


1. INTRODUCTION

In a series of works, which began with [2,3] and is partially
summarizedin{4] . W. G. Dixon developed some methods of dynamics of
extended bodies in'general relativity. He made an essential usage of
the theory of bitensors, first of all for defining some dynamical
quantities in curved spaces and their further treatmént.

The bitensors theory, originally considered by H.S. Ruse [8] and
J. L. Synge [9,10], is deeper investigated iﬂy[ii], where some its
physical applications can be found. This'theory is also widely used
in [1]. It should be emphasized that in all mentioned physical app11—
cations of bitsnsors mainly metmedthoseobﬁmnedby B d1fferent1at1on
of the world function, primary introduced by J. L. synge [10].

The present work, which was inspired by the above references and
some purely mathematical considerations, begins an iﬂvestigation of
dynamics in,. generally curved, space-times endowed with a structure
called a ("parallel™) "transport" (long paths), which, when it is
linear and acts in the tensor bundles over a given manifold, is equi-
valent to «(a syétem of) bitensors. with a suitable properties (cf.
[13]1). In particular, here we shall use "flat linear transports" in
tensor bundles over the space-time [12] which, as it is proved in
[12], are simply parallel transports génerdted by flat linear connec-
tions in these bundles. On this basis our work is aimed to analyze
the concept "centre of mass" of a physical system described with its
energy-momentum tensor and to propose an adequate definition of that
cohcept.~The generalizations of the. presented here results.to the
case of more general space-times with arbitrary curvature and torsion
will be published elsewhere.

In sectionzz, by means of flat»linedr transports over a given
space-time, we introduce the needed for us dynamical quantities and
present a part of their properties. These quantities. are similar to
the classical ones and coincide with them in the : corresponding
special case. v .

In section 3 we deflne the mass  centre .of a. dlscrete physical
system and consider its connection with some dynamical-quantities de-:
pending on the energy-momentum.tensor .of this system. .

Section 4 contains analysis of. the mass centre of a physical
system described by its energy-momentum tensor. As a ground are taken
two conditions: (a) in the discrete case one must obtain the results
of section 3 and (b) some linear conditions (see (4.3)) are assumed
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to hold. It turns out that they define the mass centre up to an arbi-
trary 1-form (covector) which, when, as usual, the space-time is
endowed with a metric, is naturally to be assumed to be the covector
corresponding with respect to the metric to the energy-momentum
vector of the system.

In Section 5 are presented certain concluding remarks.

2. SOME MECHANICAL QUANTITIES DEFINED BY MEANS
OF FLAT LINEAR TRANSPORTS )

In this section certain necesserf for our investigation quanti-
ties are defined and some their properties are established.

Let M be a differentiable manifold [7] endowed ‘with a flat
linear transport L [12], which can equivalently be thought as a
parallel transport'denerated by a flat linear connection V' on M
[12].'Physica11y‘M will be interpreted as a space-time of dimension
n:=dim(M)=4 and its properties will be specified, when needed, below.

The Latin and Greek indices ‘are referring to M and will run,
respectively, from 0 to n-1=3 and from 1 to n-1=3.The usual summation
rule over repeated on different levels Latin (resp. Greek) indices
from 1 to n (resp. n-1) will be assumed. ’

The (flat linear) transport’from x to vy, ‘x,yeM will be denoted
by L  —y and H (y,x) ‘will mean the components of the matrix repre-
senting it (in some local coordlnates), which are components of a
bivector (vector at y and covector at ‘x) [12]. For details concern1ng
flat linear transports the reader is referred to [12].

Definition 2.1. Let the c! path 7:J-——-M, J being an R interval,
joins' © the points x,yeM, i.e., (s)=x and 7(t)=y for some s,teJ. The
displacement vector of y with respect to x (as it is defined by the
transport L) is the vector ’

’ t
' h(x,y)::I(LT(r)___aﬂt)%(r))dr, ‘ (2.1)
s
where 7 is the tangent to y vector field.

In the general case h(x,y) ‘depends on 7. We didn’t denote this
because hereafter in this work we shall be interested only in the
case when‘h(x,y) doesn’t depend on 7. This assumption puts a restric-
tion on the used transport L which is expressed by

Proposition 2.1. If the points x and y belong to some coordinate
neighborhood, then the displacement vector (2.1) doesn’t depend on
the path y if and only if the torsion of the flat ‘linear connection,

P

for which L is a parallel transport, is zero.
Proof. In a coordinate basis the components of (2.1) are
t A 4 :
' (x, ) =[x, 0(r)) 7 (Par=[! (x,2)az’, ) (2.2)
s . x . R
where we have made the substitution 2z3=y3(r) and the last integral is
along 7. As is well known _[6], this last integral is locally inde-
pendent- from y iff the-integrand in it is a full differential (with
respect to z), i.e. iff locally it is'a closed “1-form which is
expressed by eq. (4.3") of [12]. By its turn this equation, due to
proposition 4.3 and the remark after proposition 4.2 from [12] is
satisfied iff the mentioned torsion vanishes.m )
Remark. If there does not ‘exist” a coordinate neighborhood con-
talnlng x and y, then the vector (2.1) depends on the path ¥ (see

‘below the remark ‘after (2 6)). That is why further is supposed the

polnt def1n1ng some dlsplacement vector to belong to some coordlnate
neighborhood ’ :
C Proposxtlon Z Z. If x Yy and z belong to one and the same coordl—‘
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nate ne1ghborhood, 1t 1s valid the 1mp11cat10n

h(x,y)=h(x,2) & y=z o e ' (2.3) "
which is equivalent to ..
h(x,y);o”e: y=X. R ' ‘ o (2.3')

Proof. By proposltlons 4:1,and 4.2 from'[12] there exists holo-
nomic coordlnates (x } in the neighborhood contalnlng X, Yy . and 2z
! T

such that H' ,(x y) 6;,. So, in it, we have
. ) ) y y
’ ’ e [ ’ » ; Lo
n' (x,y)=IH‘ J,(x,u)duJ ='Idul =y‘ zxt ' . (2.4)
. b .. 5 X e T i, N

from where immediately follow (2.3) and (2.3").m i

Remark. From (2.4) we infer that in the censidereq case h(x,y)
is a straightforward generalization of the Euclidean (difference of
two) radius-vector(s). e e L )

From this proposition, erenﬂthcanbe’ concluded that if xeM
and a.basis (E } in the tangent’to M- bundle.(i.e. ‘ifb(E‘(z)}“is a
basis in T (M)) are f1xed, then the components h'(x,y) of
h(x,y)=: n'(x, y)E (x) are local coordinates of every 'y, iie. the map
yr——a(h (x ¥)oeoo h (x,y)eR” is a local coord1nate system on M. In
this sense h(x,y) may be called a vector coord1nate of 'y.

As a simple corollaries of (2.1), we find



h(x,y)=h(x,z)+L_ h(z,y), ) o (2.5)

«h(x,y)=~Ly Sy x). . (2,6)

Remark. If there is not a single coordinate neighborhood contai-
ning x.and 'y, .then.the displacement vector depends on the path y. For
instance,  if this is the case ‘and there exist neighborhoods U’3x,
U”sy .and U’nU”#@, .then using in U’ and U” coordinates likeﬁthose‘in
(2.4), we, writing'ekplicitly the dependence on y, find ‘ ‘

I

iyt : R L

A (x,y;p)=n' (x,z)+8t, 22 oz) _p” (z.p)=
R oL IR
Z
‘l ll I I

" "

=z ~x! +6ﬂ jziw~(y’ -x!),

az?

where 267(J)nU nU” From here is evident the explicit dependencerof
the dlsplacement vector on the path entering in its def1n1tlon (2 t)
in the considered concrete case. ’

Let. M be a 4- dlmens1ona1 space—tlme Let us con51der a physlcal
system w1th a (contravarlant) energy—momentum tensor ;T‘J ' (The
concrete structure of T Yor its dependence on other duantltles,
physical or geometrical fields, is 1ns1gn1f1cant.) Let .Z be a (time-
like, if. there is a metric) hypersurface with a measure dZ =
= ki)ldx dx dx ekl,l being the 4-dimensional antlsymmetrlc
e— symbo;s:and‘dx:, dx and dx; being three linearly independent dis-
placements on %.

~We define-the (4-)vector of  energy-momentum of the system as

N S| 1k o o o
P == [0 (x,T*(y)az (v) R Lo @m
b3
1n wh1ch c=const is the 11ght veloclty in vacuum.

As a corollary of this def1n1tlon (see also eq. ‘(2;5) from
[12]), we get :

p(2)=L ;p(X)- . - ) ,-; : i .;(5;8)'

Let us deflne the tensor P by

P”(x):‘:-jn (x,'y)nJ TN (az, (y), : (2.9)
Z . B " ’ *
the antlsymmetrlc ‘part of which, .
L”(x)ﬁ:’ép'"‘”(x)‘:“='p”(x)—P“(x), R (2.10)
4

o a—

is the, orbital angular momentum tensor [2,3,10] of the investigated
physicél system. The fact that L isn’t a conserved quantity [3] is
not significant for the following. (A conserved quantity is the total
angular momentum, which is a sum of L and the spin angular momentum
tensor [2,3,10].)

Substituting (2.5) into (2.9), we get

P(x)=h(x,z)®p(x)+Lz ’xP(z), : . (2.1?)
which in a. case of orbital angular momentum reduces. to
L(x)=h(x,z)“p(x)+Lz___qu(z), ’ ’ o l, (2.12)

where ® is the tensor product sign and 7 is. the antisymmetric
external (wedge) product slgn X

At the end of this section we shall write the expre551ons for
the components of h, P and P in some spec1a1 bases.

By prop051t10ns 4.1 and 4.2 from [12] (see also prop051t10n 2.1
and the assumptlon before it) there is a 10ca1 holonomlc ba51s (coor—
dinate system) in which the components of the b1vector H(x Y), repre—

.senting L 'in it, are Kronecker’s deltas, i. e. H (x,y)-sj.vIn this

basis, from the definitions of h, p and P, we f1nd' E BN

n'(x, Y) =y'-x!, . - : “ ’.; : (2.13)

p'(x)= 1 [T**(y)az, (y)=const, S (2.14)
z ’ s

PU0= 1 [(y'-xH T (paz (=P (0 -x'p(x), S (2.18)
b S ’

with 0 being the point with zero coordinates in'the ‘used basis.
Because of p (x)=const, from the used basis hy linear transfor-

mation with constant coefficients can be obtained a. local holonomic

basis with the above-pointed property (see-proposition 4.1 of [12])

in which
K 1
p =CH50, : oo (2.186)
where
“::\1 T (y)dz (y)-const ) i (2.17)
c?

. o E . : B ) X
is. the total mass of the investigated physical system. Let’s note

that.if the space is endowed with a metric and x° is interpreted as a



time (coordinate), then (2.t6) expresses the simple fact that p(x) is
a time-like vector. ° ‘
So, in this basis
ﬁ \ i) / ey <
P °(x)=P " (0)-cMx 3. : . (2.18)
And, at last, if we choose the hypersurface Z as y°=z°=const.
then d£, (y)=s,d’y and P°’(0)=cMz"s). Hence, we have

o7 o
y =z y =z

P’ (x)=cM=l ] °(y)d’y, pA(x)=L [ ™ydly=0, - (2.19)
Cc o o c

P (x)=cM(2°-x")8), P (x)=P™(0)-cMx"s). . T (2.20)

3. CENTRE OF MASS IN A DISCRETE'CASE’k

Let us. have part1c1es with masses m situeted et seme>moment t
at the p01nts X, where a= 1 ,N numbers the partlcles' Below we
suppose the partlcles total mass to be nonzero, Zh #0. Let X be

a fixed space-time point  and the displacement vector h(x X ) be. well
defined (see the previous sectlon)

Definition 3.1. The mass centre of the masses m with‘respeCt to-

the reference point x at the moment t is the point xi such-that

h(x,xn):=[ z mah(x,xa)][ z ma]". » ,.£3'1)

Remark. With the change of time t the point‘xH describes a world
line, the world line of the system’s mass centre.

As a consequence 'of (2.5), the mass centres X, and Y, with
respect- to the reference points x and y_respectively are connected by

DY,y )=h(y, 4L, |, nixx). - (3.2)
In a“local holonomic basis in which H‘J(x.y):sz, from (3.1), ‘we
easily get ’

() (T ) EES
a a .

Example 3.1 (Special relativity; cf. [5]). Let us have -a
Hinkowski's,space—time M* referred to Minkowskian coordinates. As a
concrete realization of the transport L we shall use the (pseudo—)
Euclidean transport def1ned by H" (x y)~6 i, j=0,1,2,3. The coordi-
nates of any event xeM? ‘are of the form (ct x), where c 1s .the velo—
city - of llght t is the time in the used frame and x: =(x',x%,x%),

Py

b i b st

which may depend on t, is the spec1a1 coordinate of x.
So, in this case (2.13)-(2. 15) and (3.3) are valid. The last of
these equallty,bdue to xa=ct for every event, reduces to
o_ - -1
xH-ct. xn-[ Z maxa][ Z ma] . (3.4)

. 2. 2.0
If we define m as m = /c 3 where 8 =c m =C max
a

x(1- (dx/dt)z)qlz. m being the’ rest mass of the a-th partlcle, is

the energy of the a-th particle, we find x —[ Z 8 X ]( Z Sa]". Thus
a

we can make the inference that in the discrete case in special rela-
tivity our definition 3.1 of mass centre reduces to the known clas-
sical one (see,e.g., [5], ch.2, §14). Let’s note that the so-obtained
mass centre depends on the used basis. (frame of reference), as 8‘ are
such quantities. If we w1sh to get an 1nvar1ant definition of X,
then 1nstead of m =8 /c we have to take m -m

Now we.  want to show -that in the dlscrete case there, exists a

‘very important for the following section connection between the mass

centre x and the tensor P with local components (2.9).

To beg1n with, let us remember that the component T° (z) of an
energy-momentum tensor .is regarded as " an energy density at z [5].
Hence it can be written as T°°(z)=c®o(z), p(2z) being the mass density

at z, which in the discrete case is
3 ‘ . )
p(z)=y m &> (x,-2), (3.5)
a

where &° is the 3'dimensional Dirac’s delta function. ]
If a local holonomic basis in which H' (x y) 6 is used and £ is
deflned by y =z%=const, then dz (y) s° d y and from (2 9), we obtain

P=l [ n'GanTmnd’y=l [ n'x,y))m 8% (x -y)ady=
o] [of o] [+] a )

y-=z y =z
=c2mahr(x.xa)|
a

o o Which may also be written as
X =z ' :

P°°(x)=cH(z°—x°), Pao(x)=cHha(x,xH) o o (3.6)
X =2
M
where (cf. (2.17)) the total mass of the systemis
[ sty)ya’y=jm_. ' : . (3.7
0 a

Analogous calculations (see (2.14) and (2.15)) show that:



PP(=t [ T%p)diyscH, pio=k [ 1¥pdly, (3.8)
c o .0 c o o
y =z y =z .
[ P undy-exPx). (3.9
y =20
The most important for the following result here is the connec-
tion between h(x.xH) and P expressed éxplicitly by (3.6).

'

PO%(x)=(z°-x°)p%(x), P®B(x)=L
: [o]

4. CENTRE OF MASS: GENERAL CASE

The ' conclusion ’from the previous section‘}is that - the mass
centre of a physical system (if it exists!) must be connected with
the tensor P and 'in the discrete case this connection must reduce to
the already established one. ‘

So, we state the problem’ for expressing- in- a covariant way
h(x,xH) through P(xH).'Due to (3.15) these quantities are connected
by the relation - C : R

.

P(x)=H' (%, x)HJ (x , %) P! (x) +h! (x,¥)P (%), L (a.1)

which 1s a 51mple corollary from the correspondlng deflnltlons and
dlrectly can’'t serve as an equatlon for determlnatlon of

h(x ,X)=-L h(x,x ). . .. (4.2)

x ——x

Hence, to express h(x x) through P(x ) we must 1mpose on the latter
a certaln number of 1ndependent condltlons such that by the usage of
(4.1) they must be solvable w1th respect to (some of) the components
of h(x x) and such that the so-obtained dependence "in a discrete
case must coincide with the one established in section 3. The type of
these conditions is sufficiently arbitrary and this is the cause for
the possible exlstence of dlfferent nonequivalent definitions of. the
mass centre on the ba51s of P or the orbital and/or sp1n angular
momentum, all ‘of which in the corresponding special cases reduce to
its classical definition. Below we analyze only the linear. conditions
that can be imposed on P which most of all fit to the general spirit
of tensor calculus and general, relativity. . : .
The - general form of the mentioned linear conditions is
B;k(xH)PJk(xH)=b§(xH) for some tensors B:k and b‘{*i.e.{ o

Bi, (x 0! (0 (x, 0P () + 0 B (x )0 (x0p%(x)=b' (%) (4.3)

In section 3 we saw that only ha, a=1, .,n?1=3 are connected

Ty

- tm—

with P, the componenth° being independent of it.. Hence only n-1=3 of
these n=4 conditions must be 1ndependent i.e.

det"B (x)p (x)" 0, i,j,k=0,1,...,n-1=3, ° (4.4)

.,n~-1=3. ' (4.5)

-

det"Bak(x)pk(x)H¢0, o, B,7=1,

(The 1last condition may always be fulfllled with an appropriate
renumbering of B (x) )
The cond1t10n (4.4) is equivalent to the ex1stence of nonvani--

shing covector field q such that

‘

(09, GOp" =0 (z(q,(xi)sz).i a4

On the opp051te, if we f1x .a, covector f1e1d q#0 and define

'B (x) as any solution of (4. 5)- (4 6), we shall obtain some‘relatlon

(4 3) satlsfylng the needed condltlons P

Let there be given a nonvanishing covector field q. It is easily
°g! ESE -26“6”q (x)= (5 s —a 8,)q,(x)
satisfy all of the above condltlons So, . puttlng B (x)~
= °B1 (x)+’B‘ (x) and Qi(x)' ’B (x)PJk(x)+b (x) ihto (4'3),- we see

that h(x x) must be a -solution of P[Jkl(x )q (x )= Q (x ),

verified that the quantities

zqk(xH)Hfl(xH.x)an(xH,x)p“"’(x)+qk(xn)h"(xﬂ,x)p*’(xx) = o Q(x)),
‘ (4.7

where q, Q and p must satisfy the conditions
Q' () q,(x)=0, p'(x)q,(x)#0. (4.8)

The former of them is a .corollary from (4.6). and the -latter. one
ensures the solvablllty of (4.7) with. respect to h(x ,x) in. space-
greater than one. (Evidently, 1f P (x)ql(x) =0,
the" linear combination

times with dlmen51on

from (4.7) can be' obtained no‘ more ‘than

qi(xH)h’(xH,x). but not h‘(xH,x) itself.)
From (4.7), we get

1

h‘(xn,x)——————————————[o (1) + (q,(x, In*(x,, x))p'(x,) -
' q(X)p(X)
: —f2Hfi(xugx)ﬂfn(xﬁ;X)Plln](x)qk(xn)]- : (4.9)

Let us investigate this'expression
‘Firstly, (4.9) defines only the spacial’ components n* (x +X),
1eav1ng the t1me component n° (x + X) arbltrary To prove thlS,‘IEt'



take a basis {Ex} such that Hi (x,y)=6;.vIn it (4.9) reduces to

R (x,.x0= ————— [Q%(x,) *+ (q(x)h*(x,,%)PN(x,) -
q,(x,)p"(x,) ‘ .
Pl (x)q, (x)1, (4.10a)
ﬁé(xn.x)=———1-;—[00(xn), + ,(qk(xn)hr‘(xn,x))po(x!) -
- S (x )P (%) .
= 2P1 () q(x, )1 G (4.10b)

As q#0, for some i we must have q‘(xn)¢0. Let, e.g., qo(xn)¢0.

Substituting (4.10a) and Q%(x,)q.(x,)=-0°(x)q (x,) (see (4.8))
into ho(xn,x)E(qo(xH))'1[qk(xn)hk(xn,x)—ha(xu)qa(xn)], ' xe obtain
(4:10b). So, (4.1bb) is a'cohseduence of (4.10a). Evideh;ly, the same
fesult is true if qi(xg)¢0 for some other fixed value of i. )

Now we shall study what conditions must satisfy q and Q if in
the - dlscrete case the right-hand side of (4 10a) reproduces the same
result as (3.1). ‘ '

For simplicity and brevity a basis {E‘} in yhich

H' (x,y)=6‘, p‘(x):l— I, Tlo(y)d3y=cM6;,'M=const¢0 (4.11)

-3 J c o o
y =2
will be used. In it (4.10a) gives

B, 0= gy [89(x,0 2P (0, (x)-2P F (0 gp(x )1 (4012) ¢
0 | AN

(In this basis q,(x,)#0 because of (4.8).andk(4.1i).)

Substituting, in accordance with (4.11) and (3.6)-(3.9), here
P“?(x):cﬂhg(x,xﬁ)=-cth(xH,x), Poa(x)=0 ‘and PaB(x)=P“B(Q), where h0
is defined by the right hand side of (3.1), we find

'n"‘(x“,x)=h‘jj(x",x)+Wx—y [Q%(x,)- zp‘“ﬂ’(O)q (x)1.  (4.13)
Therefore *
ha(xn,x)=hg(xn,x), : . ~ : ’ (4114)

as we must have, if and only if Q (x )= 2P[aB](0)qB(x Y], from which,
due to (4.8) and qo(x)#o follows. Q (x) 0, i.e. (4.14) is equivalent
to

Q' (x,)=25,1% (x,, K (x,,00P " (D) qy(x,). . (4.15)

"Hence Q must depend linearly upon q and the antisymmetric part
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of P. But, because the Greek indices don't take the value zero, it
depends also‘on the used basis {El} which isn’t ﬁniquely defined by
the conditions Hfj(x,y)=6; and p‘(x)=cH6;. (These conditions fix {Ei}
up to a transformation with a constant nondegenerate diagonal
matrix.) The only way -to be skipped that last dependence is to admit
that in {E } is fulfilled q, (x )=0, or

.

q‘(x )=q, (x )6 q, (x )#0, C o .(4.16) -

whlch 1mp11es (see (4 15))

Q'(x, ) =0. : , (4.17)
The above discussion and its results can be summarized into
. Proposition 4.1. Let h(xn,x) depend ' linearly on P(xH) and in
the discrete case reduce °to (3.1). Let there be chosen a nonvani-
shing covector field q. Let there exist a local holonomic basis”such

“that ' in it:
' (x,¥)=8], ) (4.18a)
pi(x)=cM6;, M=const#0, ) ' (4.18Db)
. . .
q,(x)=q (x)s, q (x)#0. , (4.18c)

Then in ‘any basis the spacial coordinates x: of 'xH are uniquely

defined by the equation

P! (x,)q, (x,)=0, ‘ ‘ (4.19)

or, equivalently, by
1 o 1 i
h (XH.X)—-Tjirsyyri;y-[(Q(xy)(h(*n'x)))P (xn)f

-2 (x, 08! G, 0P (0 g, (x)1; . (4.20)
which leaves the time component x° of xH'in the above special basis
arbitrary. )
Let us . turn now our attention on the covector field q, which
must: satlsfy only the condition (4 18c). In this connection are impo—
rtant the following two observations. Firstly, the defined by (4.19)
mass centre X, generally, depends on the choice of q which is in a
great ‘extend arbitrary and until now hasn’t any physical meanirg.

Secondly, the equations (4.19), as well as the results leading to

11



proposition 4.1, imply the existence of some dependence of g on p.
These two facts, the above-considered discrete case and the investi-
gations in [2,3] are a hint for us to propose the following. general
definition of mass centre.

Let the .space-time be endowed with a linear transport L and
independently with a metric g with covariant components ngz " and
signature (+---). Then, -roughly speaking, -the mass centre X, is
defined by proposition 4.1 with qx=ginJ. More precisely, we give

Definition 4.1. The mass centre of a system‘described by an
energy-momentum tensor 1is  the unique point X, satisfying the
following three conditions:

1. At the point X, in any local basis is valid the equation

““(x )g,, (x,)p'(x)=0. " - C 0 (4a.21)

2. In a nelghborhood of X, there exist local coordinates {x‘}

such that in the associated to them basis (a/ax } to be fulfilled:

! =5 (4.22

Ho (x,y)=8,, ( a)
pi(xH)=cM6;, M=const#0, o (4.22b)
glo(¥x)=goo(xn)6?' goo(xn)¥0' (4.22c)

3. In the coordinates in which (4.22) hold the time component of

x, is x =ct, t being the time in these coordlnates
5. Comments i

Now we shall make some remarks concerning definition 4.1.

Firstly, the equation (4.21) is a special case of eq. (4.19)
when the choice qx=g”pJ is made. Our opinion is that this connection
between q and p (in a metric space-time) is the only "reasonable" one
which prevents the dependence of ’xH on a sufficiently arbitrary
quantity g. Moreover, in this way is given a physical meaning to q as
the covector (1-form) corresponding by means of the metric .to: the
momentum p. This is important because by its meaning the mass centre
must. depend only on the mass dlstribution of the. matter. and - it
shouldn’t depend on arbitrary quantities of unclear physical meaning.

Secondly, the conditions (4.22) ensure the solvability of eq.
(4.21) with respect to x, and the coincidence in the discrete case of
the so-obtained value of X, with the one obtained independently by
definition 3.1. Let’'s also note that the condition (4.22c) is a

simple corollary of ql=g”pJ and (4.18c).
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Thirdly, the three conditions (4.22) have a different meaning
and in the general case of arbitrary metric they can’t be satisfied
simultaneously The first of them, (4.22a), expresses the fact that
the assoc1ated to the used’ transport connectlon is tors1on free (1n
addition to its zero curvature) The second one, (4. 22b), shows that
the (linear) momentum p is (by def1n1t10n) a t1me 11ke vector and
that 1ts d1rect10n 1s taken as a direction of the t1me (zeroth) coor-
d1nate axes, wh1ch 1s poss1ble because of M#0. (If M—O, then X 1s
left completely arbltrary by (4 21) and (4. 22), 1 e. for massless
systems any space-~ t1me p01nt can serve as the1r mass centre ) These
two cond1t10n are always compat1ble 1n accordance with proposltlons
4 1- 4 3 of [: 2] as in a basis in wh1ch (4 22a) 1s valld 1t 1s
fulfllled (2 14). The last condltlon, (4 22c), enables us to 1nter—
pret X /c t as a t1me 1n the descrlbed frame of reference (1f 1t
ex1sts) Th1s condition 1s very restr1ct1ve one In fact 1f X, was a
flxed poxnt then wlth a llnear transformatlon w1th constant coeff1—
c1ents 1t ‘is poss1ble (see [12], propos1tlon 4. 1) to transform the
bas1s 1n wh1ch (4.22a) holds 1nto a ba51s ,1n whlch (4 22a) and
(4. 22c) are valid s1mu1taneous1y But, generally, in such a bas1s
(4,22b) w111 not be satisfied. Moreover, as x descr1bes w1th the
change of t1me a whole world 11ne, the mass centre s world 11ne, 1n
the general case one needs a llnear transformatlon w1th nonconstant
coefflclents to satlsfy (4. 22c) ~and 1f this 1s the real 51tuat1on,
then, by [12], propos1t1on 4.1, in the new bas1s the property (4 22a)

»Hlll be lost The conclu51on from these cons1derat10ns is that

(4 22c) puts a slgn1f1cant restr1ctlon on the posslble metr1cs whlch
are ‘admnaMe .if we want to be well defined - the mass centre (world
11ne) of  an arb1trary mater1a1 system In short in a glven space-
t1me the equation (4. 21) deflnes a mass centre (world llne(s)) 1f and
only 1f all of the condltlons (4 22) can be_ sat1sf1ed in some local
holonom1c bas1s . o T
) Fourthly, as it was proved above, the equation (4‘21) and the
condltlons (4.22) define, in a bas1s in whlch (4.22) are’ sat1sf1ed
only the spac1al coordlnates x of the mass centre X ,,but‘lts t1me
coordinate x is left by themycompletely arbitrary. This last. compo-
nent is f1xed by. the third,condition-of,definition 4.1 in -such a way
as to give its appropriate value in the discrete and classical cases.
Fifthly, by (4.12) with Q=0 and;ql=g”pj, in the basis described
by (4.22) the mass centre has the following coordinates
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o_ @ . 1 glaol ' -
x =ct, X WX P (x). - . (5.1)

In any other basls the coordinates of X, can be obtained from the
components of the d1sp1acement vector h(x X, ) in this basis.

Slxthly, '1n [2 ‘4] to deflne the mass centre a "similar" to
(4 21) equatlon 1s proposed in wh1ch the orb1ta1 angular momentum
L' P[‘J] is replace w1th the total angular "momentum J”-L”+S‘J
wh1ch 1nc1udes the sp1n angular momentum S . (In [3, 4] the bltensor
H(x, y) is replaced w1th another b1tensor and the case of general
relat1v1ty is con51dered but th1s c1rcumstances are insignificant
now. ) The only reason for this be1ng that J'7 'is a conserved
quant1ty We con51der this def1n1t10n of mass centre as 1rre1evant by
three reasons: (a) the above made ana1ys1s leads d1rect1y to our
def1n1t10n a. 1, (b) the tensor st descr1bes the "pure angular momen—
tum propertles" of the matter and has noth1ng common w1th the s1mp1e
mass d1str1butlon whlch in 1ts turn must def1ne un1que1y the mass
centre and (c) in the mentloned works noth1ng is. said about cond1—
tions ‘llke (4 22), ‘wh1ch insure the solvab111ty of (4 21) w1th
respect to x , 1nstead of wh1ch there 'E expressed s1mp1e cons1dera—
tion that the correspond1ng equat1on 1s 11ke1y to have a. solutlon
w1th the needed propert1es as it has 1t in some spec1a1 cases.

Seventhly, 1n [5], II, §14 is po1nted that the presented
there1n def1n1tlon of mass centre gives d1fferent p01nts for it 1n
d1fferent frames (bases), “ie. it depends exp11c1t1y on the used
1oca1 coord1nates, even in the simple case of spec1a1 relat1v1ty (cf
our’ example 3.1). Ev1dent1y, our def1n1t10n 4.1 is free of’ th1s defi-
c1ency the cause for this being the cond1t1on (4. 22c) (see also
(4. 18c) and (4. 17)) and the general usage of the d1sp1acement vector
vh(x X ) for the def1n1t10n of X, (see also eq (4. 21))

At the end, the above d1scuss10n can be summarize as follows: If
in a space ~times endowed with a (flat) linear transport (connect1on)
and a metr1c we adm1t a linear’ relatlonshlp between P(x ) and
h(x, X, ), then the mass centre (mass centre’s, world 11ne) is well
def1ned by def1n1tlon 4.1 and it ex1sts if the cond1t1ons (4.22) can
be satlsfied in some local’ coord1nates It is 1mportant to be noted
that just this is the classical case of special relativity.’

.
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