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1 Introduction 
Certain problems of quantum physics require to study a Schrodinger 
equation in spaces of multifunctions. For example, this occurs in the 
known Aharonov-Bohm effect [1]. In this case, it is known that calcu­
lations with multifunctions and without the potential of the magnetic, 
field and calculations with usual (one-valued) wave functions and with 
the magnetic potential give identical results. This fact leads, in par­
ticular, to the natural question: should we always follow the standard 
formalism of quantum mechanics with usual (one-valued) wave func­
tions or (in the case of a multiply connected configuration space) we 
can extend the standard description admitting wave multifunctions? 

In view of the above arguments, it seems natural to consider wave 
multifunctions in certain cases as in the Aharonov-Bohm phenomenon. 
There are physical models (for example, one-dimensional ones when 
x £ R) which require to consider a Schrodinger equation with bound­
ary conditions of the type и(ж-Ь27г) = el0u(x) where 9 6 R. Obviously, 
this problem is equivalent to a consideration of a Schrodinger operator 
on the unit circle with wave multifunctions. Earlier, in this direction 
(in the approach with multifunctions) only configurations spaces with 
the simplest topology were investigated (for example, the problem was 
treated when the configuration space is a torus, see [2]). 

We consider the.general case of an arbitrary connected HausdorfF 
smooth (of the class C°°) oriented Riemannian manifold M, dimM = 
d, with a smooth boundary dM which may be empty. We carefully 
define multifunctions on M by analogy with the above simple cases, 
introduce spaces similar to Li or Щ of these objects and prove the 
existence of a self-adjoint extension of a Schrodinger operator in these 
spaces. An approach to the definition of multifunctions similar to 
our approach but without mathematical accuracy is contained in the 
monograph [3]. Finally, we do not touch upon delicate questions of 
the Floquet theory (see [2]) and in our construction we do not vary 
parameters like the parameter 9. 
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2 Mult ifunct ions 
.« 

Let С be the set of continuous piecewise smooth maps from 
[0,1] into M\ x0 € M be a fixed point; Co be the subset of the set 
C, Co = {7 G C\ 7(0) = x0}\ Ci = {7 G C0\ 7(1) = x0]. For any two 
paths 71,72 G С satisfying 7i(0) = 72(1) we introduce their product 
7i ° 72 = 7 where j(t) = 7г(2£) if t G [0, \] and 7(/) = 7i(2£ - 1) for 
t G [|, 1]. By analogy, 7 - 1 ( t ) = 7(1 — t). As usual, we call two paths 
71 and 72 from C\ equivalent' if there exists a continuous homotopy 
o-(s,£), where s,l G [0,,1], such that a(0,l) = 7i(£)> сг(1, Л) = ^{t) 
and 0"(s,O) = cr(s, 1) = ж0. We denote the set of equivalence classes 
of paths by K. Then, in the set К one has a natural operator of 
multiplication: if к\,кг G К and 71 G hi, 72 G &2, then &i о /г2 is the 
class к Q. К containing the path 71 о 72. 

Since M is a Riemannian manifold, M is a metric space with a 
distance d(x,y) (x, у G M). Then, one can introduce a distance in the 
set Cj making it a metric space, by the rule 

р{ъ,Ъ) = max min d(7i(0» 7a(*)) + max min d(7 l(5), 72(*))-t6[o,ij se[o,i] te[o,i] лб[о,1] 

(Axioms of the metric space can easily be verified). Further, by stan­
dard arguments, for any 70 G C\ there exists с > 0 such that if 
P\l0il) < б for a path 7 G Ci, then 7 is equivalent to 70. 

Definition 1. We say that a real function 0 defined on Co is 
admissible iff 
1) 0(7) = 0 for any path 7 G C, equivalent to the trivial one 7o(<) = ^o-
2) 6(71 0 72) = 6(71) + 0(72) /or any 71,72 G Ci. 

Remark 2. One can easily verify that, there exists a non-trivial 
admissible function. Indeed, taking a closed smooth differential 1-form 

d 
u = ^2fi(x) dx{ (so that du = 0) and setting for any 7 G Co 

t = i 

% ) = / « , 
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we obtain a function 0 satisfying Definition 1 because the property 2) 
is valid trivially and the property 1) follows from the Stockes theorem. 
We note that the above integral is well-defined since we consider only 
piecevvise smooth paths. Second, although paths 7 € Co arc piecewise 
smooth, it is clear that the above integral is constant for all paths 
71 € Co of the class C°° sufficiently dose to 7 with respect to the 
distance p if 71 (1) = 7(1)- In addition, according to the known re­
sult, if two smooth paths are continuously nomotopic, then they are 
smoothly nomotopic (sec [4]). So, our construction is correct. 

Defini t ion 3 . We call a complex function f defined on Co the 
multifunction defined on M iff for any x € M and any 71,72 € Co 
such that 71(1) = 72(1) = x one has 

Let us show that there exist non-trivial multifunctions. Let U С 
M \ dM be an open card diffeomorphic to the unit ball В = B\(0) = 
[z £ Rd\ \z\ < l } and /0 be a complex function denned on M with 
a support in U. For any 7 € Co, 7(1) £ U we set / ( 7 ) = 0. Take 
arbitrary ж 1 £ U and fix a path 70 € C0 : 7o(l) = xi- Let 7 € Co be 
an arbitrary path joining xQ with x (E U. We set 

/(7) = кШУ0Ы1оа~1,п) 

where a is an arbitrary path from С joining x\ with 7(1) and contained 
in U. One can easily verify that /(7.) is a well-defined multifunction. 

Operations of addition of multifunctions and multiplication of a 
multifunction by a usual (one-valued) function have been introduced 
naturally ( / (7) = /1(7)+ /2(7) and 5(7) = а(л(1)) / (7) where / , / b / 2 

and g are multifunctions and a is a one-valued function). Further, the 
complex adjoint function to a multifunction / is defined pointwise, 
too, and it is clear that this is a multifunction with respect to the 
admissible function в\ = —в. 
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3 Continuity and differentiability of mul-
t if unctions 
Let 70 € C\. Since there exists e > 0 such that 7 6 C\ is 

equivalent to 70 if 
/>(7o,7)<e, (1) 

a multifunction / as a function of 7 satisfying (1) is the usual (one-
valued) function of x = 7(1) 6 M, i. e. locally any multifunction is4a 
function of points of the manifold M. (Indeed, if 71 and 72 are paths 
from Co satisfying (1) and 71 (1) = 72(1)» then these two paths are 
nomotopic, hence /(71) = /(72) and therefore / is a function ф only 
of x = 7i(l).) Using these arguments, we introduce the following 

Definition 4. A multifunction f is called continuous (resp., in­
finitely differentiable in M \ dM) if there exists e > 0 such that the 
function ф is continuous in x (resp., each function ф is infinitely dif­
ferentiable in a neighborhood of the point XQ = 7o(l) $. dM). 

Definition 5. Let S be the set of all x € M such that for a 
given continuous multifunction f there exists a path 7, 7(1) = x, such 
that / (7) •ф 0 and lei S be the closure of the set S. We call S the 
support of f (S = supp(/)) . 

Definition 6. By Z)Q° we denote the set of infinitely differen­
tiable in M \ dM multifunctions, the support of each satisfying 

d\st(S, дМ) > О 

where d\st(A, B) = inf d(x^j). 
xeA, yeB 

4 The space of square-integrable multi-
functions 
Take arbitrary multifunctions / and g. We set {fg)(j) = /(7)5(7) 

where g is the complex adjoint multifunction to g. We state that fg 
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is a usual (one;valued) function on M depending only on я = 7(1). 
Let us prove this stiitemcnt. 

Take arbitrary 71,72 € Co such that 71(1) = 72(1) = x € M. We' 
should prove that /(71)5(71) = /(72)^(72), only, but according to the 
above results (see Section 2) /(71) = e,fl/(72) and 5(71) = е~х0д{~1г) 
for some 0, and thus the statement is proved. 

One can verify that the expression | | / | | = < / ff> is a norm 
Ы J 

in the space D^. Using this fact, we introduce the following 

Definition 7. We denote by F2 the completion of the space D^ 
with the norm ||.J|. In fact, F2 is a Hilbert space and D™ is a dense 
linear subspace in this space. By (.,.) we denote the scalar product in 
thespaceF2{(f,g) = J{fg)(x)). I 

м 

5 Laplacian 
Let U be an open card on M with a coordinate function ф : В•—* 

U where В is a d-dimensional open ball from Rd so that ф(г) = x € M 
and z = (21, ...,z<i) 6 B. For smooth in U usual (one-valued) functions 
/ the known Laplace-Beltrami operator takes the following form: 

A/ .= ^ ( d e t ( 5 , ) ; ( 2 ) ) ) - ^ [ ( ( d e t ( ^ ( 2 ) ) ) ^ , ' ' i ( ^ ) ^ : / ( ^ ( ^ ) ] 

where g''^(z) are components of the matrix inverse to the matrix g^j of 
the, Riemannian tensor written in coordinates z. It is essential to note 
that if M is a domain in an Euclidian space with the corresponding 
metric then the Laplace-Beltrami operator becomes the usual Lapla­
cian. Therefore, it is natural to give the following 

Definition 8. Let f € D™, let U be the above open card on M 
and 70 6 Co be a path such that 7o(l) = Xo € U. Then, since locally f 
is a function ф(х) of points x £ M from a neighborhood of the point 
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xo, we set 
. Д/(7) = Д0(*) 

for all paths 7 sufficiently close to 70. We call the operator Д the 
Laplacian or the Laplace-Beltrami operator. One can easily verify that 
ДД7) is a multifunction in the sense of Definition 3 with the same 
admissible function 0. 

Lemma 9. The operator — Д is symmetric and non-negative in 
the space D^3 equipped by the scalar product from F-i. 

Proof. As above, for any ф, ф € D™ ф(х)ф(х) is a usual (one-
valued) function on M. Let R — supp(</>) JJsupp(i/>). Then, Я is a 
compact set and d\st(R;dM) > 0. Let U\,...,Ui be its covering by 
open in M cards difFeomorphic to В and let o"i,...,<7/ be smooth (cr̂  
are infinitely differentiable) non-negative functions defined on M such 

that supp(o-fc) С t/fc, к — 1,/ and ]Г о^(х) = 1 for all x € R. Then, 
k=i 

one obtains (because the Laplacian is symmetric on usual functions): 

/ / 

(Д<^) = £(Д&,1М= £ ( Д к 4 0 = 
k,m=\ £,771=1 

/ / 

k,m=l k,m=l 

where фк and фт are usual (one-valued) functions with supports in Uk 
and f/fcf"j/7m, respectively, which are obtained by fixing any y/. € 
Co (fc = 1,/) such that 7*(1) € Uk and taking фк{х) = фк{т]к о 
7fc), Фт(х) = фт(т)к oyk) for x = ijfc(l) where т?*(0) = 7*(1), nk(t) £ 
Uk П ^m and T)k 6 C. By analogy, we introduce functions ф: ф(х) = 
ф(т)к о -уА) for x = »7*(1) € Uk- Thus, the Laplacian is symmetric. 

By analogy, 

. (~&ф,ф)= £(-Д^,<М = 
k,m=l 
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.(*) = 

£ / c r f c ( z ) a m ( ^ ) 5 ] ( d e t ( ^ j ) ) V l i ( ^ ) ^ : ^ ( ^ ) ^ r ^ ) + J (2) 
• c?z,- dzj 

where Gk,m is'the preimage of Uk П £/m and we mean that the integrand 
is non-zero only in Ukf]Um. Now, to prove Lemma 9, it suffices to 
prove that J = 0. Not writing the whole expression for J (one can 
easily do it), we prove that 

/ Е Е 
G

J k,m=l t,i=l 

9 ( \ am(z){det(gitj(z)))*g ЫКФ) (z)dz = 0. 

(3) 
Then, by analogy, one can repeat this proof for all other terms in the 
expression for J showing the equality J = 0. 

• To prove (3), we observe that the expression (*£*)(*) gen­

erates a usual (one-valued) smooth vector field on M. Therefore, at 
any point z the expression 

^{z)gU(z)fa)Jj-i{») 

is a scalar product of two vectors. Hence, 

A;=i 
dzi - л х ~ / ^ K~'TS~'dzj 

dz{ 

r I 

E ak^ 
k=l 

gU{z)fa)~fo) = 0 

and, thus, Lemma 9 is proved. 
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6 Spectral theory 

Let V(x) > - Vo be a real continuous function on M where V0 = 
const independent of x £ M. Consider the operator H = —Д + V(i). 
By the above arguments, this is a bounded from below symmetric 
operator on Do3. Therefore, it has a self-adjoint extension in F% with 
the same lower boundary. 

If the manifold M is compact, we can present a more complete 
information about the operator H. In fact, in this case H has a self-
adjoint extension with a discrete spectrum, only, which consists of 
eigenvalues A„ > 0 (n = 1,2,3,...) monotonously converging to -foo, 
and to any An there corresponds a finite number of orthonormal eigen­
functions;. two eigenfunctions corresponding to non-equal eigenvalues 
A„ and Am are orthogonal in F-i. To prove this statement, it suffices 
to prove that there exists a > 0 such that the operator (// + al)~l is 
compact, positive and symmetric (here / is the identical operator). 

Let H\ •=• H\(M) be the completion of the space £>2° with the 
norm ll/Hx = ( ( # + ' a / ) / , / ) * where a = V0 + 1. 

Lemma 10. Let M be a compact manifold. Then, the space H\ 
is compactly embedded in F^. 

Proof. First, since | | / | j , > | | / | | for all / € £>g°, the space HA 

is continuously embedded into JF2 for the manifold M without the 
requirement of its compactness. Let M be a compact manifold. Fix 
an arbitrary finite covering U%, ...,Ui of M by open cards each of which 
is diffeomorphic to the ball В or the half-ball B\ — {& € B\ z\ > 0}. 
Let &i, ...,o~i be the corresponding smooth partition of unity (so that 

i ' : • • ' " 

£ <Ti{x) = 1 for all x € M, ai(x) > 0 and supp(er,-) С С/,). Further, 
we take arbitrary paths 7,- G Co leading|to some x, 6 £/,-. As in the 
proof of Lemma 9, let fk(x) (x € M) be (one-valued) functions in Uk 
obtained by taking paths /Зк С Uk, /?jfc(0) = Xk, &(1) = x and setting 

ч/*(х) = 1{вк°7к)- Then, according to formula (2) (where J = 0), one 
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has for / € D§° 

- \ Y 1 <rk(*)<rm(z)deb{gitj{z)) 

d 

i 
?x 

i 

д ., . а п '2 

L i , j = i * j J 

Obviously, there exists r > 0 such that the preimages Ek,m of the 
domains 

Vk,m = {xG Ukf\Un\ (тк{х)> r, <rm(x) > r } 

cover M. Therefore, | | / | | i > С\\/.к(г)\\нЦЕк,т) for all k,m. Hence, 
if Л is a set of functions bounded in the, norm of / / j , then for all 
k, rn = 1, / the sets Rk,m of corresponding functions fk(?) are compact 
in Li(Ek,m)- This easily implies the statement of Lemma 10. 

R e m a r k 11 . Since D™ С F2f\H\ and £>g° is dense in these 
spaces, the set H\ is dense in F2-

Consider the equation 

(H + aI)u = feF2 ' (4) 

with the unknown function и £ II\. Multiplying(4) by v € # i , we 
find 

(и,«), = ( i » (5) 
for all v € H\. In view of the equality (5), for any f € F2 there 
corresponds a unique и G # i such that the equality (5) takes place 
for all v € Я), and, in addition, 

IHb<C||/|| V (6) 
(for proofs, see [5]; they are based on the usual technique of proving the 
existence and uniqueness of a generalized solution to a linear elliptic 
equation). 
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By B wo denote the operator mapping arbitrary / 6 /'2 into 
и € Hi where и satisfies (5). According to (6) and Lemma 10, В is a 
compact operator in F2. 

Further, since for u, v € #1 one has 

(#u ,v ) i = (u,uj = (v,u) = (Bv,u)\ = {u,Bv)u (7) 

the operator В is self-adjoint in II\. By analogy, В is a non-negative 
operator in II \. 

To prove that В is a compact operator in Я , , consider an ar­
bitrary bounded set R С Я]. In particular, any sequence {/„} С Я. 
contains a subsequence {fnk} strongly converging in F2 . Therefore, 
the sequence Bfnk strongly converges in / / 1 , and the compactness of 
the operator В in II\ is proved. 

According to the Hilbert-Schmidt, theorem, there exists an or-
thonormal basis in II\ consisting of eigenfunctions of the operator В 
with corresponding eigenvalues An > 0 of finite multiplicities and there 
exists a monotonous limit lim A„ = 0. We denote the corresponding 

n—»co 
eigenfunctions of the operator В by u„ accepting that each eigenvalue 
An appears in the sequence {Xn} so many times which is its multiplic­
ity. 

Then, obviously the space F2 is an analog of the space L2, and, 
since we consider applications of our construction in quantum me-
cnanics, we need to prove a spectral expansion for the operator II in 
F2. However, this result follows from the above one. Indeed, since 
un € F7 for all n and since the space Hi is dense in F2, one has that 
{un} is a basis in F2 which is orthogonal by the equality (7). Finally, 
if Bu = 0 for и € /*2, then according to (7) one has (u,u) = 0 for 
all v € # 1 , hence, и = 0. Thus, there exists an operator B~l map­
ping the image of the operator В into F2. Further, since for и ED™ 
.B~1u = (H + aI)u (i. e. if и 6 J9g°, B~lu is determined and coincides 
with ( Я + «/)«) , the operator B~l is self-adjoint in F2 and it is a 
self-adjoint extension of the operator (II -r al). Thus, we have proved 
the following result: 

Theorem 12. Let the manifold M be compact. Then, the oper­
ator II with the domain D%f considered in F2 has a self-adjoint exten-
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sion with only a discrete spectrum {A"1} (here lim A"1 = -f-coj where 
П—«00 

each eigenvalue A"1 is of a finite multiplicity. 
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