2+h192*Q1h2)[N’J] =0,

| (72
and from (71):
o, .o, . ON 8 Ok , ON
g+ Y ey, ~hy gt

+(f1az — e1hs + bre2 — dlfz)[il,lbl + (q1a3 — e1¢2 + 162~ a1¢2)[J, 10]+

+{q1b2 — fic2 +afs—bhae)d, 1‘1] +(h1az — e1dp + dye2 — alhz)[N,lo]-_l- <_

+(h1bz*‘f1d2+d1f2'—blhz)[N,11]+(h1cz—Q1d2+d1Q2"Clhz)[Ns Jj=0,
e - )
Eqgs. (72), (73) may be satisfied in the same way as Eq. (55) was.
" As a result we arrive at Eq. (50) if the following Egs. are valid:

b, = az = biaz —arba + fiea —eyfa,

ay = b2 = d162'— Cldz + h1.(]2‘— qlhg, al(/\)-/: 0,
. C1an - a;c; + qrez2 — €142 = 01

by — bica + qifs — 132 =0y
12 :

dlq? == aIdZ +‘h162 —_ C1h2 -—%1— = 0,
dy
dlb?, — bld - 2+ h1f2 - f]_pl.l,z -+- -é— = O,

f1,= ey = fiag — erby + bieg — a1 fa,
€y = f2 e h102 —_ qldg + d1q2 - Cihg, 61()\) # O',
Qa2 — €162 + cre2 — 1@z = 0, o

qiby— fico +eifo—biga=0, |

hyas — e1dy + 3162 - a'lhg - %— = (,
) _ 3 | _ .
hlb? - fle + dieZ - Glhz —-'_32 =0. (74)

We have not yet found the solutions ay(X),...ha(X) to Eqgs.(74),.
the investigation of this problem is in progress. In the separate pa-
per we hope to present higher (non-Noether) integrals of motion of
Eqs.(3), which are known [8-13] to be attributes of completely inte-
grable systems. Note in conclusion that Eq. (47) is the field extension.

of equations of C.Neumann problem [17], describing motion of a point

particle on the unit sphere surface with quadratic potential set on it. It
is known that C.Neumann problem is completely integrable (see, e.g.,
[18] and Refs. therein).
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