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· 1. INTRODUCTION 

The present. paper continues the began in .. [ 1, 2] applications of 

the theory of transports along paths (in fibre bundles). [3] to .the 

me~hanics of material point particles. Here is studied a phenomenon 

consisting in the comparison of the (relative) energies of a 

material (massive or massless) point particle w~ th respect to two 

other arbitrary moving point particles (observers).- An evident 

special case of this problem is the well-known Doppler effect. 

[ 4, 5]. When the mentioned transport along paths is linear and, in 

fact, only paths without self-intersections are taken into account 

the above problem was·investigated in [6]. Here we closely follow 

[6] without supposing these restrictions. 

Sect. 2 contains the strict formulation of the problem·of the 

present work and the derivation of the main results, which in Sect. 

3 are applied to the general and special relativity. Sect. 4 closes 

the paper with some comments. 

Below the needed for the following mathematical background is 

summerized. 

All considerations in the present work are made in a (real) 

differentiable manifold M [7] whose tangent bundle (T(M),rr,M) is 

endowed with a transport along paths I [3]. Here T(M):= u Tx(M), 
xEH 

T (M) being the tangent to M space at xEM and rr: T(M) --tM is such 
X . 

that rr(V):=x for VET (M). Besides, the tangent bundle (T(M);rr,M) is 
x. 

3upposed to be equipped also with a real bundle metric g, i.e. [8] 

a map g: x ~ , xeM, where the maps g : T (M)®T (M) ~ are bili-
x . >I'; X X .· ·.,, ~. 

near, nondegenerate and symmetric. For brevity the defined by g 

scalar products of yEM wi 11 be denoted by a dot 



i.e. X•Y:=g (X,Y). The scalar square of X will be written as (X) 2 
y 

for it has to be distinguished from the second component X2
. of X in 

·some local basis (in a case when dim(M)>1). As g is not supposed to 

b~ positively defined, (X) 2 can take any real values. 

By J and 7:J-M are denoted, respectively, an arbitrary real 

interval and a path in M. If 7 is of class C1
, its tangent vector 

is written as.;. 

The. transP,ort along paths I. and the bundle metric are supposed 

to be consistent, i.e~ I preserves the defined by g scalar products 

of the vectors (see [3], eq. (2.9)): 

A•B=(I7 A)•(I7 B), A,BeT (M), s,teJ, 
s-t s-t 7(s) 

where I 7 . is the transport along 7 from s tot [3]. 
s--+t - • 

For details concerning transports along. paths the reader is 

referred to [3] and for the ones about relative mechanical 

quantities (such as velocity, momentum and energy) - to [1]. 

2. STATEMENT OF THE PROBLEM AND GENERAL RESULTS 

Let a material object (a point particle which may be massless 

as well as massive) be moving in M along the path 7:J-M (its 

world line) which is parameterized with reJ. Let 7 intersects the 

paths xa:Ja_M, a=1,·2, representing ·the world lines of the par

'ticles 1 and 2, which we call observers; i.e. for some r eJ and 
a 

s
0
eJ, we have 7(r )=x (s0

), a=1,2. If it is necessary, the parame-
a a a a -a 

ters reJ and saeJa, a=1,2 will be considered as proper times of the 

corresponding particles. As a special case of this construction we 

can point the case when the material object is emitted from the 

first particle and/or is detected from the second one, or vice 

.versa. In particular, if the considered material object is a 

·2 

1 

• I 

I 
I 

~ .. 

?\. 

I 

1 
-1 

photon, then the last situation realizes the classical Doppler 

effect [4,5). 

We put the following problem. On the basis of the introduced in 

[1] concepts we wish to compare the relative energies of the mate

rial object with respect to the '?bservers. 1 and 2 at the points 

7(r
1
)=x

1
(s~) and 7(r

2
)=x

2
(s~) respectively. 

Let p(r) be the momentum of the material object (the observ~d 

particle) at 7(r) and V (s )=x (s) a=1,2 be the velocities of the 
a a a a 

observers. For brevity we let 

p :=p(r ), V :=V (s 0
), a=1,2. 

a a a a a 
(1) 

In accordance with the definition of a relative energy (see 

-[1], sect. 4) we have to compare the relative energies 

2 2 E
1
:=c((V

1
) )p

1
•V

1 
and E

2
:=c((V

2
) )p

2
•V

2
, (2) 

of the observed particle with respect to the particles 1 and 2 at 

the points 7(.r )=x (s0
) 

1 1 1 
and 0 

7(r)=x
2
(s

2
) respectively. 

C(A):=+1 for A>O and C(A):=-1 for ASO. 

We introduce the quantities: 

(V ) : =I7 , V 
2 1 r --+r' 2 1 

2 1 

t.p(r1 ,r2 ;7):=p(r) - r; -r p(r1 )=p2 - r; -r p 1 • 
1 2 1 2 

Here 

(3) 

(4) 

. The quantity (4) is defined analogously to the relative momen

tum '(cf. [1], sect. 3), but it defines along 7 with the help of the 

transport along paths I the change of the momentum of the observed 

particle when it moves from 7(r
1

) to 7(r
2
). 

Now we shall prove that the quantity 

2 t.E
21

:=c((V
2

) )t.p(r
1
,r

2
;7)•V

2 
(5) 

is closely connected with the change of the energy of the material 

object along 7 with respect to the point 7(r
2

)=x
2
(s~), at which its 

3 



world line intersects the world line of the second particle, when 

the object moves from 7(r1) to 7(r2) along 7. In fact, using (1), 

(4) and (5), we get 

t.E21~c((V2)2)(p2 r7 p )•V =E(r ,r ;7) - E(r ,r ;7). 
r -r 1 2 2 2 .1 2 

1 2 

(6) 

Here 

~(r,r ;7)=c((V ) 2)(I7 . p(r))•V, 
,2 2 r-:--¼r 2 

. 2 
(7) 

as a consequence of the considerations of [1], is.the defined along 

7 by means of -the transport along paths relativ~ energy of the 

observed particle when it is situated at 7(r); re[r' ,r"] with res-· 

pect to the second'particle when it is situated at 7(r2)=x2(s~). 

From one hand, putting r=r in· (7) 'and (due to the consistency 
1 

between the metric and the.transport along paths) applying to the 

both multi plies I 7 and,· from the other hand, letting r=r in 
r ~r 2 

2 1 

(7) and using (2), we; respectively, get 

E(ri, r2; 7)=c( (V2)
2
)pl •'(V) 1' E_(r2, r2;7)=E2. (8) 

So, from (6), we find 

E =llE + c((V ) 2)p •(V) . 2 21 2 1 2 1 (9) 

Further, supposing (V1) 2¢0, which is interpreted as a movement 

of the first observer with a velocity different from (less than)· 

the.one of light in v~c~um,' we shall expres~ p
1

~(V2) 1 through E
1

. 

Representing (V ) in the form (V ) =(V ) II + (V )L, where the lon-
·: :-: ... , . 2 1 .. . . 2 .1 2 1 2 .1 . . 

gi tudinal ( V ) II and the transversal ( V ) L components with respect 
2 1 . 2 1 . · · 

to V1 are given by 

(V )11:=V (V •(V) )/(V ) 2 ((V )11.v·=(V) •V) 21 1 1 21 1 21 I 21 t' 
(10a) 

.. •L . 
(V2)1 :=(V)1 (V ) II . ((V )L•V =(V )L•(V ) 11=0) 

21 21 1 21 21 ' (10b) 

4 

:;.· 

. Y\ 

-' 

. \ 

we obtain: 

p •(V) = p •(V )L + p •(V )II= p •(V )L + 
1 21 1 21 1 21 1 21 

+ (p •V )(V •(V) )/(V ) 2 = p •(V )L + 1 1 1 21 1 1 21 

+ c ( ( V ) 2) E [ ( ( ( V ) ) 2 - ( ( V /) 2) / ( V ) 2] 1 / 2 • 
1 1 21. 21 1 

(11) 

where we have used (2) and the equality (V •(V ) )/(V )~= 1 . 2 1 1 

= [ ( ( V ) II) 2 / ( V ) 2] i / 2 = [ (( ( V ) ) 2 - (( V ) L) 2) / ( V ) 2] 1 / 2 ( the square 
21 1 21 21 1 

root sign is uniquely defined by (V •(V) )/(V )
2

1 =+1), 1 2 1 1 ( V ) =V 
2 I I 

which follows from 

((V ) )2-((V ) 11)2). 
2 I 2 I 

( (\12) ~)2= =(V1•(V2)1)2/(V1)2 

Substituting (11) into (9), we get: 

and ((V2)~)2 

E =t.E +c((V ) 2)c((V ) 2)E [(((V) ) 2-((V )L) 2)/(V ) 2] 112 + 
2 21 1 2 1 2 I 2 1 1 

2 L 
+ c((V) )pl• (V2) t (12) 

This formula is the answer of the stated above problem and it 

expresses the "generalized" Doppler's effect for the considered 

process. 

Now we will put the last term of (12) into a slightly different 

form (cf. [4]). 

Let the vector NET (M) be defined in the following way. If 
1 71 r 

1
) 

p 1 and V1 are not collinear, then N1 is coplanar with them, i.e. 

N1=aV1+bp1, for some a,bER, and satisfies the conditions 

NI •V1=0, (13a) 

2 2 2 2 
(Nl) =N1•N1=c((p1) -(El) /(VI)), (13b) 

N1•p1<0. (13c) 

In this case N1 is uniquely defined and its connection with p
1 

and 
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,- -

V
1 

may be written, for example, as 

P1=V1(V1•p1)/(V1)2 

- N c(( )2-(E )2/(V )2) I( )2-(E )2/(V )211/2 1 pl 1 1 pl · 1 1 ' (14a) 

where IAl:=Ac(A) is the absolute value of AER. (Note that 

(p ) 2-(E ) 2
/(V )

2=0 if and only if p and V are collinear; see 1 1 1 1 1 

(i).) If p and V are collinear, i.e. p =AV for some AER (which, 1 1 1 1 

be.cause of (V )2¢0, is given by A=p •V /(V ) 2), then we put N =O: 1 1 1 1 1 

Nl =O for pl =AVl. (14b) 

(Note that due to (14a) from N1=0 follows p 1=AV1, which is equiva

lent to (p ) 2-(E ) 2 /(V ) 2=0.) 
1 1. 1 

Hence the defined by ( 14) vector N ET < > (M) is orthogonal to 
1 7 r 

1 

a path x at the point ;(r )=x (s 0
) (N ·•V =0) and if p. and V are 1 1 11 11 1 1 

not collinear, then it is a unit vector "pointing from x 1 to 

-((N )2=c((p )2-(E )2/(V )2)). 
1 1 1 1 

X" 
2 

By definition the recession speed u21 of the particle 2 from 

the particle 1 is the projection of (V
2

)
1 

on N1 (see [4]), i.e. 

i 
0 21=(V2)1•N1=(V2)1 •N1. 

If p 1 and V1 are collinear, then u21 =0. 

From (14), (15) and (10b), we· obtain 

•(V )i=-u c(( )2-(E )2/(V )2) I( )2-(E )_2/(V )211/2. pl 2 1 21 pl 1 1 pl 1 · 1 

(15) 

(16) 

Substituting this expression into ( 12), we find the seeked 

connection between the relative energies E and E in the form 
1 2 

E =/IE + C (( V ) 2) C (( V ) 2) E [ (( ( V ) ) 2 - (( V ) i) 2) / ( V ) 2] l / 2 -2. 21 1 2 1 2 1 2 1 . 1 

- c( (V2)2)c( (pl )2-(E1 )2/(V1 )2)u21 I (pl )2-(E1 )2/(V1 )2 I 1/2. (17) 

1 
l 

·I 
1: 
l 
f · 

._,,,. Namely. this formula gives the Doppler• s effect in terms of. par- ·I 
6 

ticles and their energies in the con~idered process, which can be 

called a "generalized Doppler effect". The corresponding to it "red 

shift" [4] is given by the equality 

(E -E )/E =1 - {/IE /E + c((V ) 2)c((V ) 2)[ (( (V ) ) 2 
2 1 2 21 1 1 2 2 1 

-((V /")2)/(V )2]1/2 - c((V )2)c((p )2-(E )2/(V )2) X 
21 1 2 1 1 1 

X c(E )u l(P )2/(E )2-1/(V )211/2}-1 1 21 1 1Y - 1 . , (18) 

3. EXAMPLES: GENERAL AND SPECIAL RELATIVITY 

In this sect1on are considered the applications of the obtained 

in Sect. 2 general results to the cases of_ the Doppler's effect in 

general relativity and the "generalized Doppler effect" (for cons

tant velocities) in special relativity. 

The Doppler effect in general relativity investigated, e.g. 

in [4], ch. III, section 7, where the condition (13c) is not stated 

explicitly but it is used in the calculation, · consists · 'in the follo-

wing. At the point x (s0
) 

2 2 
. a proton is emitted which moves along the 

:isotropic geodesic path 7 to the point x 1 ( s~), where it is det'ec-

ted. The problem· is to be compared with the. 

gies E1 and E21 respectively. 

detection and emission ener-. . 

Choosing M to be the space-time of general relativity with sig-

nature (-+++) and I 7 to be a parallel tran~port along ;, we find 

( see section 2 and [ 1]) : (V ) 2=(V ) 2=-c2 (c is the velocity of 
1 2 

light _in vacuum), 2 2 
(pl) =(p2) =~. E1>0, llp(r1,r2;;)=0, tiE21 '."0 and 

N1=-[p1+V1(V1•p1)]/E1• So, (17) and (18) take respectively the 

form: 

7 



E =E [.u +(1+((V ).L) 2/c2) 1/ 2] 
2 1 21 2 1 ' (19) 

(E -E )/E =1-[.u +(1+((V ).L)2/c2)1/2]-1. 
2 1 2 21 2 1 (20) 

By using a local orthonormal basis this result is derived in 

. .L 
[4], ch. III, section 7, where E1, E2, .u21 and (V2) 1 are denoted as 

E, E', .u and .u2 respectively and, besides, there are used units in 
R 

which c=1. ' 
In the case of special relativity Mis the Minkowski's space

time and r 7 is also a parallel transport along;. Let the consi

dered particles be moving with constant 3-ve'locities v, v
1 

and v
2 

with respect to a given frame of reference, i.e. we have 

;(r)=y+( ct, tv) and xa ( sa)=ya +( ct, tv), a=1, 2, where y, y 1, y 2EM are 

fixed, t is the time in that frame, r=t for jvj=c and 

r=t(1-v2/c2) 1/ 2 for lvl<c, and s =t( 1-v2 /c2) 1/ 2, a=1, 2 are the cor-
a a 

responding proper times (cf. [2,4,5]). (Of course, we suppose that 

7 intersects x 1 _and x
2
.) 

From here we find the momenta of the observed particle as p(r)= 

=p1=p~=µc(1,v/c), where µ:=E/c for lvj=c (Eis the particle's ener

gy in the given frame) and µ:=m(1-v 2/c2)- 1/ 2 for lvl<c (m is the· 

particle's rest mass), v =c(1,v/c)(1-v2/c2 )- 1 ✓ 2 , 
a a 

a=1,2, (V2) 1=V2, 

Ap(r1,r2;;)=0 _and AE21 =0. The 'computation of the remaining quanti

ties concerning the phenomenon under consideration is simple bUt 

long; that is why we present here only the final result: 

(

1-.v
2 
/c

2
] 112 1-v •v/c

2 
E =E 1 • __ 2 __ _ 

2 1 1-v2/c2 1-v •v/c2 
2 . 1 

which also may easily be obtain from the expressions 

.=c((V ) 2)p •V =µc 2 (1-v •v/c2 )(1-v2/c2 )- 1 ✓2 , a=1,2. 
a a a a a 

(21) 

E = a 

In the case of the "usual" Doppler effect [5] we have a photon 

(v=cn, n 2=1) emitted with energy E2 =E
0 

and detected with energy 

8 

,,. 

E1=E, which according to (21) is 

(

1-v!/c
2
] 1/2 

E=E ---=--- • 
o 1-v2/c2 

. 1 

1-v ·n/c 
. I 

1-v
2

•n/c 
(22) 

Let· us note that when ·v
1
=0, · tne formulae (21) and (22) may be·· 

derived also as a corollary from the definition of relative energy 

(see [1], sect. 4). This result is in agreement with the considered 

in [ 5] Doppler effect in special relativity ( in terms of frequen

cies; cf. the quantum relation E=hv, h being the Plank's constant). 

4. CONCLUDING REMARKS 

We want to emphasize that the basic result of this work is 

given by the equality (17) the main difference of which from the 

usual Doppler effect (e.g. in general relativity; see (19) or [3]) 

is the existence in it of, generally said, nonvanishing term AE , . . , 21 ', 

defined by (5). A feature of the equation (17) is its validity for 

particles with arbitrary, zero or nonzero, masses, i.e. our results 

do not depend on the mass of the investigated particle. 

If AE21 =0, then eq. (17) takes a form similar.to the classical 

one (in the case of arbitrary mass (cf. [4])). Due 'to (5) a suffi

cient condition for this is 

Ap(r1, r 2;;)=0,. (23) 

i.e. (see (4)) 

p(r )=I7 p(r) 
2. · r1.-.r

2 
I 

(23') 

which means :that the momentum p(r{) is ·cr-)transported by means of· 

the transport along paths I from the point 7(r1) to the· point ;(r) 

(cf. [3], eq. (2.4)). 

9 



If a point particle is moving along the path 7: J -M, then_ it 

is natural to call it a free particle (with respect to the trans

port along paths I) if (23') ho.Ids for every r ,r eJ, i.e. if its 
1 2 

momentum is I-transported along its world line 7 (cf. [3], defini-

tion 2. 2). · In particular, if I 7 is a parallel transport along 7 

(_generated by a linear connection), then this .definition of a free 

particle coincides with the one in [4], p. 110, given therein as a 

special case of the geodesic hypothesis. In our case, the corres

ponding generalization of the geodesic hypothesis states that the 

world line 7: J -M of a tree (with respect to I) particle is an 

I-path (see [2], definition 2.2), i.e. 

7(t)=I7 7(s), s,teJ, (24) 
s--tt 

and besides 

p( s)=µ( s:7) 7( s) (25) 

for some scalar functionµ (identified with the particles rest mass 

' if' it is not zero). 

If the transport along paths is linear (see e.g. [3], eq. 

(2,8)), then substituting (25) into (23') and comparing the result 

with (24), we get (cf. [4], p. 110, eq. (9)) 

µ(sa)=const. (26) 

So, tQe mass parameterµ (the rest mass if it is not zero) of 

a free particle is constant if the used transport along paths· is 

linear. 

It should also be noted, that as for free massive particles 

with a rest mass m eq. (25) holds (by definition) for µ(sa)=m, 

then for linear transports along paths the ("generalized geodesic") 

hypothesis (24) is a consequence of the condition (23'). 

At the end we want to mention the equality (cf. (4)) 

10 

. ,. 

t.p(r ;r ;7)=I7 t.p(r ,r ;7) 
2 1 r -+r· 1 2 

(27) 
. 2 1 

for a linear transport along paths I. Hence, in this case eq. (5) 

can equivalently (due to the consistency of I and the metric) be 

written as 

2 
t.E21: =c( (V2) )t.p(r2, rl ;-7) •(V2) i. (28) 
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