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1. Conception of spontaneous symmetry breaking of the Lagrangian 
is one of the most fruitful ideas of the contemporary theoretical physics. 
The mechanism of such breaking within the model describing the Higgs 
scalar field 'Pa(x) with selfinteraction of the form V(<p) = A2('Pb'Pb­
B 2

) 2
, a, b = 1, 2, ... N was studied by Goldstone [1], and in [2] inter­

action of the complex Higgs field with the gauge Maxwell field was 
considered (abelian-Riggs (AH) model). The well-known Ginzburg­
Landau model of superconductivity [3] can be considered as a nonrela­
tivistic analog of the AH model. Extended solutions to these models in 
(2+1) dimensions (namely, Nielsen-Olesen strings [4] and Abrikosov 
vortices [5], respectively), found in stationary (8/8t = 0) case are iden­
tical. These solutions (we shall name them ANO strings for brevity) 
and their numerous analogs, which describe localized energy distribu­
tions, are widely discussed in condensed matter physics, cosmology, 
particle physics [6,7]. Notice however that ANO strings cannot be ref­
ered to a.s solitons because neither Higgs field nor Maxwell one do not 
attain unique asymptotic value at Jxl = oo. 

2. In the present paper we study 2D soliton solutions to Lorentz­
invariant models supporting non-Goldstone mechanism of symmetry 
breaking. Consider a unit isovector field s.(x) having Lagrangian den­
sity 

.C = (8.s.) 2
- V(s), s.s. = 1, V(s) = 1- s~, 

P. = 0,1, ... ,D, a= 1,2,3. (1) 
(we shall call it the A3-field). It is easily seen that the Lagrangian 
(1) possesses U(1) x Z(2) internal symmetry; its vacuum manifold 
comprises two points on the S2 sphere: ss = 1 and s3 = -1 and 
possesses discrete Z(2) symmetry. 

At D = 1 the model (1), which proves to be completely integrable 
generalization of the sine-Gordon equation [8], possesses kink and an­
tikink solutions, which break Z(2) symmetry of the vacuum manifold. 
Futhermore, it can be shown that Z(2) symmetry is also broken on 
nonstationary topological solitons of the model (1) at D = 2, 3. 

Lagrangian (1) can be derived when describing in continuous ap­
proximation easy-axis Heisenberg antiferromagnets [9] and ferroelectrics 
[10] with easy-axis. anisotropy; thus, the pattern of the symmetry 
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breaking under discusslon is realized in condensed matter physics. 
Hopefully, the investigation of solitons in (D + 1 )-dimensional field 
theory models, comprising the A:)-field and/or its generaliza.tions will 
give advantageous results in particle physics as \Vel1! in partic.ularl in 
electroweak interaction theory. 

3. Consider 2D Lorentz-invariant model which describes minirnal 
interaction of the A3-field with gauge Maxwell field A,,(x) ("MA3 
model"): 

-~b b 12 £ = (V~S )(V~S ) - V(S)- 4F~"' ' (2) 

15~ = a~+ ieAp, v~ = op - ieA~, 

Fpv = o~Av - ovAp, V(S) = ,9{1 - s;], 

$b = (s,- isz, 83), sb = {sr + isz, s3), b = 1, 2, 

sb sb = si + ·~ + s; = 1, . 

where ,9, e are coupling constants. 
Lagrangian (2) is easily transformed to the form 

£ = (8ps.) 2
- V(s.)- ~F;. + 2eA,,(s20ps1 - sr8~s2) + e2 ApAw (3) 

Note that due to the interaction with the A3-field described by (2), 
the gauge field becomes massive, and this is the exact result contrary 
to the case of the Higgs model in which mass of the vector field A~ 
is obtained when expanding the Lagrangian density of the model in 
series in the vicinity of its vacuum manifold. · 

We begin striding the localized solutions of the (2+1)-dimensional 
model (3) in the simplest stationary case. Use the hedgehog ansatz for 
the A3-field . 

sr= ~sinO(R), s2 = ~sinO(R), s3 =cosO(R); R2 =x2 +y2
, 

(4) 
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and look for the vector field solution in the form 

Ao = 0, 
y 

Ar =A,= -A,(R) R' 
-1-

Az = Ay = A,(R) R-

Introducing 

a(R) = A,(R)R, 

and then going over to variables a(1·), ,., given by 

a = cre- 1
, R = t·e- 1 

,. 

we get for stationary Hamiltonian density 7t{r): 

( )
2 . ( )2 2 _ 2 dO _ 

2 1 2a 1 1 da a 
e 1t(1-) = - + sm 0 (p +-- -) +- -- + -, dr . ,. ,.2 2 ,. dr ,.z . 

.a 
p = e2' 

(5) 

(G) 

(i) 

(8) 

(9) 

Calculating Ei1t/ EiO and Ei1t/ Eia and setting them equal to 
· · zero,.we get the. set of equations for O(r) and a-(r): 

d20 1 dO (2o - 1 ) -+--+sinOcosO ---p =0. d,-2 ,. ,z,- ,.2 (10) 

d''a- 1 do-
-- --- 2a- + 2sin20 = 0. (11) ,z,.z ,. ,z,. 

We shall look for solutions of Eqs. ( 10),( ll) under following bound-
ary conditions: .. _ 

0(0) = 71', O(oo) = 0, (12) 

a-(0) = o; a( 00) = 0. . ( 13) 

Notice that Eqs.(4),{12) define the class of mappings R~omp ___, S2
, 

such that Q1 =.1, where Q, is the topological index ("winding num­
ber") of localized distributions s.{:r), described by the mappings of 
this class. 
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Taking into account bounda.ry conditjons at r = 0 and expancnng 
Eqs. (10), (11) into series at 1'--> 0, we find 

0(1·) = 71'- (C, + C,),. + o(1·), 

1 
a(1·) = 1·2(C;- -Cir') + o(13 ). 
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(14) 

( 15) 

Choosing appropriate C1 and C2 values we find such solutions to 
Eqs. (10), (11), which satisfy boundary conditions O(oo) = 0, a(oo) = 
0 ("shooting method"). Thus we get solution of the boundary value 
problem (10)-(13). 

Numerical studies of these solutions with Q, = 1 have been ac­
complished for various values of the dimensionless parameter p, given 
by (9); the most detailed computations have been made on the inter­
val 0 < p < 2. Soliton solutions are plotted in Fig.! for various p. 
It can be seen that the chai·acteristic width of the soliton and maxi­
mum values of a(r) and A,(R) functions decrease with the growth of 
p. Energy density 1i(r) for Q, = 1 solitons has a peal< at r = 0 and 
monotonously decreases with the increase of ,., The dependence of the 
net energy E = 2,. f 1i(r )1·d1· on p value is presented in Table 1; note 
that at p "" 0.3 soliton energy E = Eo = 81r ( Eo is the ene1'gy value 
of Belavin-Polyakov localized solutions in D = 2 isotropic Heisenberg 
magnet [11]). 

~ 
p E 
0.03 21.6437 
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0.10 23.8876 
0.20 24.8:351 
0.26 25.0589 
0.30 25.1328 
0.33 25.1479 
0.40 25.1600 
0.50 25.1833 
!.00 2.5.2449 r 

Table 1 0 10 
Fig.1a Radial functions 9(r) of solitons with Q, = 1 in the MA3 

model; 1- p = 0.3, 2- p = 0.1, 3- p = 0.03. 
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Fig.lb Radial functions a(r) of solitons with Q, = 1 in the MA3 
model; 1- p = 0.3, 2- p = 0.1, 3- p = 0.03. 

4. Compare soliton solutions found above in the D = 2 MA3 
model with ANO strings in the AH model.. Both solutions represent 
field energy lumps, which are exponentially localized in space, both 
solutions describe distributions of the scalar (with respect to Lorentz 
transformations) field (A3-field or Higgs one) with nonzero topological 
indices. · 

Nevertheless, there exist essential distinctions between string-like 
MA3 solitons and ANO strings, namely: 

1) the A3-field and the Maxwell field constituting MA3 solitons 
approach unique asymptotic values at x -+ oo, which are indepen­
dent of the direction of x, namely s.(oo) = (O,O,l),A(oo) = 0 (see 
(12b),(13b)). The latter equality means that 

2) the magnetic flux is equal to zero for MA3 solitons, J BdS = 0, 
3) it is easily seen that magnetic field in D = 2 MA3 solitons, 

B(r) = -(da/dr)fr, changes its sign when r increasing. 
Statements 1),2),3) are not valid for ANO strings [4-6]. 
5. Consider another gauged model of the anisotropic Heisenberg . 

antiferromagnet, which describe interaction of the A3-field with the 
Chern-Simons (CS) gauge field ("CSA3 model"). The Lagrangian of 
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the CSA3 model is defined by equatious, which are obtained from 
(2),(3) when the Maxwell term£= -~F,7v is replaced in them by the 
CS term, Ccs = t:"""A"ovA\, Jl, v, .\ = 0, 1, 2. An essential differeuce 
between this CSA3 model and SU(2) symmetric CP1CS model intro­
duced in [12] and investigated numerically in [13], is the anisotropy of 
the chiral A3-field, possessing U(1) x Z(2) symmetry. Adding of such 
an anisotropy to CP1CS model changes crucia.lly its properties making 
emergence of exponentially localized solutions possible. 

To find soliton solutions of the CSA3 model describing localized 
distributions of the A3-field with Q, = 1, we a.gain use the ansa.tz 
given by Eqs. (4),(5). By using .variables (4)-(7), we get the following 
Eqs. for B(r) and a(r): 

d?B 1 dB • (2"- 1 ) -+--+smOcosB ---p =0, 
dr2 r dr r2 . 

(16) 

d?a 1 da 
dr2 - ;: dr - a+ sin

2
0 = 0. (17) 

Making scaling transformation R = 1'/ ../2, we get the set of equa­
tions (10),(11) with p replaced by 2p, thus the solitons in the CSA3 
model can be easily obtained from solitons found above within the 
MA3 model: - · · '" · · 

Note that the same st!'-tionary solitons can be found in the nonrela­
tivistic analogs of the MA3 and CSA3 models, in which the A3-field is 
replaced by the field of the easy-axis Heisenberg ferromagnet, described 
by the Landau-Lifshitz equation. 

6. In conclusion we considered minima.! interaction of the chiral 
A3-field (3-component unit isovector field having easy-axis anisotropy) 
with the vector gauge fields {Maxwell and Chern-Simons ones) in (2+ 1 )­
dimensional space-time and found soliton solutions with unit topolog­
ical charge of the A3-field within these models. Both the A3-field and 
the vector fields approach unique asymptotic values at lxl -+ co. These 
localized solutions are characterized by zero net magnetic flux. 
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